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Abstract

In this note I will first briefly review the short history of the out-
of-time-ordered correlator (OTOC) and discuss why this can describe
chaos. I will focus on a rigorous relation between the OTOC and
the entropy dynamics, and discuss the implication of this relation in
several different systems. I will also briefly introduce the first exper-
imental measurement of the OTOC for local operators with a quan-
tum simulator, and discuss the relation between the OTOC and the
Loschmidt echo.

1 General Introduction of OTOC

The out-of-time-ordered correlation (OTOC) function is introduced as

G(t) = 〈Ŵ †(t)V̂ †(0)Ŵ (t)V̂ (0)〉, (1)

where Ŵ (t) = e−iĤtWeiĤt. To respect the causality, the normal correlation
function discussed in many-body physics textbooks before is always time-
ordered. While here in the OTOC the time arguments of the operators are
not ordered. Why we are interested in such a correlation function.

1.1 A Brief History of the OTOC

• The OTOC first appeared in a paper by Larkin and Ovchinnikov in
1969 in studying a disordered superconductivity problem [1]. They
found that such correlator can be related to chaos in the semiclassical
limit. But until recently, there is not too much discussion of chaos
based on the OTOC.
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• In 2013, Shenker and Stanford encountered the same correlation func-
tion in a gravity theory when they studied a problem that is initially
completely unrelated to chaos, that is, the scattering of gravitational
shock waves nearby a horizontal of a black hole [2, 3]. It is Kitaev who
pointed out, in a talk given in KITP in 2014 [4], that what Shenker and
Stanford find in the gravity theory connects to the quantum chaos in a
quantum system. This builds up a remarkable connection between two
very different fields. It also maybe the first time that the name “out-of-
time-ordered correlation” appeared. From the exponential derivation
behavior of the OTOC one can define the Lyaponov exponent for a
quantum system.

• In the black hole calculation, it is found that the Lyaponov exponent
is always 2πkbT . Later, it is also found that the quantum correction
from the string theory always makes the Lyaponov exponent smaller
[5]. Thus it leads to a conjecture that 2πkbT is an upper bound of the
Lyaponov exponent. In 2015, under certain general conditions, Mal-
dacena, Shenker and Stanford prove that the Lyaponov exponent of a
quantum system should be smaller than this bound [6]. This is now
known at the MSS bound. If a quantum system is holographic dual to
a gravity system with a black hole, it means that the correlators calcu-
lated from two sides are identical, hence it is natural that the Lyaponov
exponent of such a system saturates the bound. But a nontrivial con-
jecture is the reversed statement, that is, if the Lyaponov exponent of
a quantum system saturates the bound, it will be holographic dual to
a black hole.

• In three talks given in KITP in 2014 and 2015, Kitaev also discussed
a model generalized from a model studied by Sachdev and Ye in 1993
[4, 7]. He showed that the Lyaponov exponent of this model saturates
the bound in the strong coupling limit [4, 8]. Meanwhile, this model
in the same limit displays an emergent conformal symmetry and is
holographic dual to a black hole [7, 8]. This model is now known as
the SYK model. It is a concrete model to support above conjecture.
Recently the SYK model has drawn lots of attentions from both the
gravity community and the condensed matter community, and there
are also lots of work studied various extensions of the SYK model [9,
10, 11, 12, 13].
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• Recent works have also applied the OTOC beyond the chaotic behavior
and the holographic duality, for instance, describing information scram-
bling and the many-body localization [14, 15, 16, 17, 18, 19, 20, 21].

• Despite of all these theories and several proposals of how to measure
OTOC [22, 23, 24, 25, 26, 27], the experimental measurements of the
OTOC is quite challenging. The first two experimental measurements
of the OTOC appeared in 2016 using NMR [28] and ion trap [29] quan-
tum simulators, respectively. The NMR experiment [28] measures the
OTOC for local operators while the ion trap experiment [29] does not.
As we will mention below, the locality of operators in the OTOC are
quite important.

1.2 The OTOC and Chaotic Behavior

There are two different ways to view the relation between the OTOC and
the chaotic behavior. Let us discuss them one by one:

1.2.1 Viewpoint A

The classical chaos is described by the so-called “the butterfly effect”, that
is, a small initial derivation will be exponentially amplified. In the classical
mechanics, for example, considering q as position and p as its conjugate
variable, it is

∂q(t)

∂q(0)
= {q(t), p(0)} ∼ eλLt. (2)

In the paper by Larkin and Ovchinnikov [1], they replace the Poisson bracket
by the commutate square in the quantum case, and defines

C(t) = 〈||[Ŵ (t), V̂ (0)]|2|〉 (3)

= 〈V̂ †(0)Ŵ †(t)Ŵ (t)V̂ (0)〉+ 〈Ŵ †(t)V̂ †(0)V̂ (0)Ŵ (t)〉
− 〈Ŵ †(t)V̂ †(0)Ŵ (t)V̂ (0)〉 − 〈V̂ †(0)Ŵ †(t)V̂ (0)Ŵ (t)〉. (4)

The first two terms in Eq. 4 are the normal correlations while the last two
terms are the OTOC.

Now we first introduce a concept of “the separation of the time scales”.
td denotes the dissipation time, that is defined as the time scale when the
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Generic Behavior of OTOC

Normalized OTOC
F (t) =

⟨W †(t)V †(0)W (t)V (0)⟩β
⟨WW ⟩β ⟨VV ⟩β

( )F t

tdt scrt

1 # Ltel-
Disspiation time: Normal 4-pt
function factorizes
⟨W †(t)W (t)V †(0)V (0)⟩ ∼
⟨W †W ⟩ ⟨V †V ⟩.
td ∼ β in the low-temperature /
strong-coupling;
Scrambling time: C(t) grows or
f (t) drops significantly.
tscr ∼ β log N in the worst case
(interaction non-local).

Huitao Shen (IASTU→ MIT) OTOC in Quantum Phase Transition and MBL August 11, 2016 5 / 43
Figure 1: Schematic of a typical behavior of the normalized OTOC, which
shows the separation of time scales.

normal correlation becomes separable, i.e

〈V †(0)Ŵ †(t)Ŵ (t)V̂ (0)〉 = 〈V †(0)V̂ (0)〉〈W †(t)Ŵ (t)〉. (5)

Why Eq. 5 defines the dissipation time ? Considering a normalized quantum
state |Ψ〉 and a local operator V̂ , V̂ (0) changes the quantum state from |Ψ〉
to V̂ |Ψ〉 at time t = 0. After certain time td, this local change dissipates,
and since V̂ only changes few local degree of freedom in the thermodynamic
degree of freedom of the system. Thus, once the excitation V̂ (0)|Ψ〉 thermal-
izes, the system returns to the original state |Ψ〉, except for a normalization
factor, i.e.

|Ψ̃〉 =

√
〈V̂ †(0)V̂ (0)〉|Ψ〉. (6)

Hence, the L.H.S. of Eq. 5 becomes the expectation value of Ŵ †(t)Ŵ (t)
under |Ψ̃〉, which gives the R. H. S. of Eq. 5.

After the dissipation time td, C(t) defined in Eq. 4 becomes

C(t) = 〈V †(0)V̂ (0)〉〈W †(t)Ŵ (t)〉(2− 2G̃(t)), (7)

where G̃(t) is the normalized OTOC defined as

G̃(t) =
〈Ŵ †(t)V̂ †(0)Ŵ (t)V̂ (0)〉
〈V †(0)V̂ (0)〉〈W †(t)Ŵ (t)〉

. (8)

It becomes clear that if G̃(t) behaves as at the scrambling time ts

G̃(t) = 1− αeλLt, (9)
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as shown in Fig. 1, C(t) will grow exponentially, which is reminiscent of the
classical butterfly effect defined in Eq. 2.

Hence, we should make a remark that, in order for the OTOC to describe
the chaotic behavior, it requires

1. The separation of the time scales, i.e. ts � td

2. V̂ and Ŵ are both local operators.

Why the “separation of the time scales” is a natural assumption ? Let us
consider Ŵ and V̂ as two local operators far separated, thus, at t = 0 they
commute with each other and C(t) = 1. As time t increases

Ŵ (t) =
∞∑
j=0

(it)j

j!
[Ĥ, . . . , [Ĥ, Ŵ ], . . . , ] (10)

if Ĥ is local, only very high order commutates in Eq. 10 generate terms that
do not commute with V̂ , that is to say, only after long time Ŵ (t) becomes
not commuting with V̂ and the OTOC starts to deviate from unity. On the
other hand, thermalization is a local phenomenon and only involves the local
degree of freedom nearby V̂ . Thus, it is natural to assume td � ts.

1.2.2 Viewpoint B

Considering an eigenstate |Ψ〉 operated by an operator V̂ at t = 0, it is quite
obvious that

e−iĤteiĤtV̂ |Ψ〉 = V̂ |Ψ〉, (11)

which means nothing but evolving a quantum state forward by Ĥ and then
backward by −Ĥ yields the same initial state. Now, let us ask, there is
another operation Ŵ inserted after the forward evolution and before the
backward evolution, i.e.

e−iĤtŴeiĤtV̂ |Ψ〉, (12)

the question is after the time evolution, whether the quantum state can still
return to V̂ |Ψ〉. To quantify this, one can naturally look at the wave function
overlap between

〈Ψ|V̂ †e−iĤtŴeiĤtV̂ |Ψ〉. (13)

If this overlap is nearly unity, that means insetting a perturbation Ŵ during
the evolution has little effect in the final state; while if this overlap rapidly
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decreases, given Ŵ and V̂ are spatially far separated, this means nothing but
a butterfly effect.

However, in many cases there is a trivial reason that the overlap is zero,
that is, if Ŵ changes the quantum number of the state, for instance, if Ŵ is
a particle creation operator. Therefore, one wants a quantum state that has
same quantum number as e−iĤtŴeiĤtV̂ |Ψ〉 while locally is identical to V̂ |Ψ〉.
We argue that the quantum state V̂ e−iĤtŴeiĤt|Ψ〉 fulfills the requirement.

The first operator eiĤt has no effect except for a phase factor, and after op-
erated by Ŵ , the system is backward evolved. For the same consideration
as “the separation of the time scales”, suppose the backward evolution time
is much longer than dissipation time td, the local excitation created by Ŵ
has already smeared out. Similar as the argument above, the quantum state
returns to the same state as |Ψ〉, then the quantum state V̂ e−iĤtŴeiĤt|Ψ〉
is locally identical to V̂ |Ψ〉. Thus, instead of Eq. 13, one looks the over-

lap between e−iĤtŴeiĤtV̂ |Ψ〉 and V̂ e−iĤtŴeiĤt|Ψ〉, which gives exactly the
OTOC as 〈Ŵ †(t)V̂ †(0)Ŵ (t)V̂ (0)〉. In another word, the deviation of the
OTOC from unity quantifies the butterfly effect.

Before concluding this part, let me make an extra remark on the chaotic
behavior and the chaotic system. Of course, if a system is fully chaotic, the
OTOC of any two operators will exhibit chaotic behavior. However, if the
OTOC of some operator exhibits chaotic behavior, it does not mean that
the whole system has to be chaotic. As we will show later, even for an
integrable system, if the operators chosen in the OTOC do not correspond
to the integrable of motion for the many-body system, the OTOC can still
display an exponential decay behavior around the scrambling time. In that
case the difference between an integrable model and a non-integrable model
will manifest itself in the long-time behavior of the OTOC.

The OTOC is a subject of extensive studies recently with many ongoing
works. We are not able to give a comprehensive review for the OTOC.
Instead, here we introduce the relation between the OTOC and the Rényi
entropy.
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Figure 2: A comparison between the relation of OTOC and increasing of
Rényi entropy after quench and the relation of normal correlator and change
of observable after perturbation.

2 The OTOC and the Rényi Entropy

2.1 A General Theorem

A general theory we proved between the OTOC and the second Rényi entropy
is that:

Theorem. For a system at T = ∞ quenched by an arbitrary operator
Ô at t = 0, we divide the system into two subparts A and B and consider
the second Rényi entropy S

(2)
A . The growth of this second Rényi entropy is

related to the OTOC of the original equilibrium state via

exp(−S(2)
A ) =

∑
M̂∈B

〈M̂(t)V̂ (0)M̂(t)V̂ (0)〉β=0, (14)

where V̂ = ÔÔ† and the summation is taken over a complete set of operators
M̂ in the part B. Here we have chosen the normalization condition for M̂
and Ô as

∑
M̂∈BMijMlm = δimδlj, Tr[ÔÔ†] = 1.

The proof of the theorem is in fact quite straightforward, and we put the
details of the proof in the appendix. Here let us put a few remarks on the
theorem:

1. Here the quench can be either a local quench or a global quench. For
local quenches, for instance, for a lattice gas model, one can suddenly
add one more particle in the site-i, which corresponds to the quench
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operator Ô = b̂†i ; for a spin model, one can suddenly flip a spin at the
site-i, which corresponds to the quench operator Ô = Ŝ−i . For global
quench, it means the initial state is prepared in a many-body state
that is not an eigenstate of the full Hamiltonian, for instance, a spin
system with anti-ferromagnetic coupling is prepared in a ferromagnetic
state. In this case, the quench operator corresponds to the projection
operator to that many-body state. In any case, after the quench, the
system will be in a non-equilibrium situation and the system will start
to evolve in time.

2. During the time evolution, in order to study the entropy dynamics, one
needs to divide the system into A and B two subparts. By tracing out
the part B, one obtains the density matrix for part A as ρA = TrBρ,
and the second Rényi entropy is defined as S

(2)
A = − log TrAρ̂

2
A.

3. The L.H.S. of Eq. 14 is a non-equilibrium property. For the L.H.S.
one has the freedoms to choose any quench operator and to choose any
way to divide the system into A and B. But once these two choices
are made, the R.H.S. are completely fixed. In the R.H.S., V̂ has to be
taken related to the quench operator as ÔÔ†, and M̂ has to be taken a
set of complete operators in the subpart B. For instance, for a spin-1/2
model, if B is just a single-site, then M̂ should take σx,y,z and identity
operator.

4. Eq. 14 in fact gives a relation between the OTOC in equilibrium and
entropy dynamics in non-equilibrium. This is in fact reminiscent of the
linear response theory, which relates the normal time-ordered correla-
tor to the change of physical observables after a perturbation. That
is in fact how the normal correlators are experimentally measured in
condensed matter system, such as ARPES and neutron scattering. It
is natural that the normal time-ordered correlator is related to observ-
ables because the time-order obeys causality, while the out-of-time-
ordered correlator does not obey causality and surely can not be related
to normal observables. Nevertheless, our results can be viewed as an
analogy of the linear response theory for the OTOC, as shown in Fig.
2.

5. This theorem can be generalized to finite temperature T case, where
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Eq. 14 becomes

exp(−S(2)
A ) =

∑
M̂∈B

Tr[M̂(t)Ôe−βĤÔ†M̂(t)Ôe−βĤÔ†], (15)

and the L.H.S. of Eq. 15 approximately equals to the OTOC with
temperature T/2 as Tr[e−2βĤM̂(t)ÔÔ†M̂(t)ÔÔ†]. This theorem can
also be generalized to the higher order Rényi entropy.

6. This theorem is quite general. It applies to generic quantum systems,
no matter whether they are chaotic, thermalized, localized or not. It
builds up a general relation between the OTOC and the Rényi entropy,
through which the results obtained from entropy before can be used to
infer properties of the OTOC, as we will discuss in the next session 2.2.

2.2 Application on Several Physical Systems

Here we compare three different systems. Let us first introduce the concept
of eigen-state thermalization hypothesis (ETH). ETH is defined as follows:
for a many-body excited state |α〉 with energy Eα, dividing the system into
two parts of A and B, and suppose VA/VB → 0 in the thermodynamics limit
that both VA →∞ and VB →∞, an ETH is true if

ρA = TrB(|α〉〈α|) = e−ĤA/(kbTα), (16)

where kbTα = Eα. This immediately implies that if a many-body state obeys
ETH, the entropy of its eigenstate will obey volume law. On the contrast,
for a localized state, the entropy will obey area law, as only the boundary
between A and B contributes to entropy.

In Table 1, “Thermal Phase” denotes a system that obeys ETH. While
two localized phases are defined as that do not obey ETH. Here we should
stress that since thermalization is a concept for a general excited state, “local-
ized phase” also means that a general excited state is localized. Furthermore,
depending on whether there are interaction effects, it can be further distin-
guished as many-body localized phase (MBL) and single-particle localized
phase. It worth emphasizing that, despite of the existence of interaction,
that all excited states are still localized is a highly nontrivial statement.
That is to say, the existence of MBL phase is a highly nontrivial fact which
becomes clear only because of lots of investigations in the past ∼ 5 years,
and so far the conclusion is clear only in one-dimension.
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Thermal Phase Many-Body Single-Particle
Localized Localized

Conductivity May have non-zero Zero Zero
DC Conductivity DC Conductivity DC Conductivity

ETH ETH True ETH False ETH False
Eigenstates Volume-Law Area-Law Area-Law

Entanglement Volume-Law Area-Law Area-Law
Entanglement Power-Law Logarithmic No

Spreading Spreading Spreading Spreading
OTOC Exponential Decay Power-Law Decay No Decay

Table 1: A comparison of a “thermal phase” (which means a phase that
can thermalize), a many-body localized phase and a single-particle localized
phase, in term of DC conductivity, eigen-state thermalization hypothesis
(ETH), entanglement entropy of eigenstates, entanglement spreading after a
quench and the behavior of OTOC.

As shown in Table 1, the first three raws show that the conductivity,
whether ETH is obeyed, or the entropy behavior of the eigenstate can only
distinguish the thermal phase from two localized phases, but can not dis-
tinguish the many-body localized phase from single-particle localized phase.
What can distinguish all three phase is the entropy dynamics after a quench.
While our work show that the behavior of the OTOC can also distinguish all
of them [16]. Our theorem further reveal that there is a connection between
them.

Thermal Phase. We consider the Bose-Hubbard model (BHM) as an
example of the thermalized phase, whose Hamiltonian is given by

Ĥ = −J
∑
〈ij〉

(b̂†i b̂j + h.c.) +
U

2

∑
i

n̂i(n̂i − 1), (17)

where b̂i is the spinless boson operator at site-i and n̂i = b̂†i b̂i is the boson
number operator. Fig. 3 (A) shows a calculation for βJ = 0.9, U/J = 10
with six bosons at six sites in one-dimension. The quench is by removing
a boson at the second site, and to calculate the second Rényi entropy, the
system is divided into the right and the left three sites. Clearly, it shows
that the second Rényi entropy grows linearly after certain time, during the
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(A) (B)

Figure 3: The increasing of the second Rényi entropy after a local quench and
the behavior of the OTOC for two local observables for the Bose-Hubbard
model, as an example of thermal phase (A), and for XXZ model that exhibits
a MBL phase with non-zero Jz and a single-particle localized phase with
Jz = 0 (B).

same period of time, the decay of the OTOC can be fitted by an exponential
function. From the exponential fit, one can further deduce the Lyapunov
exponent for the BHM, and in Ref. [27] it is further shown that the Lyapunov
exponent will peak at the quantum critical regime.

Localized Phase. We consider the XXZ model as examples for the
localized phase [16], whose Hamiltonian is given by

Ĥ =
∑
i

J⊥(ŝxi ŝ
x
i+1 + ŝyi ŝ

y
i+1) + Jz ŝ

z
i ŝ
z
i+1 + hiŝ

z
i , (18)

where ŝx,y,zi are three spin operators at site-i, J⊥ and Jz are both constants,
and hi are random fields uniformly distributed among [−h, h]. Using a
Jordan-Wigner transformation to map this model into a spinless fermion
model, ŝzi ŝ

z
i+1 gives a nearest neighbour interaction between fermions. Thus

in this model, Jz represents the interaction effect. The calculation is done
for an 8-site model with open boundary condition, and is averaged over 103

disorder configurations. The horizontal axis is tJ⊥ in the logarithmic scale.
Here J⊥ > 0, hi/J⊥ is uniformly distributed between [−5, 5]. For the MBL
case Jz/J⊥ = 0.2 where the system is known to be fully localized [31]. For the
single-particle localized case Jz = 0. For the entropy calculation, the initial
state is prepared in a Néel state along ẑ direction, and evolves from there
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under the XXZ Hamiltonian Eq. 18. This initial state preparation can in fact
be viewed as a global quench. For the OTOC calculation, we choose Ŵ as ŝx
at site i = 2 and V̂ as ŝx at site j = 8. The temperature is also set at infinity
and we sum over all configurations with equal weight. In Fig. 3(B), we show
that for the MBL phase, the second Rényi entropy grows logarithmically,
while during the same period of time, the OTOC decay in a power-law. In
fact, this power law behavior can be shown analytically with a phenomeno-
logical model for the MBL phase [16]. While for a single-particle localized
phase, Fig. 3(B) shows that the second Rényi entropy stop growing after
the initial stage, and meanwhile the OTOC remains as a constant. Thus, it
shows that the OTOC can distinguish MBL from a single-particle localized
phase. As a side remark, it is also easy to show that normal time-ordered
correlator can not distinguish them [16].

3 Experimental Measurement of OTOC

3.1 Quantum Simulation

The experimental measurement of OTOC is extremely challenging for two
reasons: First, as mentioned above, normal correlator is measured through
measuring changing of observables response to perturbation by linear re-
sponse theory, however, it does not work for the OTOC; Second, if one
wants to directly simulate this correlator, it evolves backward evolution in
time which requires the controbility of reversing the full Hamiltonian. This
is very difficult for most quantum systems.

Therefore, our measurement of OTOC reported in Ref. [28] relies on a
quantum simulator. Here our quantum simulator is a NMR on a molecule
with four nuclear spins, which can realize any local unitary operation through
external control of these nuclear spins. Thus, we can measure any correlator
of any four spin Hamiltonian system with this quantum simulation approach.

In this experiment, we focus on a 4-site Ising model with transverse field
in both x̂ and ẑ direction.

Ĥ =
∑
i

(
−σ̂zi σ̂zi+1 + gσ̂xi + hσ̂zi

)
. (19)

When h = 0, the Hamiltonian is integrable; while the system is non-integrable
when h is finite. Briefly, measurement of OTOC for 〈σβj (t)σαi σ

β
j (t)σαi 〉 follows

following three steps:
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Figure 4: Experimental results of OTOC measurement for an Ising spin
chain: (a) Â = σ̂z1 at the first site, and B̂ = σ̂x4 at the fourth site. (b)
Â = σ̂x1 at the first site, and B̂ = σ̂y4 at the fourth site. The three columns
correspond to g = 1, h = 0; g = 1.05, h = 0.5; and g = 1, h = 1 of model
Eq. (19), respectively. The red points are experimental data, the blue curves
are theoretical calculation of OTOC with model Eq. (19) for four sites.

1. Initial state preparation. This step aims at preparing an initial state
with density matrix ρ̂0 ∝ σ̂αi , α = x, y or z.

2. Implementing unitary evolution. This step is to simulate a unitary
evolution of Û(t) = eiĤtσ̂βj e

−iĤt by controlling the nuclear spin with
external radio-frequency pulse.

3. Readout. Thus, the density matrix at time t becomes U(t)ρ0U(t), and
then the OTOC is obtained by measuring the expectation value σαi at
time t.

The experimental results are shown in Fig. 4. With our theorem, all
OTOC with σα at site-i and σβ at site-j can be measured. Hence, with
our theorem, we can determine the entropy dynamics by performing a local
quench of spin-flip at site-i, and then considering j-site as part B, we can
determine the second Rényi entropy as a function of time. The results are
shown in Fig. 5. At the initial stage, extra entropy is generated by the local
quench. The difference is manifested in later time. It shows that for an
integrable model, the entropy oscillates while for an non-integrable model,
the entropy scrambles [14].
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Figure 5: The 2nd Rényi entropy S
(2)
A after a quench. A quench operator

(1 + σ̂x1 ) (up to a normalization factor) is applied to the system at t = 0,
and the entropy is measured by tracing out the fourth site as the subsystem
B. Different colors correspond to different parameters of g and h in the Ising
spin model. The points are experimental data, the curves are theoretical
calculations.

3.2 Loschmidt Echo

Loschmidt echo is a measurement widely used in many quantum systems,
including cold atom system, to quantify how good a revival can occur when
an imperfect time-reversal operation is applied to a complex quantum system.
Thus it is closely related to the OTOC.

For a pure state |Ψ〉, the Loschmidt echo is defined as

L(t) = |〈Ψ|eiĤ′te−iĤt|Ψ〉|2, (20)

where Ĥ is the Hamiltonian for the forward evolution and Ĥ ′ is the Hamil-
tonian for the backward evolution. Here we consider the special case that
Ĥ ′ = Ĥ + Ŵ δ(t− t0), thus L(t0) is

L(t0) = |〈Ψ|eiĤt0eiŴ e−iĤt0|Ψ〉|2 (21)

= 〈Ψ|eiŴ (t0)|Ψ〉〈Ψ|eiŴ
†
(t0)|Ψ〉 (22)

= Tr(|Ψ〉〈Ψ|eiŴ (t0)|Ψ〉〈Ψ|eiŴ
†
(t0)) (23)

= Tr(ρ̂eiŴ (t0)ρ̂e
iŴ †

(t0)). (24)
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That is to say, in this case, the Loschmidt echo is equivalent to a special
OTOC between the projection operator ρ̂ = |Ψ〉〈Ψ| and another local oper-

ator eiŴ .
If the initial state is not a pure state but a mixed state described by a

density matrix ρ, the Loschmidt echo is defined as

L(t0) = Tr(e−iĤ
′t0ρeiĤ

′t0e−iĤt0ρeiĤt0) (25)

= Tr(ρeiĤ
′t0e−iĤt0ρeiĤt0e−iĤ

′t0) (26)

= Tr(ρeiŴ (t0)ρe
iŴ (t0)) (27)

If we take ρ as a thermal equilibrium suddenly quenched by operator Ô, then
ρ = Ô†e−βĤÔ, and Eq.27 can be approximated by the OTOC between the
operator eiŴ at time t0 and Ô†Ô at time t = 0.

A Proof of the Theorem

Now we outline how this theorem is proved. For convenience, we first in-
troduce a set of diagrams. For a system divided into subsystems A and B,
denote {|i〉A ⊗ |i〉B} as a complete set of bases in the Hilbert space, an arbi-
trary operator Q̂ =

∑
ij

Qij|i〉A⊗|i〉B〈j|A⊗〈j|B is presented diagrammatically

in Fig. 6(a1). In this representation, TrBQ̂ can be described by connecting
states in the subpart B, as presented by Fig. 6(a2).

Consider a system at T =∞, the initial density matrix ρ̂ ∝ Î. After the
quench by operator Ô and let the system evolve under the Hamiltonian Ĥ
by time t, the density matrix becomes ρ̂ = Û(t)ÔÔ†Û †(t). Then ρ̂A will be

represented as Fig. 6(b), and straightforwardly, Trρ̂2A = e−S
(2)
A is presented

by Fig. 6(c).
Now we consider each OTOC on the R.H.S. of Eq. 14, which is

Tr[M̂(t)V̂ (0)M̂(t)V̂ (0)] = Tr[Û †M̂Û V̂ Û †M̂Û V̂ ]

= Tr[Û V̂ Û †M̂Û V̂ Û †M̂ ]. (28)

Note that V̂ is taken as ÔÔ† and M̂ only acts on the Hilbert space of the
subsystem B, this is shown by Fig. 6(d).

Let us again consider a general operator Q̂, and sum over a complete set
of operators in the subsystem B, since

∑
M̂∈BMijMlm = δimδlj, we will have
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A 

(b) 

( )U t † ( )U t
†OO

QQ 
Ai

Bi Bj

Aj

QTrBQ 

(a1) (a2) 

(c) 

2Tr A  ( )U t † ( )U t†OO ( )U t † ( )U t†OO

(e) 

Q
M M

Q

(f) 

†OO( )U t † ( )U t
†OO( )U t † ( )U t

MM
†OO †OO

 †OO( )U t † ( )U t
†OO†OO †OO

† ( )U t( )U t

(d) 

†OO( )U t † ( )U t
†OO( )U t † ( )U t

MM
†OO †OO

Figure 6: Diagrammatic illustration of how to prove the OTOC-EE theorem.
Please see the appendix session A for details.

∑
M̂∈B M̂Q̂M̂ = TrBQ̂ ⊗ Î, which is shown in Fig. 6(e). Finally, applying

this identity to Tr[M̂(t)V̂ (0)M̂(t)V̂ (0)], the R.H.S. of Eq. 14 is presented in
Fig. 6(f). It is clear that the result is equivalent to Fig. 6(c). Hence, we
prove the theorem of Eq. 14.
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