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Topology

Global Properties invariant under Continuous Deformation
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Topological Phase Transition  
(Kosterlitz and Thouless, 1970s)

Topological Band Theory  
(Thouless, et.al 1980, Haldane 1988)

Topological Field Theory  
(Haldane 1988)
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Measuring Topological Number of a Chern-Insulator from Quench Dynamics

Ce Wang, Pengfei Zhang,⇤ Xin Chen, Jinlong Yu, and Hui Zhai†

Institute for Advanced Study, Tsinghua University, Beijing, 100084, China
(Dated: November 30, 2016)

In this letter we show how the topological number of a static Hamiltonian can be measured
from a dynamical quench process. We focus on a two-band Chern insulator in two-dimension, for
instance, the Haldane model, whose dynamical process can be described by a mapping from the
[kx, ky, t] space to the Bloch sphere, characterized by the Hopf invariant. Such a mapping has been
constructed experimentally by measurements in cold atom systems. We show that, taking any two
constant vectors on the Bloch sphere, their inverse images of this mapping are two trajectories in
the [kx, ky, t] space, and the linking number of these two trajectories exactly equals to the Chern
number of the static Hamiltonian. Applying this result to a recent experiment from the Hamburg
group, we show that the linking number of the trajectories of the phase vortices determines the
phase boundary of the static Hamiltonian.

Recently cold atom experiments have realized a num-
ber of topological models including the Hofstadter model
[1–3], the Haldane (and the Haldane-type) model [4,
5], the Su-Schrie↵er-Heeger model [6] and its Thouless
charge pumping [7–9]. One major advantage of studying
topological models in the context of cold atom systems,
in comparison with its condensed matter counterpart, is
that the experimental investigation of the dynamic pro-
cesses can be more easily accessible. For example, consid-
ering non-interacting fermions initially in a topologically
trivial insulator state of the initial Hamiltonian H

i, we
shall focus on a sudden quench to a final Hamiltonian
H

f, whose ground state is a topologically nontrivial insu-
lator (e.g. a Chern insulator) at the same filling, and the
question is whether the change of the topological number
can be revealed from measuring the dynamical process af-
ter the quench. In fact, such a quench experiment has
been performed recently in a Haldane-type model with
cold atoms by the Hamburg group [10]. Using a momen-
tum resolved quantum state tomography method [11–13],
they can map out the evolution of the wave function as
time evolves after the quench.

At equilibrium, for a Chern insulator, it is known that
the bulk Chern number, the number of edge states and
the quantization value of the Hall conductance are equal,
which is termed as “ the bulk-edge correspondence ”.
While for the non-equilibrium process after the quench,
there is no such clear relations between them. First of
all, because the time evolution after the quench is unitary,
the Chern number of the quantum state does not change
and does not reflect the topological number of the final
Hamiltonian [14]. Nevertheless, the edge state gradually
emerges [14–17]. Second, without dephasing, the Hall re-
sponse will not be well quantized for either a slow or a
sudden quench [18, 19]. While it is also found that the
Hall conductance can become finite even after quenching
to a topologically trivial final Hamiltonian [20]. There-
fore, it is desirable to know whether there is a way to
rigorously map out the topology of the band structure of
H

f through the quench dynamics.
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FIG. 1: (a) Schematic of hopping in the Haldane model in
a honeycomb lattice; (b) The phase diagram of the Haldane
model. The arrow indicates a quench from topologically triv-
ial regime to a topologically nontrivial regime.

In this letter we present a scheme to extract a quan-
tized value from the dynamical process after the quench,
and this quantized value is exactly the same as the topo-
logical Chern number of the final Hamiltonian H

f. This
scheme can be directly applied to analyze the recent ex-
perimental data from the Hamburg group (Ref. [10]), as
well as other similar systems (such as the ETH [4] and
the USTC experiments [5]), to determine the topological
phase diagram.
Summary of the Scheme. Before proceeding to details,

let us briefly summarize our scheme as follows:
Let us consider a general two-band tight-binding model

in two-dimension, and at each momentum, the Hamilto-
nian can be written as

H(k) =
1

2
h(k) · �, (1)

where � = (�x,�y,�z) is a vector of the Pauli matri-
ces. Thus, the eigen-energies of the Hamiltonian are
±|h(k)|/2, corresponding to the upper- and the lower-
bands, respectively. We further consider at each k, |h(k)|
is always non-zero, and the system is an insulator at half
filling. The two-component wave function is denoted by
⇣(k).
Here we consider the quench process that corresponds

to a sudden change of h(k) from a topologically trivial
hi(k) to hf(k). The initial wave function ⇣

i(k) is taken as

Topological Band Theory

Topological Trivial Topological Non-trivial
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I. Realization
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Optical Lattice

Cubic Lattice Triangular Lattice

Tunable Geometry (ETH, 2012)

Creating, moving and merging Dirac points with a Fermi gas in a tunable honeycomb
lattice

Leticia Tarruell, Daniel Greif, Thomas Uehlinger, Gregor Jotzu and Tilman Esslinger
Institute for Quantum Electronics, ETH Zurich, 8093 Zurich, Switzerland

PACS numbers: 03.75.Ss, 05.30.Fk, 67.85.Lm, 71.10.Fd, 73.22.Pr

Dirac points lie at the heart of many fascinat-
ing phenomena in condensed matter physics, from
massless electrons in graphene to the emergence
of conducting edge states in topological insulators
[1, 2]. At a Dirac point, two energy bands inter-
sect linearly and the particles behave as relativis-
tic Dirac fermions. In solids, the rigid structure
of the material sets the mass and velocity of the
particles, as well as their interactions. A di↵er-
ent, highly flexible approach is to create model
systems using fermionic atoms trapped in the
periodic potential of interfering laser beams, a
method which so far has only been applied to ex-
plore simple lattice structures [3, 4]. Here we
report on the creation of Dirac points with ad-
justable properties in a tunable honeycomb opti-
cal lattice. Using momentum-resolved interband
transitions, we observe a minimum band gap in-
side the Brillouin zone at the position of the Dirac
points. We exploit the unique tunability of our
lattice potential to adjust the e↵ective mass of
the Dirac fermions by breaking inversion symme-
try. Moreover, changing the lattice anisotropy
allows us to move the position of the Dirac points
inside the Brillouin zone. When increasing the
anisotropy beyond a critical limit, the two Dirac
points merge and annihilate each other – a situ-
ation which has recently attracted considerable
theoretical interest [5–9], but seems extremely
challenging to observe in solids [10]. We map
out this topological transition in lattice param-
eter space and find excellent agreement with ab
initio calculations. Our results not only pave the
way to model materials where the topology of the
band structure plays a crucial role, but also pro-
vide an avenue to explore many-body phases re-
sulting from the interplay of complex lattice ge-
ometries with interactions [11, 12].

Ultracold Fermi gases have emerged as a versatile tool
to simulate condensed matter phenomena [3, 4, 13]. For
example, the control of interactions in optical lattices has
lead to the observation of Mott insulating phases [14, 15],
providing new access to the physics of strongly correlated
materials. However, the topology of the band struc-
ture is equally important for the properties of a solid.
A prime example is the honeycomb lattice of graphene,
where the presence of topological defects in momentum

space – the Dirac points – leads to extraordinary trans-
port properties, even in the absence of interactions [1]. In
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FIG. 1: Optical lattice with adjustable geometry. a,
Three retro-reflected laser beams of wavelength � = 1064 nm
create the two-dimensional lattice potential of equation (1).
X and Y interfere and produce a chequerboard pattern, while
X creates an independent standing wave. Their relative po-
sition is controlled by the detuning �. b, Di↵erent lattice
potentials can be realised depending on the intensities of the
lattice beams, as displayed above. The diagram below shows
the accessible lattice geometries as a function of the lattice
depths VX and VX . The transition between triangular (T.)
and dimer (D.) lattices is indicated by a dotted line. When
crossing the dashed line into the honeycomb (H.c.) regime,
Dirac points appear. The limit VX � VX,Y corresponds to
weakly coupled one-dimensional chains (1D c.). c, The real
space potential of the honeycomb lattice has a 2-site unit cell
(A,B sites) and the primitive lattice vectors are perpendicu-
lar. d, Sketch of the first and second Brillouin zones (B.Z.)
of the honeycomb lattice, indicating the position of the Dirac
points. On the right, a three dimensional view of the energy
spectrum shows the linear intersection of the bands at the
two Dirac points. We denote the full bandwidth W , and the
minimum energy gap at the edges of the Brillouin zone EG.
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weakly coupled one-dimensional chains (1D c.). c, The real
space potential of the honeycomb lattice has a 2-site unit cell
(A,B sites) and the primitive lattice vectors are perpendicu-
lar. d, Sketch of the first and second Brillouin zones (B.Z.)
of the honeycomb lattice, indicating the position of the Dirac
points. On the right, a three dimensional view of the energy
spectrum shows the linear intersection of the bands at the
two Dirac points. We denote the full bandwidth W , and the
minimum energy gap at the edges of the Brillouin zone EG.
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Fig. 13.1 The Bravais lattice and the primitive vector of a honeycomb lattice (a) and its Brillouin
zone (b). (c) The dispersion with Dirac points.
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Now we consider a tight-binding model in the honeycomb lattice. First let us
only include the nearest neighboring hopping, which only occurs between A and B
sub-lattices, and the tight-binding Hamiltonian is given by
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with Âi di = 0, this tight-binding Hamiltonian can be written into momentum space
as

Ĥ = Â
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ĉB (k)

◆
, (13.6)

where the matrix is given by:

H (k) =
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0 �t1 Âa e�ik·da

�t1 Âa eik·da 0

◆
. (13.7)

H (k) can be expanded in term of the Pauli matrix as H (k) = B(k) ·s , where

Bx(k) = �t1 Â
a

cos(k ·da) ;By(k) = �t1 Â
a

sin(k ·da) , (13.8)

and Bz(k) = 0. So the band structure can be obtained as
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B, j ĉA,i +h.c.
⌘

, (13.4)

where hi ji denotes all the nearest neighboring bonds. Introducing three displace
vectors as

d1 = (�1,0)a, d2 =

 
1
2
,

p
3

2

!
a, d3 =

 
1
2
,�

p
3

2

!
a (13.5)

with Âi di = 0, this tight-binding Hamiltonian can be written into momentum space
as
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ĉA (k)
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quantum gases, a honeycomb lattice has recently been re-
alised and investigated with a Bose-Einstein condensate
[16, 17], but no signatures of Dirac points were observed.
Here we study an ultracold Fermi gas of 40K atoms in
a two-dimensional tunable optical lattice, which can be
continuously adjusted to create square, triangular, dimer
and honeycomb structures. In the honeycomb lattice, we
identify the presence of Dirac points in the band structure
by observing a minimum band gap inside the Brillouin
zone via interband transitions. Our method is closely re-
lated to a technique recently used with bosonic atoms to
characterize the linear crossing of two high-energy bands
in a one-dimensional bichromatic lattice [18], but pro-
vides in addition momentum resolution.

To create and manipulate Dirac points, we have devel-
oped a two-dimensional optical lattice of adjustable ge-
ometry. It is formed by three retro-reflected laser beams
of wavelength � = 1064 nm, arranged as depicted in Fig.
1a. The interference of two perpendicular beams X and
Y gives rise to a chequerboard lattice of spacing �/

p
2.

A third beam X, collinear with X but detuned by a fre-
quency �, creates an additional standing wave of spacing
�/2. This yields a potential of the form

V (x, y) = �VX cos2(kx+ ✓/2)� VX cos2(kx)

�VY cos2(ky)� 2↵
p
VXVY cos(kx) cos(ky) cos'(1)

where VX , VX and VY denote the single beam lattice
depths (proportional to the laser beam intensities), ↵ is
the visibility of the interference pattern and k = 2⇡/�.
We can adjust the two phases continuously, and choose
✓ = ⇡ and ' = 0 (see Methods). Varying the relative in-
tensities of the beams allows us to realise various lattice
structures, as displayed in Fig. 1b. In the following we
focus on the honeycomb lattice, whose real space poten-
tial is shown in Fig. 1c.

The honeycomb lattice consists of two sublattices A
and B. Therefore, the wavefunctions are two-component
spinors. Tunneling between the sublattices leads to the
formation of two energy bands, which are well separated
from the higher bands and have a conical intersection at
two quasi-momentum points in the Brillouin zone – the
Dirac points. These points are topological defects in the
band structure, with an associated Berry phase of ±⇡.
This warrants their stability with respect to lattice per-
turbations, so that a large range of lattice anisotropies
only changes their position inside the Brillouin zone. In
contrast, breaking the inversion symmetry of the poten-
tial by introducing an energy o↵set� between sublattices
opens an energy gap at the Dirac points, proportional to
the o↵set. In our implementation, the sublattice o↵set
� depends only on the value of the phase ✓ and can be
precisely adjusted (see Methods). As displayed in Fig.
1c and d, the primitive lattice vectors are perpendicular,
leading to a square Brillouin zone with two Dirac points
inside. Their position is symmetric around the center and
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FIG. 2: Probing the Dirac points. a, Quasi-momentum
distribution of the atoms before and after one Bloch oscilla-
tion of period TB . The cloud explores several trajectories in
quasi-momentum space simultaneously. For trajectory 1 (blue
solid circle) the atoms remain in the first energy band. In con-
trast, trajectory 2 (green open circle) passes through a Dirac
point at t = TB/2. There, the energy splitting between the
bands vanishes and the atoms are transferred to the second
band. When measuring the quasi-momentum distribution at
t = TB , these atoms are missing in the first Brillouin zone
and appear in the second one. b, Dependence of the total
fraction of atoms transferred to the second band ⇠ on the de-
tuning of the lattice beams �, which controls the sublattice
energy o↵set �. The maximum indicates the point of inver-
sion symmetry, where � = 0 (✓ = ⇡ in eq. (1)) and the gap
at the Dirac point vanishes. Away from the peak, the atoms
behave as Dirac fermions with a tunable mass (see insets).
Values and error bars denote the mean and standard devia-
tion of five consecutive measurements, whereas the solid line
is a Gaussian fit to the data.
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ĉ†

A (k) , ĉ†
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of quasimomenta (Fig. 1D). By probing for a
spread in Berry curvature, we can place a bound
on imperfections in the lattice, while simulta-
neously benchmarking the resolution of our
interferometer.
The interferometer sequence (Fig. 2B) begins

with the preparation of an almost pure 87Rb BEC
in the state j↑〉 ¼ jF ¼ 2;mF ¼ 1〉 at quasimomen-
tum k = 0 in a V0 = 1 Er deep lattice, where
Er ¼ h2=ð2ml2LÞ ≈ h $ 4 kHz is the recoil en-
ergy and h is Planck’s constant. A resonant p/2-
microwave pulse creates a coherent superposition
of j↑〉 and j↓〉 ¼ jF ¼ 1;mF ¼ 1〉 states (i). Next,
a spin-dependent force from a magnetic field
gradient and an orthogonal spin-independent
force from lattice acceleration (Fig. 2A) move the
atoms adiabatically along spin-dependent paths
in reciprocal space (ii) (28). The two spin com-
ponents move symmetrically about a symmetry
axis of the dispersion relation. After an evolution
time t, a microwave p pulse swaps the states j↓〉
and j↑〉 (iii). The two atomic wave packets now
experience opposite magnetic forces in the x di-
rection, such that both spin components arrive at
the same quasimomentum kfin after an additional
evolution time t (iv). At this point, the state of
the atoms is given by jy fin〉ºj↑; kfin〉 þ eiϕ; kfin〉
with relative phaseϕ. A second p/2-microwave
pulse with a variable phase ϕMW closes the in-
terferometer (v) and converts the phase infor-
mation into spin population fractions n↑;↓º1 T
cosðϕ þ ϕMW Þ, which are measured by stan-
dard absorption imaging after a Stern-Gerlach
pulse and time of flight.
The phase difference ϕ at the end of the in-

terferometer sequence consists of the geometric
phase and any difference in dynamical phases
between the two paths of the interferometer.
Ideally, the dynamical contribution should van-
ish because of the symmetry of the paths and the
use of the spin-echo sequence (13). To ascertain
that the measured phase is truly of geometric
origin, we additionally employ a “zero-area” re-
ference interferometer, comprising a V-shaped
path (Fig. 2B) produced by reversing the lat-
tice acceleration after the p-microwave pulse
of Fig. 2B (iii).
We locate the Berry flux of the Dirac cone by

performing a sequence ofmeasurements inwhich
we vary the region enclosed by the interferometer.
This is achieved by varying the lattice acceleration
at constant magnetic field gradient to control
the final quasimomentum kfiny (kfinx ¼ 0) of the
diamond-shaped measurement loop. The result-
ing phase differences betweenmeasurement and
reference loops are shown in Fig. 2C. When one
Dirac point is enclosed in themeasurement loop,
we observe a phase difference of ϕ ≃ p. In con-
trast, we find the phase difference to vanishwhen
enclosing zero or two Dirac points. We find very
good agreement between our data and a theo-
retical model that includes the finite spread sk in
the initial momentum of the weakly interacting
BEC (blue curve in Fig. 2C) (13). Because of this
spread, each atomhas sampled a slightly different
path inmomentum space andmay therefore have
acquired a different geometric phase. Once the

Dirac point lies within the interferometer area
for exactly half of the atoms, the first phase jump
occurs. Because of the small opening angle of
the chosen interferometer path (~70°), this hap-
pens slightly later than in the ideal case of sk = 0
(black curve in Fig. 2C). Although sk thereby af-
fects the positions of the p phase jumps, it does
not limit their sharpness. Indeed, the data are
fully consistent with the behavior expected for
an inversion-symmetric lattice, where it is im-
possible to identify the sign of the singular Berry
flux (Tp). Small deviations of the phases from 0 or
p can be attributed to an imperfect alignment of
the magnetic field gradient, magnetic field fluctu-
ations, or an imperfect lattice geometry (13). These
systematic effects are particularly relevant close to
the phase jump, where the contrast is minimal
and can influence the perceived direction of the
phase jump.
To minimize systematic errors and improve

our measurement precision, we performed self-

referenced interferometry close to the Dirac
points. As illustrated in Fig. 3A, a standard band-
mapping technique (29) projects those sectors
of the cloud that have (left and right) or have
not (bottom) crossed the edge of the BZ onto
three different corners of the first BZ, such that
we can measure their acquired phases indepen-
dently. Combining these measured phases to
ϕ ¼ ðϕL þ ϕRÞ=2 − ϕB, where ϕL, ϕR, and ϕB

refer to the phases of the three sectors, elimi-
nates the need for a separate reference mea-
surement and significantly reduces sensitivity to
drifts in the experiment. The resulting phase
again shows a sudden jump from 0 to p (Fig. 3B).
The position of the phase jump is in excellent
agreement with a simple single-band model (13)
that includes an initial momentum spread of
sk = 0.15(1)kL, consistent with an independent
time-of-flight measurement. Notably, the phase
jump occurs within a very small quasimomentum
range of <0.01 kL, and an arctangent fit to the
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Fig. 3. Self-referenced interferometry at the Dirac point. (A) (Left) Interferometer path closing at
the K point. Because of the initial momentum spread, the cloud (circle with colored sectors, not to
scale) is split by the edges of the BZ. (Middle) Band mapping spatially separates the three different
parts of the cloud onto three corners of the first BZ (schematic and image, where cloud sizes are
dominated by in situ size). (Right) The fraction of atoms for which the Dirac point lies within the
interferometer loop (green sectors) increases with final quasimomentum kfin. (B) Phase differences
between atoms that have crossed the band edge (sectors L and R) and those that have not (sector B)
versus final quasimomentum kyfin for paths close to the K (K′) point in red (blue). The shaded region
indicates a range dkW = 0 – 12 × 10–4kL for the spread in Berry curvature, whereas the line is calculated
for dkW ≃ 10−4kL using the model described in (13), corresponding to an A-B offset of D ≃ h $ 3 Hz.The
inset shows the contrast ðn↓max − n↓

minÞ=ðn↓max þ n↓
minÞ of the interference fringes of the full cloud.Theory

line and shading are for the same parameters as in the main graph and include only geometrical
phases (13). All calculations assume sk = 0.15kL.
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Fig. 13.2 The relative phase revealed by the interference when a BEC is dragged through two
different paths in the momentum space, as indicated by the insets. Modified from a figure reprinted
from Ref. [2].

One can see that for K and K0 points, both Bx(k) and By(k) vanish, and the band gap
is closed, as shown in Fig. 13.1(c). Expanding the dispersion nearby K or K0 point,
one can find a linear dispersion. Nearby the K and K0 point, the linear dispersion is
E(k) = 3|q|/2, where q = k�K or k�K0. K and K0 points are therefore called the
Dirac points.

The Berry Phase around a Dirac Point. Since to the leading order of q, the
Hamiltonian nearby the K and K0 point can be simplified

H =
3
2

[±qysx +qxsy] . (13.10)

That means in different momentum, the pseudo-spin is polarized to different di-
rection. This is why we emphasized two sites per unit cell as the major difference
between honeycomb and the simply cubic lattice. Only when there is multiple sites
in each unit cell, we can treat this degree of freedom as the pseudo-spins, and B(k)
can be viewed as the “Zeeman” field for the pseudo-spins. The momentum depen-
dence of B(k) therefore is reminiscent of the spin-orbit coupling effect discussed in
the chapter 2.

The pseudo-spin texture around a K point for the lower-band is schematically
shown in the inset of Fig. 13.2. Thus, if one drags an atom around a closed loop, a
Berry phase can be picked up depending on the solid angle expanded by the pseudo-
spin around the loop. Therefore, for the loop enclosing or not enclosing the K point,
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Dirac point lies within the interferometer area
for exactly half of the atoms, the first phase jump
occurs. Because of the small opening angle of
the chosen interferometer path (~70°), this hap-
pens slightly later than in the ideal case of sk = 0
(black curve in Fig. 2C). Although sk thereby af-
fects the positions of the p phase jumps, it does
not limit their sharpness. Indeed, the data are
fully consistent with the behavior expected for
an inversion-symmetric lattice, where it is im-
possible to identify the sign of the singular Berry
flux (Tp). Small deviations of the phases from 0 or
p can be attributed to an imperfect alignment of
the magnetic field gradient, magnetic field fluctu-
ations, or an imperfect lattice geometry (13). These
systematic effects are particularly relevant close to
the phase jump, where the contrast is minimal
and can influence the perceived direction of the
phase jump.
To minimize systematic errors and improve

our measurement precision, we performed self-

referenced interferometry close to the Dirac
points. As illustrated in Fig. 3A, a standard band-
mapping technique (29) projects those sectors
of the cloud that have (left and right) or have
not (bottom) crossed the edge of the BZ onto
three different corners of the first BZ, such that
we can measure their acquired phases indepen-
dently. Combining these measured phases to
ϕ ¼ ðϕL þ ϕRÞ=2 − ϕB, where ϕL, ϕR, and ϕB

refer to the phases of the three sectors, elimi-
nates the need for a separate reference mea-
surement and significantly reduces sensitivity to
drifts in the experiment. The resulting phase
again shows a sudden jump from 0 to p (Fig. 3B).
The position of the phase jump is in excellent
agreement with a simple single-band model (13)
that includes an initial momentum spread of
sk = 0.15(1)kL, consistent with an independent
time-of-flight measurement. Notably, the phase
jump occurs within a very small quasimomentum
range of <0.01 kL, and an arctangent fit to the
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Fig. 3. Self-referenced interferometry at the Dirac point. (A) (Left) Interferometer path closing at
the K point. Because of the initial momentum spread, the cloud (circle with colored sectors, not to
scale) is split by the edges of the BZ. (Middle) Band mapping spatially separates the three different
parts of the cloud onto three corners of the first BZ (schematic and image, where cloud sizes are
dominated by in situ size). (Right) The fraction of atoms for which the Dirac point lies within the
interferometer loop (green sectors) increases with final quasimomentum kfin. (B) Phase differences
between atoms that have crossed the band edge (sectors L and R) and those that have not (sector B)
versus final quasimomentum kyfin for paths close to the K (K′) point in red (blue). The shaded region
indicates a range dkW = 0 – 12 × 10–4kL for the spread in Berry curvature, whereas the line is calculated
for dkW ≃ 10−4kL using the model described in (13), corresponding to an A-B offset of D ≃ h $ 3 Hz.The
inset shows the contrast ðn↓max − n↓

minÞ=ðn↓max þ n↓
minÞ of the interference fringes of the full cloud.Theory

line and shading are for the same parameters as in the main graph and include only geometrical
phases (13). All calculations assume sk = 0.15kL.
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Fig. 13.2 The relative phase revealed by the interference when a BEC is dragged through two
different paths in the momentum space, as indicated by the insets. Modified from a figure reprinted
from Ref. [2].

One can see that for K and K0 points, both Bx(k) and By(k) vanish, and the band gap
is closed, as shown in Fig. 13.1(c). Expanding the dispersion nearby K or K0 point,
one can find a linear dispersion. Nearby the K and K0 point, the linear dispersion is
E(k) = 3|q|/2, where q = k�K or k�K0. K and K0 points are therefore called the
Dirac points.

The Berry Phase around a Dirac Point. Since to the leading order of q, the
Hamiltonian nearby the K and K0 point can be simplified

H =
3
2

[±qysx +qxsy] . (13.10)

That means in different momentum, the pseudo-spin is polarized to different di-
rection. This is why we emphasized two sites per unit cell as the major difference
between honeycomb and the simply cubic lattice. Only when there is multiple sites
in each unit cell, we can treat this degree of freedom as the pseudo-spins, and B(k)
can be viewed as the “Zeeman” field for the pseudo-spins. The momentum depen-
dence of B(k) therefore is reminiscent of the spin-orbit coupling effect discussed in
the chapter 2.

The pseudo-spin texture around a K point for the lower-band is schematically
shown in the inset of Fig. 13.2. Thus, if one drags an atom around a closed loop, a
Berry phase can be picked up depending on the solid angle expanded by the pseudo-
spin around the loop. Therefore, for the loop enclosing or not enclosing the K point,
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Model for a Quantum Hall Eff'ect without Landau Levels:
Condensed-Matter Realization of the "Parity Anomaly"
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A two-dimensional condensed-matter lattice model is presented which exhibits a nonzero quantization
of the Hall conductance a" in the absence of an external magnetic field. Massless fermions without
spectral doubling occur at critical values of the model parameters, and exhibit the so-called "parity
anomaly" of (2+1)-dimensional field theories.

PACS numbers: 05.30.Fk, 11.30.Rd

The quantum Hall effect' (QHE) in two-dimensional
(2D) electron systems is usually associated with the pres-
ence of a uniform externally generated magnetic field,
which splits the spectrum of electron energy levels into
Landau levels. In this Letter I show how, in principle, a
QHE may also result from breaking of time-reversal
symmetry (i.e., magnetic ordering) without any net mag-
netic fiux through the unit cell of a periodic 2D system.
In this case, the electron states retain their usual Bloch
state character.

The model presented here is also interesting in that if
its parameters are on a critical line at which its ground
state changes from the normal semiconductor state to
this new type of QHE state, its low-energy states simu-
late a "(2+1)-dimensional" relativistic quantum field
theory exhibiting the so-called "parity anomaly" and a
(2+1)-D analog of "chiral" fermions without the
opposite-chirality anomaly-canceling partners that usu-
ally accompany them in lattice realizations of field
theories ("fermion doubling" ).

In the zero-temperature limit, the transverse conduc-
tivity o "3' of a periodic 2D electron system with a gap in
the single-particle density of states at the Fermi level
takes quantized values ve /h, where v is generally ra-
tional, but can only take i nteger values in the absence of
electron interactions. This property of a pure system is
stable against sufficiently weak disorder effects. Since
a" is odd under time reversal, a nonzero value can only
occur if time-reversal invariance is broken.

In the usual QHE, the gap at the Fermi level results
from the splitting of the spectrum into Landau levels by
an external magnetic field. The scenario considered here
is different, and involves a 2D semimetal where there is a
degeneracy at isolated points in the Brillouin zone be-
tween the top of the valence band and the bottom of the
conduction band, that is associated with the presence of
both inversion symmetry and time-reversal invariance.
If inversion symmetry is broken, a gap opens and the sys-
tem becomes a normal semiconductor (v=0), but if the
gap opens because time-reversal invariance is broken the
system becomes a v=+ 1 integer QHE state. If both
perturbations are present, their relative strengths deter-

,bg qb, ~,

FIG. 1. The honeycomb-net model ("2D graphite") showing
nearest-neighbor bonds (solid lines) and second-neighbor bonds
(dashed lines). Open and solid points, respectively, mark the A
and 8 sublattice sites. The Wigner-Seitz unit cell is con-
veniently centered on the point of sixfold rotation symmetry
(marked "+")and is then bounded by the hexagon of nearest-
neighbor bonds. Arrows on second-neighbor bonds mark the
directions of positive phase hopping in the state with broken
time-reversal invariance.

mine which type of state is realized.
To model a 2D semimetal, I use the "2D graphite"

model investigated previously by Semenoff as a possible
lattice realization of a (2+I)-D field theory with the
anomaly. 2D graphite has the honeycomb net structure,
consisting of two interpenetrating triangular lattices
("A" and "8"sublattices) with one lattice point of each
type per unit cell (Fig. 1). A 2D inversion (i.e., a rota-
tion in the plane by tr) interchanges the two sublattices.
Since spin-orbit coupling effects will not be included, the
electron spin will (for the moment) be suppressed.

Semenoff investigated the tight-binding model with
one orbital per site and a real hopping matrix element t ~

between nearest neighbors on different sublattices, and
also considered the effect of an inversion-symmetry-
breaking on-site energy +M on /I sites and —M on 8
sites. The model has point group Cs„(M=O) or C3„
(MAO). In this original version of the model, time-
reversal invariance is present, and Semenoff found com-
plete cancellation of the anomaly in the M =0 model due
to fermion doubling, and normal semiconductor behavior
for MAO.
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to a band with nontrivial topological number [4]. This is now referred
to as “the Haldane model”. The Haldane model introduces the next-
nearest-neighbor hopping, with a phase �� for hopping between A
sites and a phase � between B site, as shown in Fig. 3. t2e�i� t2ei�

The Hamiltonian is written as

H = �t1
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�ij�

⇣
ĉ†
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Now in momentum space H (k) becomes:

H (k) = E0 (k) I + B (k) · � (11)

where
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(13)
One can see that Bz(k) term contains two terms. One breaks spa-

tial inversion symmetry, and the other breaks time reversal symmetry.
The spatial inversion symmetry is defined as

H (k) ! �xH (�k) �x = H (k) . (14)

Because under spatial inversion transformation, �z ! ��z, one can
see that the M -term breaks inversion symmetry while t2-term does
not. The time reversal symmetry is defined as:

H (k) ! H� (�k) = H (k) , (15)

one can see that t2-term breaks time-reversal symmetry while M -term
does not.

Now at each momentum k we have introduced a B(k) vector, and
the eigen-state of each given band can described by a pseudo-spin
which is always in the same direction of B(k) field. Thus, it defines a
mapping from the momentum space of the first Brillouin zone to S2

Bloch sphere. Such a mapping can also be classified by the homotopy
group and is characterized by the Chern number. In this case, the
Chern number of the lower band is defined as

C =
1

4�

Z

BZ
d2k

 
�B̂

�kx
⇥ �B̂

�ky
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· B̂, (16)
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ĉ†
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Chern number of the lower band is defined as

C =
1

4�

Z

BZ
d2k

 
�B̂

�kx
⇥ �B̂

�ky

!
· B̂, (16)
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Fig. 11.4 Schematic of the Haldane model.

other 2, after which the dispersion becomes fully gapped. This moving and merging
of the Dirac points have been observed in Ref. [1], as shown in Fig. 11.3(b).

11.2 Haldane Model.

Based on the analysis above, in order to open up the band gap, one needs to introduce
a Bz(k)sz term in H(k), for generically a momentum (kx,ky) can not make all three
functions of Bx(k), By(k) and Bz(k) vanish simultaneously. One simply way to add
an on-site energy offset between A and B sub-lattice denoted by M, which gives
rise to a constant Bz = M and gaps out the Dirac point. This has also been observed
in Ref. [1]. The spatial inversion symmetry along the dashed line presented in Fig.
11.4 is defined as

H (k) ! sxH (�k)sx = H (k) . (11.11)

Because under spatial inversion transformation, sz ! �sz, one can see that the M-
term breaks this inversion symmetry.

In a seminal paper, Haldane proposed an alternative way to open up the gap
and as we will show, this will lead to a band with nontrivial topological number
[4]. Haldane introduces the next-nearest-neighbor hopping, with a phase �f for
hopping between A sites and a phase f between B site, as shown in Fig. 11.4. This
term does not break the inversion symmetry, but breaks the time-reversal symmetry
defined as H⇤ (�k) = H (k).

Let us again consider the simplest nearest neighboring hopping with C6 symme-
try, and the M-term and the t2 term introduced by Haldane. This is now referred to
as “the Haldane model” and the total Hamiltonian is now written as

2 That corresponds to the solution is no longer real.

How to realize this 
nontrivial next-

nearest hopping ??
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In this letter we show how the topological number of a static Hamiltonian can be measured
from a dynamical quench process. We focus on a two-band Chern insulator in two-dimension, for
instance, the Haldane model, whose dynamical process can be described by a mapping from the
[kx, ky, t] space to the Bloch sphere, characterized by the Hopf invariant. Such a mapping has been
constructed experimentally by measurements in cold atom systems. We show that, taking any two
constant vectors on the Bloch sphere, their inverse images of this mapping are two trajectories in
the [kx, ky, t] space, and the linking number of these two trajectories exactly equals to the Chern
number of the static Hamiltonian. Applying this result to a recent experiment from the Hamburg
group, we show that the linking number of the trajectories of the phase vortices determines the
phase boundary of the static Hamiltonian.

Recently cold atom experiments have realized a num-
ber of topological models including the Hofstadter model
[1–3], the Haldane (and the Haldane-type) model [4,
5], the Su-Schrie↵er-Heeger model [6] and its Thouless
charge pumping [7–9]. One major advantage of studying
topological models in the context of cold atom systems,
in comparison with its condensed matter counterpart, is
that the experimental investigation of the dynamic pro-
cesses can be more easily accessible. For example, consid-
ering non-interacting fermions initially in a topologically
trivial insulator state of the initial Hamiltonian H

i, we
shall focus on a sudden quench to a final Hamiltonian
H

f, whose ground state is a topologically nontrivial insu-
lator (e.g. a Chern insulator) at the same filling, and the
question is whether the change of the topological number
can be revealed from measuring the dynamical process af-
ter the quench. In fact, such a quench experiment has
been performed recently in a Haldane-type model with
cold atoms by the Hamburg group [10]. Using a momen-
tum resolved quantum state tomography method [11–13],
they can map out the evolution of the wave function as
time evolves after the quench.

At equilibrium, for a Chern insulator, it is known that
the bulk Chern number, the number of edge states and
the quantization value of the Hall conductance are equal,
which is termed as “ the bulk-edge correspondence ”.
While for the non-equilibrium process after the quench,
there is no such clear relations between them. First of
all, because the time evolution after the quench is unitary,
the Chern number of the quantum state does not change
and does not reflect the topological number of the final
Hamiltonian [14]. Nevertheless, the edge state gradually
emerges [14–17]. Second, without dephasing, the Hall re-
sponse will not be well quantized for either a slow or a
sudden quench [18, 19]. While it is also found that the
Hall conductance can become finite even after quenching
to a topologically trivial final Hamiltonian [20]. There-
fore, it is desirable to know whether there is a way to
rigorously map out the topology of the band structure of
H

f through the quench dynamics.
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FIG. 1: (a) Schematic of hopping in the Haldane model in
a honeycomb lattice; (b) The phase diagram of the Haldane
model. The arrow indicates a quench from topologically triv-
ial regime to a topologically nontrivial regime.

In this letter we present a scheme to extract a quan-
tized value from the dynamical process after the quench,
and this quantized value is exactly the same as the topo-
logical Chern number of the final Hamiltonian H

f. This
scheme can be directly applied to analyze the recent ex-
perimental data from the Hamburg group (Ref. [10]), as
well as other similar systems (such as the ETH [4] and
the USTC experiments [5]), to determine the topological
phase diagram.
Summary of the Scheme. Before proceeding to details,

let us briefly summarize our scheme as follows:
Let us consider a general two-band tight-binding model

in two-dimension, and at each momentum, the Hamilto-
nian can be written as

H(k) =
1

2
h(k) · �, (1)

where � = (�x,�y,�z) is a vector of the Pauli matri-
ces. Thus, the eigen-energies of the Hamiltonian are
±|h(k)|/2, corresponding to the upper- and the lower-
bands, respectively. We further consider at each k, |h(k)|
is always non-zero, and the system is an insulator at half
filling. The two-component wave function is denoted by
⇣(k).
Here we consider the quench process that corresponds

to a sudden change of h(k) from a topologically trivial
hi(k) to hf(k). The initial wave function ⇣

i(k) is taken as
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also be classified by the homotopy group ⇠ Z and is characterized by
the Chern number. Mathematically, the Chern number is defined as

C =
1

4�

Z

BZ
d2k

 
�B̂

�kx
⇥ �B̂

�ky

!
· B̂, (15)

where B̂ (k) = B (k) / |B (k)|. The Chern number describes how many
times that the spin have fully covered the Bloch sphere when the
momentum k scans through the entire Brillouin zone. If C is a non-
zero integer, this state is a topological nontrivial state. Therefore, a
necessary (but not su�cient) condition for C = ±1 is that the Bloch
vector must at least cover both the north pole and the south pole
once, thus, at K and K � points where Bx = By = 0, Bz must point
to the opposite direction. This gives the condition �3

p
3|t2 sin �| <

M < 3
p

3|t2 sin �|, and in fact, for this model, this turns out to be a
su�cient condition for a non-zero C, under which C equals +1 or �1.

The non-zero Chern-number has two implications: 1) a quantized
Hall conductance e2C/� and 2) discrete number (= |C|) of stable edge
states residing inside the gap. The fact that the information about
quantum state at the edge is determined by the topological number of
the bulk is called “bulk-edge correspondence”. Here one should also
emphasize that the edge state is stable in the sense that weak pertur-
bations can not gap out these states, as long as these perturbations
have the same symmetry as the bulk Hamiltonian. More over, the
quantized Hall conductance and the quantized edge states are con-
nected. It is because the bulk Hamiltonian is gapped and the only
states that can conduct charge are these edge states inside the gap,
and each edge state contributes a quantized conductance e2/�. Thus,
the Haldane model in the topological nontrivial phase displays quan-
tum Hall e�ect without applying external magnetic field, which is
named as “quantum anomalous Hall e�ect”.

C = 1 C = �1 C = 0

3 Floquet Topological Phase

In optical lattices, the next-nearest-neighbor hopping is usually quite
small. It is the major challenging for implementing the Haldane model.
To overcome this problem, one comes to the idea of using periodically
driven system, for which we shall first introduce the Floquet theory
for a time-periodic system.
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Abstract

In previous chapters we focus mostly on square or cubic lattices.
In recent years, experimentalists have also realized other types of op-
tical lattices, including triangular, honeycomb and kagome lattices.
One major motivation for studying these lattice geometries is to real-
ize various topological nontrivial phases. In this chapter we will use
honeycomb lattice as an example to illustrate recent progresses on
topological matters in cold atom optical lattices setup.

1 Dirac Point

As shown in Fig. 1(a), the unit cell of a honeycomb lattice contains
two sites denoted by A and B. The Bravais lattice of the honeycomb
lattice is a hexagonal lattice. We choose the primitive vectors of the
Bravais lattice as
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Fig. 13.5 The phase diagram for the Haldane model in term of f and M/t2. The Chern number C
is marked in different regimes. The red and green lines are the phase boundary between topological
and trivial phases, at which one of the Dirac point becomes gapless, as shown in the left column.

H =� t1 Â
hi ji

⇣
ĉ†

B, j ĉA,i +h.c.
⌘

+ t2 Â
hhi jii

⇣
e�if ĉ†

A, j ĉA,i + eif ĉ†
B, j ĉB,i +h.c.

⌘

+MÂ
i

⇣
ĉ†

A,iĉA,i � ĉ†
B,iĉB,i

⌘
. (13.12)

Now in momentum space H (k) becomes:

H (k) = E0 (k) I+B(k) ·s , (13.13)

where
E0 (k) = 2t2 cosf Â

a
cos(k ·aa) . (13.14)

Bx(k) and By(k) still behave the same as Eq. 13.8, but now Bz(k) term becomes
non-zero and it is given by

Bz(k) = M +2t2 sinf Â
a

sin(k ·aa) . (13.15)

Chern Number and the Phase Diagram. Now at each momentum k we have
introduced a three-dimensional B(k) vector, and the eigen-state of the upper and the
lower bands can described by a pseudo-spin that is either parallel or anti-parallel
to the direction of B(k) field. Thus, it defines a mapping from the first Brillouin
zone of the momentum space to the S2 Bloch sphere. Such a mapping can also be
classified by the homotopy group ⇠ Z and is characterized by the Chern number.
Mathematically, the Chern number is defined as
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FIG. 1. (Color online) (a) The typical energy structure under
consideration. (b) The laser setup of the one-dimensional shaking
optical lattice. Solid and dashed lines represent lattice potential at two
different times. (c) The laser setup of the two-dimensional honeycomb
optical lattice. The dashed circle with arrow indicates how each lattice
potential rotates in time.

Method II. We can introduce a time-independent effective
Hamiltonian Ĥeff via F̂ = e−iĤeffT . Expanding Ĥ (t) as Ĥ (t) =∑∞

n=−∞ Ĥn(t)einωt with ω = 2π/T , we consider a situation as
shown in Fig. 1(a), that is, the static component Ĥ0 contains
m bands within an energy range of # and ω ≫ #. The
two concrete examples discussed below either belong to this
situation or can be transferred into this situation by a rotating
wave transformation, with m = 2. Under this condition, it is
straightforward to show that to the leading order of #/ω, Ĥeff
can be deduced as

Ĥeff = Ĥ0 +
∞∑

n=1

{
[Ĥn,Ĥ−n]

nω
− [Ĥn,Ĥ0]

e−2πniαnω
+ [Ĥ−n,Ĥ0]

e2πniαnω

}
,

(3)

where Ti is taken as αT with 0 ! α < 1. Since F̂ with
different choices of initial time Ti relate to each other by
a unitary transformation, quasienergy is independent of the
choice of Ti . In particular, we can choose an optimal α that
simplifies Ĥeff . Then we can apply schemes developed for
a time-independent Hamiltonian to Ĥeff for classifying the
topology of this time-periodic system. Although this method
involves further approximations, it has the advantage that it is
physically more transparent and can bring out the connection
to topological phenomena in equilibrium systems.

One-dimensional case. A one-dimensional lattice is formed
by two counterpropagating lasers. As one time-periodically
modulates the relative phase θ between two lasers, it will
result in a time-dependent lattice potential [31,32], as shown
in Fig. 1(b),

H (t) = k̂2
x

2m
+ V cos2[kr x + θ (t)], (4)

where θ (t) = krb cos (ωt), and b is the maximum lattice
displacement. By transferring to the comoving frame, x →
x + b cos (ωt), the Hamiltonian acquires a time-dependent
vector potential term as

H (t) = k̂2
x

2m
+ V cos2(kr x ) − bω sin(ωt) · k̂x . (5)

The first two static terms give a static band structure with Bloch
wave function ϕλ(kx ). In this basis, by only keeping the s and
p bands, we can write down a tight-binding Hamiltonian as

Ĥ (t) =
∑

i

(̂
†
i K(t)(̂i +

∑

i

[(̂†
i J (t)(̂i+1 + H.c.], (6)

where (̂
†
i = (â†

p,i ,â
†
s,i) are creation operators for s and p

orbitals, and

K(t) =
(

ϵp ih
sp
0 sin(ωt)

−ih
sp
0 sin(ωt) ϵs

)
, (7)

J (t) =
(

tp − ih
pp
1 sin(ωt) ih

sp
1 sin(ωt)

−ih
sp
1 sin(ωt) ts − ihss

1 sin(ωt)

)
, (8)

where ϵs and ϵp are the on-site energy, ts and tp are
the hopping amplitude from the static part, and h

sp
0 =

bω
∫

dx φs (x ) ∂x φp (x ) denotes shaking-induced on-site cou-
pling processes. hλλ′

1 = bω
∫

dx φλ (x − a) ∂x φλ′ (x ), where
λλ′ = ss,pp,sp denotes shaking-induced nearest neighboring
hopping processes. Here φs (x ) and φp (x ) are the Wannier
wave functions of the s orbit and the p orbit, and a = π/kr is
the lattice constant. For a given lattice depth V , ϵs , ϵp, ts , and
tp are fixed, and h

sp
0 , hss

1 , h
pp
1 , and h

sp
1 scale linearly with krb.

With the Hamiltonian equations (6)–(8) and method I, we
find phase transitions between topological trivial and nontrivial
phases, by changing frequency via #0 = (ϵp − ϵs − 2ω)/2
and shaking amplitude krb. A phase diagram is shown in
Fig. 2(a). The topological nontrivial state possesses a pair

FIG. 2. (Color online) (a) Phase diagram in terms of shaking
frequency #0/Er and shaking amplitude krb. V = 3Er is fixed.
(b), (d) Quasienergy spectrum of a finite size one-dimensional shaking
optical lattice. #0/Er = 0 and krb = 0.5 for (b); and #0/Er = 0.8
and krb = 0.5 for (d), as marked in (a). Inset: Winding of B(kx ) in
the yz plane as kx changes from −π to π . See text for a definition of
B(kx ). (c) The wave functions for the in-gap states of (b).
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FIG. 1. (Color online) (a) The typical energy structure under
consideration. (b) The laser setup of the one-dimensional shaking
optical lattice. Solid and dashed lines represent lattice potential at two
different times. (c) The laser setup of the two-dimensional honeycomb
optical lattice. The dashed circle with arrow indicates how each lattice
potential rotates in time.

Method II. We can introduce a time-independent effective
Hamiltonian Ĥeff via F̂ = e−iĤeffT . Expanding Ĥ (t) as Ĥ (t) =∑∞

n=−∞ Ĥn(t)einωt with ω = 2π/T , we consider a situation as
shown in Fig. 1(a), that is, the static component Ĥ0 contains
m bands within an energy range of # and ω ≫ #. The
two concrete examples discussed below either belong to this
situation or can be transferred into this situation by a rotating
wave transformation, with m = 2. Under this condition, it is
straightforward to show that to the leading order of #/ω, Ĥeff
can be deduced as

Ĥeff = Ĥ0 +
∞∑

n=1

{
[Ĥn,Ĥ−n]

nω
− [Ĥn,Ĥ0]

e−2πniαnω
+ [Ĥ−n,Ĥ0]

e2πniαnω

}
,

(3)

where Ti is taken as αT with 0 ! α < 1. Since F̂ with
different choices of initial time Ti relate to each other by
a unitary transformation, quasienergy is independent of the
choice of Ti . In particular, we can choose an optimal α that
simplifies Ĥeff . Then we can apply schemes developed for
a time-independent Hamiltonian to Ĥeff for classifying the
topology of this time-periodic system. Although this method
involves further approximations, it has the advantage that it is
physically more transparent and can bring out the connection
to topological phenomena in equilibrium systems.

One-dimensional case. A one-dimensional lattice is formed
by two counterpropagating lasers. As one time-periodically
modulates the relative phase θ between two lasers, it will
result in a time-dependent lattice potential [31,32], as shown
in Fig. 1(b),

H (t) = k̂2
x

2m
+ V cos2[kr x + θ (t)], (4)

where θ (t) = krb cos (ωt), and b is the maximum lattice
displacement. By transferring to the comoving frame, x →
x + b cos (ωt), the Hamiltonian acquires a time-dependent
vector potential term as

H (t) = k̂2
x

2m
+ V cos2(kr x ) − bω sin(ωt) · k̂x . (5)

The first two static terms give a static band structure with Bloch
wave function ϕλ(kx ). In this basis, by only keeping the s and
p bands, we can write down a tight-binding Hamiltonian as

Ĥ (t) =
∑

i

(̂
†
i K(t)(̂i +

∑

i

[(̂†
i J (t)(̂i+1 + H.c.], (6)

where (̂
†
i = (â†

p,i ,â
†
s,i) are creation operators for s and p

orbitals, and

K(t) =
(

ϵp ih
sp
0 sin(ωt)

−ih
sp
0 sin(ωt) ϵs

)
, (7)

J (t) =
(

tp − ih
pp
1 sin(ωt) ih

sp
1 sin(ωt)

−ih
sp
1 sin(ωt) ts − ihss

1 sin(ωt)

)
, (8)

where ϵs and ϵp are the on-site energy, ts and tp are
the hopping amplitude from the static part, and h

sp
0 =

bω
∫

dx φs (x ) ∂x φp (x ) denotes shaking-induced on-site cou-
pling processes. hλλ′

1 = bω
∫

dx φλ (x − a) ∂x φλ′ (x ), where
λλ′ = ss,pp,sp denotes shaking-induced nearest neighboring
hopping processes. Here φs (x ) and φp (x ) are the Wannier
wave functions of the s orbit and the p orbit, and a = π/kr is
the lattice constant. For a given lattice depth V , ϵs , ϵp, ts , and
tp are fixed, and h

sp
0 , hss

1 , h
pp
1 , and h

sp
1 scale linearly with krb.

With the Hamiltonian equations (6)–(8) and method I, we
find phase transitions between topological trivial and nontrivial
phases, by changing frequency via #0 = (ϵp − ϵs − 2ω)/2
and shaking amplitude krb. A phase diagram is shown in
Fig. 2(a). The topological nontrivial state possesses a pair

FIG. 2. (Color online) (a) Phase diagram in terms of shaking
frequency #0/Er and shaking amplitude krb. V = 3Er is fixed.
(b), (d) Quasienergy spectrum of a finite size one-dimensional shaking
optical lattice. #0/Er = 0 and krb = 0.5 for (b); and #0/Er = 0.8
and krb = 0.5 for (d), as marked in (a). Inset: Winding of B(kx ) in
the yz plane as kx changes from −π to π . See text for a definition of
B(kx ). (c) The wave functions for the in-gap states of (b).
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In this Rapid Communication we propose realistic schemes to realize topologically nontrivial Floquet states
by shaking optical lattices, using both the one-dimensional lattice and two-dimensional honeycomb lattice as
examples. The topological phase in the two-dimensional model exhibits quantum anomalous Hall effect. The
transition between topological trivial and nontrivial states can be easily controlled by both shaking frequency
and shaking amplitude. Our schemes have two major advantages. First, both the static Hamiltonian and the
shaking scheme are sufficiently simple to implement. Secondly, it requires relatively small shaking amplitude
and therefore heating can be minimized. These two advantages make our schemes much more practical.

DOI: 10.1103/PhysRevA.89.061603 PACS number(s): 67.85.−d, 03.75.Ss

Introduction. Topological states of matter have been exten-
sively studied in equilibrium systems. Recently, topological
nontrivial quantum states have been proposed in a periodically
driven nonequilibrium system called “Floquet topological
insulators” [1– 3]. The Floquet topological band has been first
realized in photonic crystals and the edge state of light has
been observed [4], while so far it has not been realized in any
solid-state or cold-atom system.

Realizing and studying the topological state of matter is
also one of the major trends for cold atom physics nowadays,
for which Raman laser coupling [5– 12] and shaking optical
lattice [13– 15] have been developed. It has been demonstrated
that fast shaking optical lattices can generate synthetic Abelian
gauge field and magnetic flux [13,14], and various theoretical
proposals also exist [16– 25]. In this Rapid Communication
we propose that shaking optical lattice is also a powerful tool
to realize Floquet topological states in cold-atom systems.
We demonstrate that a system equivalent to the Su-Schrieffer-
Heeger model in one dimension [26] and a system equivalent
to the Haldane model [28] in a two-dimensional honeycomb
lattice [27] can be realized, and the latter exhibits quantum
anomalous Hall effect.

So far, quantum anomalous Hall effect has only been found
in chromium-doped (Bi,Sb)2Te3, and growing this material is
extremely challenging [29]. It is therefore highly desirable
that one can quantum simulate this effect with the cold-
atom system. However, although there already exist several
proposals using atom-light interactions [20– 25], this effect has
not yet been realized in a cold-atom setup. The key technique
challenge is to have a scheme that is sufficiently simple to be
implemented within a currently available experimental setup
and can also avoid unwanted heating. Our scheme fulfills these
two requirements and therefore can help to overcome this
challenge.

The first is its simplicity. To realize a topological state
in a static system, it usually requires a particular form of
hopping term. For instance, in order to realize the Haldane
model [28], one needs to generate a special next-nearest
range hopping term, which usually requires engineering laser-
assisted tunneling in a cold-atom system [9– 12]. In contrast,
in our scheme, the static Hamiltonian is quite simple (it only
contains normal nearest neighboring hopping without an extra
phase factor) and has been realized in different laboratories
already. We will show that the beauty of this scheme is that

such a simple static Hamiltonian can result in a topological
nontrivial state when a proper and also sufficiently simple way
of shaking is turned on.

The second is minimizing heating. In contrast to other
shaking schemes [13,14], a key ingredient of our scheme is that
shaking provides a resonant coupling between different bands;
therefore, as we shall show later, it only demands a shaking
amplitude much smaller than lattice spacing in order to reach
the topological phase, and consequently this scheme avoids
the heating problem often encountered in schemes utilizing
atom-light interactions. In a recent experiment by a Chicago
group, it is found that heating from such a small shaking
amplitude is insignificant [15].

We also remark that our shaking scheme in a honey-
comb lattice can be regarded mathematically as generating
a synthetic circular polarized light for neutral atoms [1,30].
However, to realize this with real light in graphene the required
frequency has to be in a soft x-ray regime [30] which makes the
experiment extremely challenging. While in our scheme the
required shaking frequency is within a very practical regime
of about hundreds of hertz.

General method. Our theoretical treatment of shaking
optical lattices is based on the Floquet theory. The Floquet
operator of a periodically driven Hamiltonian Ĥ (t) with period
T is defined as (! = 1)

F̂ = Û (Ti + T ,Ti) = T̂ exp
{
−i

∫ Ti+T

Ti

dt Ĥ (t)
}

, (1)

where T̂ denotes time order, and Ti is the initial time. The
eigenvalue and eigenstates of F̂ are given by

F̂ |ϕn⟩ = e−iεnT |ϕn⟩, (2)

where −π/T < εn < π/T is the quasienergy. Below, two
different methods are used to evaluate the Floquet operator,
and each method has its own advantage.

Method I. We can numerically evaluate Floquet operator
F̂ according to Eq. (1) and determine its eigenvalues and
eigen-wave-functions from Eq. (2). If a periodically driven
system exhibits nontrivial topological states, there must be
in-gap quasienergies ϵ and their corresponding wave functions
ϕ are spatially well localized at the edge of the system [2]. The
advantage of this method is that once Ĥ (t) is given, there are
no further approximations.
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FIG. 1. (Color online) (a) The typical energy structure under
consideration. (b) The laser setup of the one-dimensional shaking
optical lattice. Solid and dashed lines represent lattice potential at two
different times. (c) The laser setup of the two-dimensional honeycomb
optical lattice. The dashed circle with arrow indicates how each lattice
potential rotates in time.

Method II. We can introduce a time-independent effective
Hamiltonian Ĥeff via F̂ = e−iĤeffT . Expanding Ĥ (t) as Ĥ (t) =∑∞

n=−∞ Ĥn(t)einωt with ω = 2π/T , we consider a situation as
shown in Fig. 1(a), that is, the static component Ĥ0 contains
m bands within an energy range of # and ω ≫ #. The
two concrete examples discussed below either belong to this
situation or can be transferred into this situation by a rotating
wave transformation, with m = 2. Under this condition, it is
straightforward to show that to the leading order of #/ω, Ĥeff
can be deduced as

Ĥeff = Ĥ0 +
∞∑

n=1

{
[Ĥn,Ĥ−n]

nω
− [Ĥn,Ĥ0]

e−2πniαnω
+ [Ĥ−n,Ĥ0]

e2πniαnω

}
,

(3)

where Ti is taken as αT with 0 ! α < 1. Since F̂ with
different choices of initial time Ti relate to each other by
a unitary transformation, quasienergy is independent of the
choice of Ti . In particular, we can choose an optimal α that
simplifies Ĥeff . Then we can apply schemes developed for
a time-independent Hamiltonian to Ĥeff for classifying the
topology of this time-periodic system. Although this method
involves further approximations, it has the advantage that it is
physically more transparent and can bring out the connection
to topological phenomena in equilibrium systems.

One-dimensional case. A one-dimensional lattice is formed
by two counterpropagating lasers. As one time-periodically
modulates the relative phase θ between two lasers, it will
result in a time-dependent lattice potential [31,32], as shown
in Fig. 1(b),

H (t) = k̂2
x

2m
+ V cos2[kr x + θ (t)], (4)

where θ (t) = krb cos (ωt), and b is the maximum lattice
displacement. By transferring to the comoving frame, x →
x + b cos (ωt), the Hamiltonian acquires a time-dependent
vector potential term as

H (t) = k̂2
x

2m
+ V cos2(kr x ) − bω sin(ωt) · k̂x . (5)

The first two static terms give a static band structure with Bloch
wave function ϕλ(kx ). In this basis, by only keeping the s and
p bands, we can write down a tight-binding Hamiltonian as

Ĥ (t) =
∑

i

(̂
†
i K(t)(̂i +

∑

i

[(̂†
i J (t)(̂i+1 + H.c.], (6)

where (̂
†
i = (â†

p,i ,â
†
s,i) are creation operators for s and p

orbitals, and

K(t) =
(

ϵp ih
sp
0 sin(ωt)

−ih
sp
0 sin(ωt) ϵs

)
, (7)

J (t) =
(

tp − ih
pp
1 sin(ωt) ih

sp
1 sin(ωt)

−ih
sp
1 sin(ωt) ts − ihss

1 sin(ωt)

)
, (8)

where ϵs and ϵp are the on-site energy, ts and tp are
the hopping amplitude from the static part, and h

sp
0 =

bω
∫

dx φs (x ) ∂x φp (x ) denotes shaking-induced on-site cou-
pling processes. hλλ′

1 = bω
∫

dx φλ (x − a) ∂x φλ′ (x ), where
λλ′ = ss,pp,sp denotes shaking-induced nearest neighboring
hopping processes. Here φs (x ) and φp (x ) are the Wannier
wave functions of the s orbit and the p orbit, and a = π/kr is
the lattice constant. For a given lattice depth V , ϵs , ϵp, ts , and
tp are fixed, and h

sp
0 , hss

1 , h
pp
1 , and h

sp
1 scale linearly with krb.

With the Hamiltonian equations (6)–(8) and method I, we
find phase transitions between topological trivial and nontrivial
phases, by changing frequency via #0 = (ϵp − ϵs − 2ω)/2
and shaking amplitude krb. A phase diagram is shown in
Fig. 2(a). The topological nontrivial state possesses a pair

FIG. 2. (Color online) (a) Phase diagram in terms of shaking
frequency #0/Er and shaking amplitude krb. V = 3Er is fixed.
(b), (d) Quasienergy spectrum of a finite size one-dimensional shaking
optical lattice. #0/Er = 0 and krb = 0.5 for (b); and #0/Er = 0.8
and krb = 0.5 for (d), as marked in (a). Inset: Winding of B(kx ) in
the yz plane as kx changes from −π to π . See text for a definition of
B(kx ). (c) The wave functions for the in-gap states of (b).
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FIG. 1. (Color online) (a) The typical energy structure under
consideration. (b) The laser setup of the one-dimensional shaking
optical lattice. Solid and dashed lines represent lattice potential at two
different times. (c) The laser setup of the two-dimensional honeycomb
optical lattice. The dashed circle with arrow indicates how each lattice
potential rotates in time.

Method II. We can introduce a time-independent effective
Hamiltonian Ĥeff via F̂ = e−iĤeffT . Expanding Ĥ (t) as Ĥ (t) =∑∞

n=−∞ Ĥn(t)einωt with ω = 2π/T , we consider a situation as
shown in Fig. 1(a), that is, the static component Ĥ0 contains
m bands within an energy range of # and ω ≫ #. The
two concrete examples discussed below either belong to this
situation or can be transferred into this situation by a rotating
wave transformation, with m = 2. Under this condition, it is
straightforward to show that to the leading order of #/ω, Ĥeff
can be deduced as

Ĥeff = Ĥ0 +
∞∑

n=1

{
[Ĥn,Ĥ−n]

nω
− [Ĥn,Ĥ0]

e−2πniαnω
+ [Ĥ−n,Ĥ0]

e2πniαnω

}
,

(3)

where Ti is taken as αT with 0 ! α < 1. Since F̂ with
different choices of initial time Ti relate to each other by
a unitary transformation, quasienergy is independent of the
choice of Ti . In particular, we can choose an optimal α that
simplifies Ĥeff . Then we can apply schemes developed for
a time-independent Hamiltonian to Ĥeff for classifying the
topology of this time-periodic system. Although this method
involves further approximations, it has the advantage that it is
physically more transparent and can bring out the connection
to topological phenomena in equilibrium systems.

One-dimensional case. A one-dimensional lattice is formed
by two counterpropagating lasers. As one time-periodically
modulates the relative phase θ between two lasers, it will
result in a time-dependent lattice potential [31,32], as shown
in Fig. 1(b),

H (t) = k̂2
x

2m
+ V cos2[kr x + θ (t)], (4)

where θ (t) = krb cos (ωt), and b is the maximum lattice
displacement. By transferring to the comoving frame, x →
x + b cos (ωt), the Hamiltonian acquires a time-dependent
vector potential term as

H (t) = k̂2
x

2m
+ V cos2(kr x ) − bω sin(ωt) · k̂x . (5)

The first two static terms give a static band structure with Bloch
wave function ϕλ(kx ). In this basis, by only keeping the s and
p bands, we can write down a tight-binding Hamiltonian as

Ĥ (t) =
∑

i

(̂
†
i K(t)(̂i +

∑

i

[(̂†
i J (t)(̂i+1 + H.c.], (6)

where (̂
†
i = (â†

p,i ,â
†
s,i) are creation operators for s and p

orbitals, and

K(t) =
(

ϵp ih
sp
0 sin(ωt)

−ih
sp
0 sin(ωt) ϵs

)
, (7)

J (t) =
(

tp − ih
pp
1 sin(ωt) ih

sp
1 sin(ωt)

−ih
sp
1 sin(ωt) ts − ihss

1 sin(ωt)

)
, (8)

where ϵs and ϵp are the on-site energy, ts and tp are
the hopping amplitude from the static part, and h

sp
0 =

bω
∫

dx φs (x ) ∂x φp (x ) denotes shaking-induced on-site cou-
pling processes. hλλ′

1 = bω
∫

dx φλ (x − a) ∂x φλ′ (x ), where
λλ′ = ss,pp,sp denotes shaking-induced nearest neighboring
hopping processes. Here φs (x ) and φp (x ) are the Wannier
wave functions of the s orbit and the p orbit, and a = π/kr is
the lattice constant. For a given lattice depth V , ϵs , ϵp, ts , and
tp are fixed, and h

sp
0 , hss

1 , h
pp
1 , and h

sp
1 scale linearly with krb.

With the Hamiltonian equations (6)–(8) and method I, we
find phase transitions between topological trivial and nontrivial
phases, by changing frequency via #0 = (ϵp − ϵs − 2ω)/2
and shaking amplitude krb. A phase diagram is shown in
Fig. 2(a). The topological nontrivial state possesses a pair

FIG. 2. (Color online) (a) Phase diagram in terms of shaking
frequency #0/Er and shaking amplitude krb. V = 3Er is fixed.
(b), (d) Quasienergy spectrum of a finite size one-dimensional shaking
optical lattice. #0/Er = 0 and krb = 0.5 for (b); and #0/Er = 0.8
and krb = 0.5 for (d), as marked in (a). Inset: Winding of B(kx ) in
the yz plane as kx changes from −π to π . See text for a definition of
B(kx ). (c) The wave functions for the in-gap states of (b).
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FIG. 3. (Color online) (a) Phase diagram in terms of the on-site
energy difference of the AB sublattice of a honeycomb lattice
M/Er and the shaking amplitude krb. ω/Er is fixed at 0.2. (b),
(d) Quasienergy spectrum of a finite size two-dimensional shaking
honeycomb lattice with armchair edge. M/Er = 0 and krb = 0.1
for (b) and M/Er = 0.003 and krb = 0.1 for (d), as marked in (a).
(c) The wave functions for the in-gap states of (b). The lattice potential
VX̄/Er = 5, VX/Er = 0.65, VY /Er = 2, and α = 0.8.

is given in the Supplemental Material [35]. This effective
Hamiltonian can be compared with the Haldane model. If B(k)
fully covers the Bloch sphere as k goes over the Brillouin zone,
this phase is topologically nontrivial and exhibits quantum
anomalous Hall effect [28].

For small shaking amplitude, at the leading order of krb,
Bx(k) and By (k) are given by the static part of the honeycomb

lattice Hamiltonian. Due to the Dirac point structure, {Bx,By }
has desired winding structure in the xy plane. Bz(k) can
be generally written as M + D(k), where D(k) represents
terms generated by shaking, and therefore for small shaking
amplitude, D(k) scales linearly with krb. If |M| > D(k) for
all k, either due to small krb or large |M|, Bz always has the
same sign as M and therefore spin can only point to half of
the Bloch sphere; the resulting state will still be topological
trivial, as shown in Fig. 3(d).

As krb increases, D(k) will become larger than M in a
certain regime of k space. In particular, for our model, similar
to the case of the Haldane mode, D(k) takes opposite sign
between two Dirac points (where both Bx and By vanish), and
its absolute value is larger than |M|. Thus, Bz takes opposite
values between two Dirac points and the spin vector points to
north and south poles, respectively, at two Dirac points. This
feature, together with nontrivial winding of {Bx,By } in the xy
plane, gives rise to a topologically nontrivial coverage of spin
vector in the Bloch sphere. Consequently, it enters topological
nontrivial phase, with a nonzero Chern number and chiral
edge state, as shown in Fig. 3. With noninteracting fermions
in this setup, it will exhibit quantum anomalous Hall effect
with quantized Hall conductance, which can be measured by
various methods [20,36– 38].

We believe the schemes and examples presented in this
work open a route toward realizing topological states in
cold-atom systems. It will be very interesting to generalize
the current work to three dimensions and the case with
interactions.
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calculated with Method 1. The answer to this question is quite involved, in particular,
when H0 itself is already topological nontrivial. Here we will not get involved in this
sophisticated discussion.

Haldane Model from Shaking Honeycomb Lattice. In the experiment, a hon-
eycomb lattice potential V (x,y) is realized by interference of three laser beams. By
time-periodically modulating the relative phase between lasers, one can realize a
shaken optical lattice whose Hamiltonian is given by

H = � h̄2—2

2m
+V [x+bsin(wt +j) ,y+bsin(wt)] (13.22)

where b is the shaking amplitude, and w is the shaking frequency. Note that here
we choose the phase difference j = p/2 between the shaking along the x and along
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to the geometric phase picked up along an infinitesimal loop. When
only IS is broken, the Berry curvature is point-antisymmetric, and its
sign inverts for opposite DAB; see Fig. 2e. The spread of V(q) increases
with the size of the gap. Its integral over the first Brillouin zone, the Chern
number n, is zero, corresponding to a topologically trivial system. How-
ever, with only TRS broken, n 561, V(q) is point-symmetric, and its sign
changes when reversing the rotation direction of the lattice modulation.

To determine the topology of the lowest band, we move the atoms
along the y direction such that their trajectories sample the regions where
the Berry curvature is concentrated, and record their final position. As
atoms move through regions of q-space with non-zero curvature, they
acquire an orthogonal velocity proportional to the applied force and V(q)
(refs 23–26). The underlying harmonic confinement caused by the laser
beams in the experiment couples real and momentum space, meaning
that a displacement in real space leads to a drift in quasi-momentum.
We apply a gradient of DE/h 5 114.6(1) Hz per site and measure the
centre of mass of the quasi-momentum distribution in the lowest band
after one full Bloch cycle. Because the velocity caused by the Berry cur-
vature inverts when inverting the force, we subtract the result for the
opposite gradient to obtain the differential driftD. This quantity is more
suitable for distinguishing trivial from non-trivial Berry-curvature dis-
tributions than the response to a single gradient (Methods)25. The latter
does however provide information about the local Berry curvature and
is shown in Extended Data Fig. 2.

When breaking only IS, we observe thatD vanishes and is independent
of DAB, because the Berry curvature is point-antisymmetric; see Fig. 2c.
In contrast, when only TRS is broken, we explore the topological regime
of the Haldane model with DAB 5 0. A differential drift is observed for
Q 5 90u, which, as expected, is opposite for Q 5 290u; see Figs 2d and
4c. This is a direct consequence of the Berry curvature being point-
symmetric, with its sign given by the rotation direction of the lattice mod-
ulation. In fact, here a non-zeroD can only originate from a non-zero
integrated Berry curvature (Methods). As the modulation becomes linear,
the drift disappears. This is smoothed by the increased transfer to the
higher band when the gap becomes smaller, which predominantly affects
atoms that would experience the strongest Berry curvature. These obser-
vations are qualitatively confirmed by semiclassical simulations shown
in Extended Data Fig. 1.

Within the Haldane model, the competition of simultaneously broken
TRS and IS is of particular interest, as it features a topological transition
between a trivial band insulator and a Chern insulator. In this regime, both
the band structure and Berry curvature are no longer point-symmetric
and the energy gap G6 at the two Dirac points is given by

G+~ DAB+Dmax
T sin Qð Þ

!! !! ð3Þ

On the transition lines the system is gapless with one closed and one
gapped Dirac point, G1 5 0 or G2 5 0. We now discuss measurements
in which we extend the parameter regime to allow for the simultaneous
breaking of both symmetries.

We map out the transition by measuring the transfer j6 for each Dirac
point separately, see Fig. 3a. j1 (j2) is the fraction of atoms occupying
the upper (lower) half of the second Brillouin zone after one Bloch oscil-
lation along the x direction. We observe a difference between j1 and
j2, which shows that the band structure is no longer point-symmetric,
allowing for the parity anomaly predicted by Haldane1. When the topol-
ogy of the band changes, the gap at one of the Dirac point closes. We
identify the closing of a gap with the point of maximum measured transfer
when varying DAB. For Q 5 0uwe find, as expected for preserved TRS, that
the maxima of both j1 and j2 coincide; see Fig. 3b. The maxima are
shifted in opposite directions for Q 5 90u, showing that the minimum
gap for each Dirac point occurs at different values of DAB. In between
these values the system is in the topologically non-trivial regime. We
explore the position of each maximum for varying Q and find opposite
shifts for negative Q as predicted by equation (3) using no free param-
eters; see Fig. 3c.

In Fig. 4 we show the measured differential driftD for all topological
regimes, allowing for simultaneously broken IS and TRS. Here, we reduce
the modulation frequency to 3.75 kHz, where the signal-to-noise ratio
ofD is larger, but which is less suited for a quantitative comparison of
the transfer jbecause the lattice modulation ramps are expected to be
less adiabatic.D is non-zero only for broken TRS and shows the expected
antisymmetry with Q and symmetry with DAB. For large DAB, deep inside
the topologically trivial regime,D vanishes for all Q. For smaller DAB, the
differential drift shows precursors of the regimes with non-zero Chern
number: non-zero values ofD extend well beyond the transition lines
when IS and TRS are both broken. Semiclassical simulations (see Ex-
tended Data Fig. 1c) suggest that the main contribution to this effect
arises from the transfer to the higher band.
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Figure 3 | Mapping out the transition line. a, Atomic quasi-momentum
distribution (averaged over six runs) after one Bloch oscillation for Q 5 190u,
DAB/h 5 292(7) Hz. A line sum along qx shows the atomic density in the first
Brillouin zone in grey; atoms transferred at the upper (lower) Dirac point
are shown in orange (green) throughout. The fraction of atoms in the
second Brillouin zone differs for qywv0. This is a direct consequence of
simultaneously broken IS and TRS, which allows band structures that are not
point-symmetric. b, Fractions of atoms j6 in each half of the second Brillouin
zone. For linear modulation (left) the gap vanishes at DAB 5 0 for both
Dirac points, while for circular modulation (right) it vanishes at opposite values
of DAB. Gaussian fits (solid lines) are used to find the maximum transfer,
which signals the topological transition. Data are mean 6 s.d. of at least six
measurements. c, Solid lines show the theoretically computed topological
transitions, without free parameters. Dotted lines represent the uncertainty
of the maximum gap Dmax

T

!! !!"h~88z10
{34 Hz, originating from the uncertainty of

the lattice parameters. Data are the points of maximum transfer for each Dirac
point, 6 the fitting error, obtained from measurements as in b for various Q.
Data points for Q 5 6180u correspond to the same measurements. Between
the lines, the system is in the topologically non-trivial regime.
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Extending our work to interacting systems requires sufficiently low
heating. We investigate this with a repulsively interacting spin mixture
in the honeycomb lattice previously used for studying the fermionic
Mott insulator27. We measure the entropy in the Mott insulating regime
by loading atoms into the lattice and reversing the loading procedure
(see Methods and Extended Data Fig. 3). The entropy increase is only 25%
larger than without modulation. This opens up the possibility of study-
ing topological models with interactions28 in a controlled and tunable
way. For example, lattice modulation could be used to create topological
flat bands, which have been suggested to give rise to interaction-induced
fractional Chern insulators29,30. Furthermore, our approach of periodi-
cally modulating the system can be directly extended to engineer Hamil-
tonians with spin-dependent tunnelling amplitudes and phases (Methods).
This can be achieved by modulating a magnetic field gradient, which leads
to spin-dependent oscillating forces owing to the differential Zeeman
shift. For example, TRS topological Hamiltonians, such as the Kane–
Mele model3, can be implemented by simultaneously modulating the
lattice on one axis and a magnetic field gradient on the other.

Online Content Methods, along with any additional Extended Data display items
andSourceData, are available in the online version of the paper; references unique
to these sections appear only in the online paper.
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30. Grushin, A. G., Gómez-León, A. & Neupert, T. Floquet fractional Chern insulators.
Phys. Rev. Lett. 112, 156801 (2014).

Supplementary Information is available in the online version of the paper.

Acknowledgements WethankH.Aoki fordrawingour attention to the relevanceof their
proposal for optical lattices and N. Cooper, S. Huber, L. Tarruell, L. Wang and A. Zenesini
for discussions. We acknowledge the SNF, the NCCR-QSIT and the SQMS (ERC
advanced grant) for funding.

Author Contributions The data were measured by G.J., M.M., R.D. and D.G. and
analysed by G.J., M.M., R.D., T.U. and D.G. The theoretical framework was developed by
G.J. and M.L. All work was supervised by T.E. All authors contributed to planning the
experiment, discussions and the preparation of the manuscript.

Author Information Reprints and permissions information is available at
www.nature.com/reprints. The authors declare no competing financial interests.
Readers are welcome to comment on the online version of the paper. Correspondence
and requests for materials should be addressed to T.E. (esslinger@phys.ethz.ch).

a

b c

–180° –135° –90° –45° 0° 45° 90 135° 180°
M

–1,500

–1,000

–500

0

500

1,000

1,500

–0.06

–0.03

0.0

0.03

0.06

–180° –90° 0° 90° 180°
M

–0.04

–0.02

0.00

0.02

0.04

D
iff

er
en

tia
l d

rif
t, 

   
 (q

B
)

  AB ≈ 0

Differential
drift,     (qB)

1 2

3

4

1 2

3

4

AB
/h

 (H
z)

Δ

Δ
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c

d

Fig. 13.6 Physical realization of the Haldane model and measurement of its phase diagram. Figure
reprinted from Ref. 13.4. (b) is the phase diagram measured by Landau-Zener tunneling during the
Bloch oscillation, and (a) show the Landau-Zenner tunneling rate after a circle of Bloch oscillation.
(c) shows the phase diagram measured from the drift experiment; and (d) show the drift after a full
Bloch cycle for M = 0 case.

H0 (k) = Msz � t1J0( f )Â
a

[cos(k ·da)sx � sin(k ·da)sy] , (13.27)

H1 (k) = �it1J1 ( f )Â
a

e�iqa [sin(k ·da)sx � cos(k ·da)sy] , (13.28)

H�1 (k) = it1J1 ( f )Â
a

eiqa [sin(k ·da)sx � cos(k ·da)sy] , (13.29)

where f = mwba/h̄, and qa is the angle of da . H0 is basically the static part of the
honeycomb lattice Hamiltonian, with tunneling modified by shaking. H±1 describes
shaking induced tunneling between neighboring sites. With the help of Eq. (13.21),
the effective Hamiltonian is given by:

Heff (k) ⇡ H0 (k)+
[H1 (k) ,H�1 (k)]

w

=

(
M � 4t2

1 J2
1 ( f )
w Â

ab
sin

�
qa �qb

�
cos(k ·da)sin

�
k ·db

�
)

sz

�
⇢

t1J0 ( f )Â
a

cos(k ·da)

�
sx �

⇢
t1J0 ( f )Â

a
sin(k ·da)

�
sy. (13.30)

One can see that a next nearest tunneling term emerges in Bz(k) of the effective
Hamiltonian, which breaks the time-reversal symmetry. The strength of this term
is proportional to t2

1 because it results from the second-order perturbation effect of
shaking induced hopping, that is, a nearest neighboring tunneling with absorbing
an energy h̄w followed by another nearest tunneling with emitting an energy h̄w .
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Experimental realization of the topological Haldane
model with ultracold fermions
Gregor Jotzu1, Michael Messer1, Rémi Desbuquois1, Martin Lebrat1, Thomas Uehlinger1, Daniel Greif1 & Tilman Esslinger1

The Haldane model on a honeycomb lattice is a paradigmatic example
of a Hamiltonian featuring topologically distinct phases of matter1.
It describes a mechanism through which a quantum Hall effect can
appear as an intrinsic property of a band structure, rather than being
caused by an external magnetic field2. Although physical implemen-
tation has been considered unlikely, the Haldane model has provided
the conceptual basis for theoretical and experimental research explor-
ing topological insulators and superconductors2–6. Here we report
the experimental realization of the Haldane model and the charac-
terization of its topological band structure, using ultracold fermi-
onic atoms in a periodically modulated optical honeycomb lattice.
The Haldane model is based on breaking both time-reversal symmetry
and inversion symmetry. To break time-reversal symmetry, we intro-
duce complex next-nearest-neighbour tunnelling terms, which we
induce through circular modulation of the lattice position7. To break
inversion symmetry, we create an energy offset between neighbour-
ing sites8. Breaking either of these symmetries opens a gap in the band
structure, which we probe using momentum-resolved interband tran-
sitions. We explore the resulting Berry curvatures, which character-
ize the topology of the lowest band, by applying a constant force to
the atoms and find orthogonal drifts analogous to a Hall current.
The competition between the two broken symmetries gives rise to a
transition between topologically distinct regimes. By identifying the
vanishing gap at a single Dirac point, we map out this transition line
experimentally and quantitatively compare it to calculations using
Floquet theory without free parameters. We verify that our approach,
which allows us to tune the topological properties dynamically, is suit-
able even for interacting fermionic systems. Furthermore, we propose
a direct extension to realize spin-dependent topological Hamiltonians.

In a honeycomb lattice that is symmetric under time-reversal and inver-
sion, the two lowest bands are connected at two Dirac points. Each broken
symmetry leads to a gapped energy spectrum. F. D. M. Haldane realized
that the resulting phases are topologically distinct1: A broken inversion
symmetry (IS), caused by an energy offset between the two sublattices,
leads to a trivial band insulator at half-filled lattice sites. Time-reversal
symmetry (TRS) can be broken by complex next-nearest-neighbour tunnel
couplings (Fig. 1a). The corresponding staggered magnetic fluxes sum
up to zero in one unit cell, thereby preserving the translation symmetry
of the lattice. This gives rise to a topological Chern insulator, where a non-
zero Hall conductance appears despite the absence of a net magnetic
field1,2. When both symmetries are broken, a topological phase transi-
tion connects two regimes with a distinct topological invariant, the Chern
number, which changes from 0 to 11 or to 21; see Fig. 1b. There, the
gap closes at a single Dirac point. These transitions have attracted great
interest because they cannot be described by Landau’s theory of phase
transitions, owing to the absence of a changing local order parameter6.

A crucial experimental challenge for the realization of the Haldane
model is the creation of complex next-nearest-neighbour tunnelling. Here
we show that this is possible with ultracold atoms in optical lattices peri-
odically modulated in time. Pioneering experiments with bosons showed
a renormalization of existing tunnelling amplitudes in one dimension9,10,
and were extended to control tunnelling phases11,12 and higher-order

tunnelling13. In higher dimensions this allowed the study of phase
transitions14,15, and topologically trivial staggered fluxes were realized16,17.
Furthermore, uniform flux configurations were observed using rotation
and laser-assisted tunnelling18,19, although for the latter method, heating
seemed to prevent the observation of a flux in some experiments20. In a
honeycomb lattice, a rotating force, as proposed by T. Oka and H. Aoki,
can induce the required complex tunnelling7. Using arrays of coupled
waveguides, a classical version of this proposal was used to study topo-
logically protected edge modes in the inversion-symmetric regime21. We
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Figure 1 | The Haldane model. a, Tight-binding model of the honeycomb
lattice realized in the experiment. An energy offset DAB between sublattice
A and B breaks IS. Nearest-neighbour tunnel couplings tij have real values,
whereas next-nearest-neighbour tunnelling eiWij t’ij carries tunable phases
indicated by arrows. i and j indicate the indices of the connected lattice sites.
For a detailed discussion of anisotropies and higher-order tunnelling terms,
see the Supplementary Information. The corresponding staggered magnetic
fluxes (sketched on the right) sum up to zero but break TRS. b, Topological
regimes of the Haldane model, for isotropic tij, t9ij 5 t9 and Wij 5 W. The trivial
(Chern number n 5 0) and Chern-insulating (n 5 6 1) regimes are connected
by topological transitions (black lines), where the band structure (shown on the
right) becomes gapless at a single Dirac point. c, Laser beam set-up forming
the optical lattice. The laser !X is frequency-detuned from the other beams.
Piezo-electric actuators sinusoidally modulate the retro-reflecting mirrors, with
a controllable phase difference Q. Acousto-optic modulators (AOMs) ensure
the stability of the lattice geometry (Methods). d, The resulting Brillouin zones
(BZ), featuring two Dirac points in quasi-momentum space q.
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to the geometric phase picked up along an infinitesimal loop. When
only IS is broken, the Berry curvature is point-antisymmetric, and its
sign inverts for opposite DAB; see Fig. 2e. The spread of V(q) increases
with the size of the gap. Its integral over the first Brillouin zone, the Chern
number n, is zero, corresponding to a topologically trivial system. How-
ever, with only TRS broken, n 561, V(q) is point-symmetric, and its sign
changes when reversing the rotation direction of the lattice modulation.

To determine the topology of the lowest band, we move the atoms
along the y direction such that their trajectories sample the regions where
the Berry curvature is concentrated, and record their final position. As
atoms move through regions of q-space with non-zero curvature, they
acquire an orthogonal velocity proportional to the applied force and V(q)
(refs 23–26). The underlying harmonic confinement caused by the laser
beams in the experiment couples real and momentum space, meaning
that a displacement in real space leads to a drift in quasi-momentum.
We apply a gradient of DE/h 5 114.6(1) Hz per site and measure the
centre of mass of the quasi-momentum distribution in the lowest band
after one full Bloch cycle. Because the velocity caused by the Berry cur-
vature inverts when inverting the force, we subtract the result for the
opposite gradient to obtain the differential driftD. This quantity is more
suitable for distinguishing trivial from non-trivial Berry-curvature dis-
tributions than the response to a single gradient (Methods)25. The latter
does however provide information about the local Berry curvature and
is shown in Extended Data Fig. 2.

When breaking only IS, we observe thatD vanishes and is independent
of DAB, because the Berry curvature is point-antisymmetric; see Fig. 2c.
In contrast, when only TRS is broken, we explore the topological regime
of the Haldane model with DAB 5 0. A differential drift is observed for
Q 5 90u, which, as expected, is opposite for Q 5 290u; see Figs 2d and
4c. This is a direct consequence of the Berry curvature being point-
symmetric, with its sign given by the rotation direction of the lattice mod-
ulation. In fact, here a non-zeroD can only originate from a non-zero
integrated Berry curvature (Methods). As the modulation becomes linear,
the drift disappears. This is smoothed by the increased transfer to the
higher band when the gap becomes smaller, which predominantly affects
atoms that would experience the strongest Berry curvature. These obser-
vations are qualitatively confirmed by semiclassical simulations shown
in Extended Data Fig. 1.

Within the Haldane model, the competition of simultaneously broken
TRS and IS is of particular interest, as it features a topological transition
between a trivial band insulator and a Chern insulator. In this regime, both
the band structure and Berry curvature are no longer point-symmetric
and the energy gap G6 at the two Dirac points is given by

G+~ DAB+Dmax
T sin Qð Þ

!! !! ð3Þ

On the transition lines the system is gapless with one closed and one
gapped Dirac point, G1 5 0 or G2 5 0. We now discuss measurements
in which we extend the parameter regime to allow for the simultaneous
breaking of both symmetries.

We map out the transition by measuring the transfer j6 for each Dirac
point separately, see Fig. 3a. j1 (j2) is the fraction of atoms occupying
the upper (lower) half of the second Brillouin zone after one Bloch oscil-
lation along the x direction. We observe a difference between j1 and
j2, which shows that the band structure is no longer point-symmetric,
allowing for the parity anomaly predicted by Haldane1. When the topol-
ogy of the band changes, the gap at one of the Dirac point closes. We
identify the closing of a gap with the point of maximum measured transfer
when varying DAB. For Q 5 0uwe find, as expected for preserved TRS, that
the maxima of both j1 and j2 coincide; see Fig. 3b. The maxima are
shifted in opposite directions for Q 5 90u, showing that the minimum
gap for each Dirac point occurs at different values of DAB. In between
these values the system is in the topologically non-trivial regime. We
explore the position of each maximum for varying Q and find opposite
shifts for negative Q as predicted by equation (3) using no free param-
eters; see Fig. 3c.

In Fig. 4 we show the measured differential driftD for all topological
regimes, allowing for simultaneously broken IS and TRS. Here, we reduce
the modulation frequency to 3.75 kHz, where the signal-to-noise ratio
ofD is larger, but which is less suited for a quantitative comparison of
the transfer jbecause the lattice modulation ramps are expected to be
less adiabatic.D is non-zero only for broken TRS and shows the expected
antisymmetry with Q and symmetry with DAB. For large DAB, deep inside
the topologically trivial regime,D vanishes for all Q. For smaller DAB, the
differential drift shows precursors of the regimes with non-zero Chern
number: non-zero values ofD extend well beyond the transition lines
when IS and TRS are both broken. Semiclassical simulations (see Ex-
tended Data Fig. 1c) suggest that the main contribution to this effect
arises from the transfer to the higher band.
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Figure 3 | Mapping out the transition line. a, Atomic quasi-momentum
distribution (averaged over six runs) after one Bloch oscillation for Q 5 190u,
DAB/h 5 292(7) Hz. A line sum along qx shows the atomic density in the first
Brillouin zone in grey; atoms transferred at the upper (lower) Dirac point
are shown in orange (green) throughout. The fraction of atoms in the
second Brillouin zone differs for qywv0. This is a direct consequence of
simultaneously broken IS and TRS, which allows band structures that are not
point-symmetric. b, Fractions of atoms j6 in each half of the second Brillouin
zone. For linear modulation (left) the gap vanishes at DAB 5 0 for both
Dirac points, while for circular modulation (right) it vanishes at opposite values
of DAB. Gaussian fits (solid lines) are used to find the maximum transfer,
which signals the topological transition. Data are mean 6 s.d. of at least six
measurements. c, Solid lines show the theoretically computed topological
transitions, without free parameters. Dotted lines represent the uncertainty
of the maximum gap Dmax

T

!! !!"h~88z10
{34 Hz, originating from the uncertainty of

the lattice parameters. Data are the points of maximum transfer for each Dirac
point, 6 the fitting error, obtained from measurements as in b for various Q.
Data points for Q 5 6180u correspond to the same measurements. Between
the lines, the system is in the topologically non-trivial regime.
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In the following we outline the theoretical framework
used to obtain e↵ective Hamiltonians for time-modulated
optical lattices. In particular, we derive the mapping
from an elliptically modulated honeycomb lattice to the
Haldane Hamiltonian [S1]. We consider a numerical and
analytical approach, compare the results for a wide range
of parameters and examine the validity of several ap-
proximations for the system studied in the experiment.
Some elements of the general framework used there can
be found in references [S2–S8], and applications to circu-
larly modulated honeycomb lattices can be found in very
recent work [S5, S9, S10].

E↵ective Hamiltonian of a time-periodic system

The evolution, given by time-evolution operator Û , of
a state obeying a time-periodic Hamiltonian of period
T is well captured by an e↵ective Hamiltonian Ĥe↵ over
timescales greater than T [S11, S12]. An e↵ective Hamil-
tonian is defined as, assuming here and henceforth that
~ = 1:

Û(⌧ + T, ⌧) = exp
⇣
�iĤ⌧

e↵T
⌘
. (S1)

The operator Ĥ⌧

e↵ is known as the Floquet Hamiltonian.
By construction, its energy spectrum does not depend
on the choice of starting time ⌧ as two time-evolution
operators with di↵erent starting times ⌧ , ⌧ 0 are related
through a similarity transformation:

Û(⌧ 0 + T, ⌧ 0) = Û(⌧ 0 + T, ⌧ + T )Û(⌧ + T, ⌧)Û(⌧, ⌧ 0)

= Û(⌧ 0, ⌧)Û(⌧ + T, ⌧)Û(⌧ 0, ⌧)�1 (S2)

and so are two di↵erent e↵ective Hamiltonians,

Ĥ⌧
0

e↵ = Û(⌧ 0, ⌧)Ĥ⌧

e↵Û(⌧ 0, ⌧)�1. (S3)

The e↵ective Hamiltonian is proportional to the log-
arithm of the time-evolution operator over a period T ;
therefore its spectrum, known as the quasi-energy spec-
trum, is only defined modulo ! = 2⇡/T . This logarithm
can be evaluated numerically, as detailed in a later sec-
tion (Eq. (S46) and following). It can alternatively be
expanded as a Magnus series involving multiple integrals

and commutators of the time-dependent Hamiltonian: up
to first order,

Ĥ⌧

e↵ = Ĥ0! + Ĥ⌧

1! +O

✓
1

!2

◆
(S4)

with

Ĥ0! =
1

T

Z
⌧+T

⌧

dtĤ(t) (S5)

Ĥ⌧

1! = �
i

2T

Z
⌧+T

⌧

dt

Z
t

⌧

dt0[Ĥ(t), Ĥ(t0)]. (S6)

Writing Ĥ(t) as a Fourier series,

Ĥ(t) =
+1X

n=�1
Ĥne

in!t (S7)

we compute:

Ĥ0! = Ĥ0 (S8)

Ĥ⌧

1! =
1

!

1X

n=1

1

n

⇣
[Ĥn, Ĥ�n] (S9)

�ein!⌧ [Ĥn, Ĥ0] + e�in!⌧ [Ĥ�n, Ĥ0]
⌘
.

To lowest order, the e↵ective Hamiltonian equals the
average of the Hamiltonian over one period, while the
starting time ⌧ only enters at first order in 1/! as a
phase factor e±in!⌧ . The information about the starting
phase of the modulation may not be relevant in a num-
ber of experimental cases – for example when adiabati-
cally switching on the modulation, as in the experiment
we report on. In a di↵erent approach [S7, S8, S13], the
⌧ -dependence of Ĥ⌧

e↵ can be absorbed by choosing a par-
ticular interaction picture, splitting the evolution into an
e↵ective evolution under the Hamiltonian Ĥe↵ and two
initial and final “kicks” defined by a T -periodic operator
K̂(⌧) which averages to zero over one period:

Û(T + ⌧, ⌧) = eiK(⌧)e�iĤeffT e�iK(⌧). (S10)

The ⌧ -independent e↵ective Hamiltonian can then be ex-
panded up to 1/!2 as follows:
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FIG. S13: Cut of the energy bands along the vertical line qx =
0 and Berry curvature of the modulated realistic honeycomb
lattice for ! = 2⇡ ⇥ 4000 Hz, K0 = 0.7778 and
a. ' = 0, �AB = 0 (IS and TRS not broken);
b. ' = 0, �AB = |�max

T | = h⇥ 88 Hz (trivial phase, ⌫ = 0);
c. ' = 90�, �AB = 0 (non-trivial phase, ⌫ = �1);
d. ' = 90�, �AB = |�max

T | (topological transition);
e. ' = 90�, �AB = 3|�max

T | (trivial phase, ⌫ = 0).
The Dirac points are rotated out of the vertical in panels a.
and b., which translates to an apparent gap in the band cut
of a. and a slightly asymmetric Berry curvature in b.

curvatures for our experimental parameters are shown in
Fig. S13.
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(2013).
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Extending our work to interacting systems requires sufficiently low
heating. We investigate this with a repulsively interacting spin mixture
in the honeycomb lattice previously used for studying the fermionic
Mott insulator27. We measure the entropy in the Mott insulating regime
by loading atoms into the lattice and reversing the loading procedure
(see Methods and Extended Data Fig. 3). The entropy increase is only 25%
larger than without modulation. This opens up the possibility of study-
ing topological models with interactions28 in a controlled and tunable
way. For example, lattice modulation could be used to create topological
flat bands, which have been suggested to give rise to interaction-induced
fractional Chern insulators29,30. Furthermore, our approach of periodi-
cally modulating the system can be directly extended to engineer Hamil-
tonians with spin-dependent tunnelling amplitudes and phases (Methods).
This can be achieved by modulating a magnetic field gradient, which leads
to spin-dependent oscillating forces owing to the differential Zeeman
shift. For example, TRS topological Hamiltonians, such as the Kane–
Mele model3, can be implemented by simultaneously modulating the
lattice on one axis and a magnetic field gradient on the other.

Online Content Methods, along with any additional Extended Data display items
andSourceData, are available in the online version of the paper; references unique
to these sections appear only in the online paper.
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There is now a topological classification of gapped phases of free fermions
in any dimension, and many efforts are being made to classify interacting
phases. Important tools in this effort to enumerate and classify phases of
matter are different measures of quantum entanglement, such as entanglement
entropy and entanglement spectra. One distinguishes between short-range
entangled states, such as the symmetry protected states, the integer quantum
Hall states and the Chern insulator, and states with long range entanglement
such as the fractional Hall liquids or the putative spin liquids [6]. The long-
range entangled states are characterised by having fractionalized excitations in
the bulk, the typical example being the fractionally charged quasiparticles in
the Laughlin quantum Hall liquids. The hunt for spin liquids, in both two and
three dimensions, is very much at the forefront of current research, as is the
attempt to realize states where the quasiparticles have nonabelian fractional
statistics [41].

6.2 Quantum simulations, and artificial states of matter
In our discussion of the KT phase transition, we stressed universality, mean-
ing that the same model Hamiltonian describes critical phenomena in very
different physical systems. This universality is however to a very small critical

region in the vicinity of the transition temperature. There is however another
strategy that allows the use of the same Hamiltonian for different systems in
wider parameter ranges. The basic idea goes back to Feynman, who pointed
out that one could hope to solve very hard quantum problems by designing a
quantum simulator.

Such a simulator is itself a quantum system with many degrees of freedom,
but it should be well controlled and designed to embody the important aspects
of the physical system one is attempting to simulate. More precisely, this
means having the correct degrees of freedom and the correct interactions. Cold
atomic gases have turned out to provide a perfect platform for obtaining this
[11]. An important tool in these experiments is the optical lattices that are
formed as an interference pattern by intersecting laser beams.

An example of this is the observation of the KT-transition in a layered
Bose-Einstein condensate of 87Ru atoms. At low temperatures one observes
coherence effects characteristic of the phase with power law correlations, and
at higher temperatures one sees free vortices [20].

We have already mentioned that the KT theory also describes the quantum
phase transition in the one-dimensional XY universality class. Imaginary time
provides the extra dimension, and the control parameter analogous to tempera-
ture is the ratio of two energy scales in the Hamiltonian [12, 49]. In this way,
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the KT-transition forms the basis for understanding how a one-dimensional
chain of Josephson tunnel junctions undergoes a zero-temperature transition
from superconducting to insulating behaviour as the Josephson coupling be-
tween junctions is tuned [25]. The same model was later realized using ultra
cold atomic gases trapped to form discrete lattices, and also here one could
observe the KT-transition [14].

Both fermionic and bosonic atoms can be trapped in optical lattices, sim-
ilarly to electrons in a crystal lattice. This also makes it possible to engineer
topologically nontrivial bands, and we mention two recent examples.

In a 2014 experiment, the group led by Immanuel Bloch managed to design
a lattice with topologically non-trivial bands, similar to the ones studied in the
famous paper by Thouless et al. [51]. These bands were then populated by a
gas of cold bosonic 87Rb atoms, and using an intricate measuring procedure,
they could experimentally determine the Chern number for the lowest band
to Cexp

1 = 0.99(5) [3].
Also in 2014, the group led by Tilman Esslinger made an experiment with

cold 40K atoms in an optical lattice to simulate the precise model proposed
by Haldane in 1988 [29]. This shows that reality sometimes surpasses dreams.
At the end of his paper Haldane wrote: “While the particular model presented
here, is unlikely to be directly physically realizable, it indicates . . . ”. What
he could not imagine was that 25 years later, new experimental techniques
would make it possible to create an artificial state of matter that would indeed
provide that “unlikely” realization.
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Experimental realization of the topological Haldane
model with ultracold fermions
Gregor Jotzu1, Michael Messer1, Rémi Desbuquois1, Martin Lebrat1, Thomas Uehlinger1, Daniel Greif1 & Tilman Esslinger1

The Haldane model on a honeycomb lattice is a paradigmatic example
of a Hamiltonian featuring topologically distinct phases of matter1.
It describes a mechanism through which a quantum Hall effect can
appear as an intrinsic property of a band structure, rather than being
caused by an external magnetic field2. Although physical implemen-
tation has been considered unlikely, the Haldane model has provided
the conceptual basis for theoretical and experimental research explor-
ing topological insulators and superconductors2–6. Here we report
the experimental realization of the Haldane model and the charac-
terization of its topological band structure, using ultracold fermi-
onic atoms in a periodically modulated optical honeycomb lattice.
The Haldane model is based on breaking both time-reversal symmetry
and inversion symmetry. To break time-reversal symmetry, we intro-
duce complex next-nearest-neighbour tunnelling terms, which we
induce through circular modulation of the lattice position7. To break
inversion symmetry, we create an energy offset between neighbour-
ing sites8. Breaking either of these symmetries opens a gap in the band
structure, which we probe using momentum-resolved interband tran-
sitions. We explore the resulting Berry curvatures, which character-
ize the topology of the lowest band, by applying a constant force to
the atoms and find orthogonal drifts analogous to a Hall current.
The competition between the two broken symmetries gives rise to a
transition between topologically distinct regimes. By identifying the
vanishing gap at a single Dirac point, we map out this transition line
experimentally and quantitatively compare it to calculations using
Floquet theory without free parameters. We verify that our approach,
which allows us to tune the topological properties dynamically, is suit-
able even for interacting fermionic systems. Furthermore, we propose
a direct extension to realize spin-dependent topological Hamiltonians.

In a honeycomb lattice that is symmetric under time-reversal and inver-
sion, the two lowest bands are connected at two Dirac points. Each broken
symmetry leads to a gapped energy spectrum. F. D. M. Haldane realized
that the resulting phases are topologically distinct1: A broken inversion
symmetry (IS), caused by an energy offset between the two sublattices,
leads to a trivial band insulator at half-filled lattice sites. Time-reversal
symmetry (TRS) can be broken by complex next-nearest-neighbour tunnel
couplings (Fig. 1a). The corresponding staggered magnetic fluxes sum
up to zero in one unit cell, thereby preserving the translation symmetry
of the lattice. This gives rise to a topological Chern insulator, where a non-
zero Hall conductance appears despite the absence of a net magnetic
field1,2. When both symmetries are broken, a topological phase transi-
tion connects two regimes with a distinct topological invariant, the Chern
number, which changes from 0 to 11 or to 21; see Fig. 1b. There, the
gap closes at a single Dirac point. These transitions have attracted great
interest because they cannot be described by Landau’s theory of phase
transitions, owing to the absence of a changing local order parameter6.

A crucial experimental challenge for the realization of the Haldane
model is the creation of complex next-nearest-neighbour tunnelling. Here
we show that this is possible with ultracold atoms in optical lattices peri-
odically modulated in time. Pioneering experiments with bosons showed
a renormalization of existing tunnelling amplitudes in one dimension9,10,
and were extended to control tunnelling phases11,12 and higher-order

tunnelling13. In higher dimensions this allowed the study of phase
transitions14,15, and topologically trivial staggered fluxes were realized16,17.
Furthermore, uniform flux configurations were observed using rotation
and laser-assisted tunnelling18,19, although for the latter method, heating
seemed to prevent the observation of a flux in some experiments20. In a
honeycomb lattice, a rotating force, as proposed by T. Oka and H. Aoki,
can induce the required complex tunnelling7. Using arrays of coupled
waveguides, a classical version of this proposal was used to study topo-
logically protected edge modes in the inversion-symmetric regime21. We
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Figure 1 | The Haldane model. a, Tight-binding model of the honeycomb
lattice realized in the experiment. An energy offset DAB between sublattice
A and B breaks IS. Nearest-neighbour tunnel couplings tij have real values,
whereas next-nearest-neighbour tunnelling eiWij t’ij carries tunable phases
indicated by arrows. i and j indicate the indices of the connected lattice sites.
For a detailed discussion of anisotropies and higher-order tunnelling terms,
see the Supplementary Information. The corresponding staggered magnetic
fluxes (sketched on the right) sum up to zero but break TRS. b, Topological
regimes of the Haldane model, for isotropic tij, t9ij 5 t9 and Wij 5 W. The trivial
(Chern number n 5 0) and Chern-insulating (n 5 6 1) regimes are connected
by topological transitions (black lines), where the band structure (shown on the
right) becomes gapless at a single Dirac point. c, Laser beam set-up forming
the optical lattice. The laser !X is frequency-detuned from the other beams.
Piezo-electric actuators sinusoidally modulate the retro-reflecting mirrors, with
a controllable phase difference Q. Acousto-optic modulators (AOMs) ensure
the stability of the lattice geometry (Methods). d, The resulting Brillouin zones
(BZ), featuring two Dirac points in quasi-momentum space q.

1 3 N O V E M B E R 2 0 1 4 | V O L 5 1 5 | N A T U R E | 2 3 7

Macmillan Publishers Limited. All rights reserved©2014

ETH, 2014; Hamburg 2015; USTC 2015

Experimental Realization 



Topology and Dynamics 

Topological 
Band TheoryDynamics

II. Detection

 Near Equilibrium Far from Equilibrium

Ref. Ce Wang, Pengfei Zhang, Xin Chen, Jinlong Yu and Hui Zhai,    
PRL, 118, 185701 (2017)



Rice-Mele Model

LETTERS
PUBLISHED ONLINE: 18 JANUARY 2016 | DOI: 10.1038/NPHYS3622

Topological Thouless pumping of
ultracold fermions
Shuta Nakajima1*, Takafumi Tomita1, Shintaro Taie1, Tomohiro Ichinose1, Hideki Ozawa1, Lei Wang2,
Matthias Troyer2 and Yoshiro Takahashi1

An electron gas in a one-dimensional periodic potential can be
transportedeven in theabsenceofavoltagebias if thepotential
is slowly and periodically modulated in time. Remarkably, the
transferred charge per cycle is sensitive only to the topology of
the path in parameter space. Although this so-called Thouless
charge pump was first proposed more than thirty years ago1, it
has not yet been realized. Here we report the demonstration of
topological Thouless pumping using ultracold fermionic atoms
in a dynamically controlled optical superlattice. We observe a
shift of the atomic cloud as a result of pumping, and extract the
topological invariance of the pumping process from this shift.
We demonstrate the topological nature of the Thouless pump
by varying the topology of the pumping path and verify that
the topological pump indeed works in the quantum regime by
varying the speed and temperature.

Topology manifests itself in physics in a variety of ways2–4, with
the integer quantumHall e�ect (IQHE) being one of the best-known
examples in condensedmatter systems. There, theHall conductance
of a two-dimensional electron gas is quantized very precisely in
units of fundamental constants5. As discussed in the celebrated
Thouless–Kohmoto–Nightingale–den Nijs paper6, this quantized
value is given by a topological invariant, the sum of the Chern
numbers of the occupied energy bands.

In 1983, Thouless considered a seemingly di�erent phenomenon
of quantum transport of an electron gas in an infinite one-
dimensional periodic potential, driven in a periodic cycle1. This
seems to be similar to the famous Archimedes screw7, which
pumps water via a rotating spiral tube. However, whereas the
Archimedes screw follows classical physics and the pumped amount
of water can be changed continuously by tilting the screw, the
charge pumped by the Thouless pump is a topological quantum
number and not a�ected by a smooth change of parameters1.
Interestingly, this quantization of pumped charge shares the same
topological origin as the IQHE. The charge pumped per cycle
can be expressed by the Chern number defined over a (1+ 1)-
dimensional periodic Brillouin zone formed by quasimomentum k
and time t . Although several single-electron pumping experiments
have been implemented in nanoscale devices, such as quantum
dots with modulated gate voltages8–10 or surface acoustic waves
to create a potential periodic in time11, the topological Thouless
pump, which should have the spatial periodicity to define the Bloch
wavefunction as well as the temporal periodicity, has not been
realized in electron systems.

In this Letter, we report a realization of Thouless’ topological
charge pump by exploiting the controllability of ultracold atoms
in an optical superlattice. Di�erently from recent realizations of
topological bands in two (spatial or synthetic) dimensions12–17,

Position (d)

Unit cell

t = T

t = 3T/4

t = T/2

t = T/4

t = 0

V(z)

a

c

b

z

d

z

V(z)

∆∆

t = 3T/4

t = 0

t = T/2 0

bi ai bi + 1 ai + 1

t = T/4

2

J + 

J − δδ

δ

i − 5 i − 4 i − 3 i − 2 i − 1 i i + 1 i + 2 i + 3 i + 4

Figure 1 | The Rice–Mele model. a, Schematic of the Rice–Mele model. b, A
pumping cycle sketched (qualitatively) in �–� space. c. Schematic of the
continuous Rice–Mele (cRM) pumping sequence. The pink shaded packet
indicates the wavefunction of a particular atom initially localized at the unit
cell i. The wavefunction shifts to right as the pumping proceeds and the
atom moves to unit cell i+ 1 after one pumping cycle. The blue dashed
curve and the green arrow indicate the harmonic confinement (not in scale)
and an initial hole, respectively.

our experiment explores the topology of a (1 + 1)-dimensional
adiabatic process, in which a dynamically controllable one-
dimensional optical superlattice is implemented following the
proposal of ref. 18. Topological pumping is seen as a shift of
the centre of mass (CoM) of an atomic cloud measured with
in situ imaging. We extract the Chern number of the pumping
procedure from the average shift of the CoM per pumping
cycle. The topological nature of the pump is revealed by the
clear dependence on the topology of the pumping trajectories
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in parameter space as to whether the trajectory is enclosing the
degenerate point or not. Our work introduces a new experimental
platform to study topological quantum phenomena in adiabatic
driven systems.

In our experiments, an ultracold Fermi gas of ytterbium atoms
171Yb is prepared (see Methods) and loaded into a dynamically
controlled optical superlattice. Specifically, we construct a stationary
lattice (short lattice) with a period of 266 nm and a dynamical
interferometric lattice (long lattice) with a period of 532 nm whose
phase is stabilized and controlled by a Michelson interferometer
(see Methods). As a result, these laser beams create the
required18 time-dependent one-dimensional optical superlattice of
the form

V (z , t)=�VS(t)cos2
✓
2⇡z
d

◆
�VL(t)cos2

⇣⇡z
d

��(t)
⌘

(1)

where d = 532 nm is the lattice constant of the superlattice, VS
is the depth of the short lattice, VL the depth of the long lattice,
and � is the phase di�erence between the two lattices. In our
experiments,VS andVL are controlled by the respective laser powers
and � by changing the optical path di�erence between the two
interfering beams with a piezo-transducer (PZT)-mounted mirror,
which enables us to sweep � up to ⇠11⇡, corresponding to more
than ten pumping cycles. In the following, we use the lattice constant
d as the unit of length and the recoil energy ER =h2/(8md2) as the
unit of energy, where h denotes Planck’s constant andm is the atomic
mass of 174Yb (see Methods).

We load 171Yb atoms into an array of one-dimensional optical
superlattices, ensuring that they occupy the lowest energy band
(see Supplementary Information 4), and slowly sweep � over time.
The lattice potential returns to its initial configuration whenever
� changes by ⇡, thus completing a pumping cycle. Because the
lattice potential is periodic both in space and time, one can define
energy bands, the Bloch wavefunction | k(t)i = eikz |uk(t)i, and

corresponding topological invariants such as the Chern number ⌫
in a k–t Brillouin zone:

⌫=
1
2⇡

Z T

0
dt

Z ⇡/d

�⇡/d
dk�(k, t) (2)

where �(k, t)= i(h@t uk|@kuki� h@kuk|@t uki) is the Berry curvature
(see Methods) and T the pumping period. We have ensured that
the bandgap never closes during the whole pumping procedure,
so ideally the atoms stay in the lowest band during the adiabatic
pumping process. The phase sweep breaks time-reversal symmetry
and the energy bands can acquire a non-zero Chern number ⌫.
The shift of the CoM of the atomic cloud in such a topologically
nontrivial band after one pumping cycle is simply given by ⌫d .

The ability to tune all parameters of the lattice potential (1)
independently in a dynamic way o�ers the opportunity to realize
various pumping protocols. In the absence of the static short
lattice, V (z , t) describes the simple sliding lattice which Thouless
originally proposed1. Including theVS term, one realizes the double-
well lattice illustrated in Fig. 1. A pictorial understanding of
this alternative pumping process is provided by the tight-binding
Rice–Mele model19,20,

Ĥ=

X

i

⇣
�(J +�)â†

i b̂i �(J ��)â†
i b̂i+1 +h.c.+�(â†

i âi � b̂†
i b̂i)

⌘
(3)

where âi (â†
i ) and b̂i (b̂†

i ) are fermionic annihilation (creation)
operators in the two sublattices of the ith unit cell, J ± � is the
tunnelling amplitude within and between unit cells, and � denotes
a staggered on-site energy o�set, as shown in Fig. 1a. We ignore
the spin degree of freedom because we can neglect the interaction
between the two spin components owing to a very small s-wave
scattering length21.

Figure 1c shows the schematics of our ‘continuous Rice–Mele’
(cRM) pumping sequence. Sweeping the phase linearly in time
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Chapter 1
Topological Models with the First and the
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1.1 Introduction

Let us start by considering a one-dimensional superlattice model which contains
two sites at each unit cell, whose Hamiltonian can be generally written as
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âk
b̂k

◆

= Â
k

�
â†
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where â† and b̂† are particle creation operators for A andf B sublattices. Here we
have taken J1 = J0 �d and J2 = J0 +d . The lattice spacing is taken as unity and the
momentum summation is restricted to k 2 [0,2p]. Here Hk = d(k) ·s , where d(k)
can be viewed as a momentum dependent Zeeman field

d(k) = (2J0 cos
k
2
,2d sin

k
2
,D). (1.2)

At equilibrium, d(k) polarizes the pseudo-spin s along the same direction as d̂(k).
Thus, this model is characterized by a mapping from momentum space k 2 [0,2p]

to a pseudo-spin along d̂(k). When D = 0, the pseudo-spin always aligns in the
equator. Hence, the mapping is from one-dimensional circle S1 of the momentum
space to S1 of the pseudo-spin space, which is described by a nontrivial the first
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âk
b̂k

◆

= Â
k

�
â†
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i âi � b̂†
i b̂i)

i

= Â
k

�
â†
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2 1 Topological Models with the First and the Second Chern Numbers

homotopy group P1(S1) = Z. This topological number is the winding number and
this model with D = 0 is called the Su-Schrieffer-Heeger(SSH) model [1].

However, when D is non-zero, the model is usually called the Rice-Mele model
[2]. Now the pseudo-spin can span the two-dimensional Bloch sphere as S2. The
mapping from one-dimensional momentum space S1 to S2 is described by a trivial
homotopy group P1(S2). In order to introduce a topological nontrivial phenomenon
in this model, we have to include the time-dependence. Instead of an equilibrium
problem in 1-dimension, we focus on a dynamical problem in the 1+1-dimension.
Considering a time-periodic setting, now d̂(k, t) is a function of both k 2 [0,2p]
and t 2 [0,T ], and this dynamical problem is kindly described by a mapping from
T 2 to S2, and is somewhat related to a nontrivial second homotopy group P2(S2).
The topological number is known as the first Chern number, denoted by Ch1 here.
Hereafter we will show that the Ch1 will manifest itself as a topological charge
pumping in this setting.

Alternatively, one can also study a two-dimensional model with two sites in each
unit cell. In this case, the momentum space itself is a two-dimensional torus and
the equilibrium problem itself is also described by P2(S2). In this case, a non-
zero Ch1 means a nontrivial band topology. When such a band is fully filled by
non-interacting fermions, it will exhibit quantized Hall conductance known as the
anomalous quantum Hall effect.

In this chapter we will not only describe these two topological phenomena related
to the first Chern number, i.e. the topological charge pumping in 1+ 1-dimension
and the quantized Hall conductance in 2-dimension, respectively, but also reveal
their connection. Recent cold atom experiments have realized both phenomena and
we will introduce these experimental progresses. Finally we shall also introduce the
second Chern number Ch2 and discuss experimental consequences of that.

1.2 Review of the Berry’s Phase

Before proceeding to discuss the first Chern number, let us first briefly review the
concept of the Berry’s phase under the adiabatic evolution [3]. Let us consider a
Hamiltonian parameterized by a set of parameters l (t) = (l1(t),l2(t), . . .) that are
time-periodic in time, and denote |n(t)i as the instantaneous eigenstates of H(t),
that is

H(t)|n(t)i= En(t)|n(t)i. (1.3)

Starting from one eigenstate |y(t = 0)i= |n(0)i and considering the time evolution
of this state

|y(t)i= Â
n

cn(t)e�i
R t

0 dtEn(t)/h̄|n(t)i (1.4)

with cn(t = 0)= 1 and cm(t = 0)= 0,m 6= n. By using the time-dependent Shrödinger
equation and the orthogonality of the instantaneous eigenstates one could obtain
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Figure 3 | Topological aspects of cRM pumping. a, Charge pumped during a simple cRM pumping (b), topologically nontrivial pumping (c), topologically
trivial pumping (d), and negative sweep cRM pumping (e). The vertical error bars denote the standard error of the mean of ten CoM measurements.
b–e, Schematic pumping sequences in the �–� plane (top), the corresponding band structures in the k–t Brillouin zone (middle), and the Berry curvatures
of the pumping cycles (bottom). The indices w in the top figures indicate the winding number of each trajectory around the origin. � and � are in units of
the recoil energy ER.

as �(t) =�t/T , the hopping amplitudes and on-site energies are
modulated periodically. Our ab initio calculation shows that the
cRM pumping scheme used in the experiment is topologically
equivalent to the Rice–Mele model for atoms that reside in the
lowest energy band, because the Chern numbers are the same (see
Supplementary Information 3). In the following, wewill thus use the
tight-binding Rice–Mele Hamiltonian to simplify the discussion of
the pumping sequence as a closed trajectory in the �–� parameter
plane (Fig. 1b). Note that, as shown in Fig. 1c, our system has
metallic edge states and thermal holes due to the combination of the
trapping potential and finite temperature. We estimate the filling of
the lattice is typically ⇠0.7 for each spin at the centre of the trap.
However, in the case of our deep optical lattice systems, the shift
of the CoM of the atomic cloud still constitutes a quantized shift
in spite of these thermal and finite size e�ects (see Supplementary
Information 2).

Figure 2 shows the main results of our pumping experiments.
Our stable absorption imaging systemwith a charge-coupled-device
(CCD) camera enables us to accuratelymeasure the shift of the CoM
of the atomic cloud after several pumping cycles (see Supplementary
Information 5), as shown in Fig. 2a,b. The period T is fixed to
50ms for the results shown in Fig. 2. One can clearly recognize the
sizable CoM shift along the z-direction. We plot the in situ CoM
positions of the atomic cloud after a few pumping cycles in Fig. 2d.
The averaged CoM shift per cycle hz(t) � z(0)i/(td) of the cRM
pumping with (VS,VL) = (20, 30)ER is evaluated to be 0.94(7) for
t6T . This provides a direct measurement of the Chern number of
the occupied energy band, which is consistent with the ideal value
⌫ =1. As a comparison, the observed average CoM shift per cycle of
a sliding lattice (VS,VL)= (0, 40)ER is 0.94(4), which is again close
to the ideal value of ⌫ = 1. Classically it is fairly intuitive that the
sliding lattice is able to transfer atoms because the potential minima
are moving in space. However, even though the potential minima
of the cRM pump (VS,VL)= (20, 30)ER are not moving in space, as
shown in Fig. 1c, the pumping is topologically equivalent because of
the same Chern number of the occupied band. The cRM lattice has
the same ability to transfer atoms residing in the lowest energy band,
even though the pumping is achieved by a sequence of quantum

tunnelling events between the double wells (see Supplementary
Information 4). We attribute the saturating behaviour of the cRM
pumping for t > 6T to the e�ect of the harmonic confinement,
whose variation can be comparable to the bandgap for a large CoM
shift22 (see Supplementary Information 6).

A striking feature of our pump is its topological nature. In
particular, the pumped amount in the Rice–Mele model23,24 is
directly related to the topology of the trajectory in the �–� plane.
It depends only on the winding number w of the trajectory that
encloses the origin � =�= 0 (see Supplementary Information 3).
Note that electron pumping in restricted nano-devices8–11 is not
topological, because in that case the amount of the charge
pumped per cycle instead depends on the area of the enclosed
parameter space25, which is the geometry but not the topology of
the trajectory. To highlight the topological nature of Rice–Mele
pumping, we investigate four distinct pumping sequences with
trajectories shown schematically in Fig. 3b–e. In Fig. 3a, we plot
the CoM shifts of two cRM pumping schemes with (VS, VL) =

(20, 30)ER (Fig. 3b,e) and two amplitude-modified cRM pumping
schemes (Fig. 3c,d). Evidently, the sequence which does not wind
around the origin (Fig. 3d) results in no pumping, and those
with winding trajectories (Fig. 3b,c,e) result in finite pumping.
Also the forward cRM pumping (Fig. 3b) and the amplitude-
modified cRM pumping (Fig. 3c) exhibit almost the same pumping
behaviour, although the area enclosed by the trajectory of Fig. 3c
is actually smaller than that of Fig. 3b. This is direct evidence of
the topological nature of the pump. Note that the band structure
in the k–t space of the nontrivial pumping sequence (Fig. 3c)
is identical to that of the trivial pumping (Fig. 3d). However,
the Berry curvature and the Chern number of the lowest band
are di�erent. This highlights the fact that the pumped charge is
a topological quantity, which depends on the wavefunction but
not on the band dispersions. Furthermore, we also performed the
cRM pumping with a negative sweep of the phase �(t)=��t/T ,
which corresponds to an opposite winding in the �–� plane, and
the cloud is pumped in the opposite direction even though the
band dispersion remains identical to that of the forward sweep
pumping (Fig. 3e).
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as �(t) =�t/T , the hopping amplitudes and on-site energies are
modulated periodically. Our ab initio calculation shows that the
cRM pumping scheme used in the experiment is topologically
equivalent to the Rice–Mele model for atoms that reside in the
lowest energy band, because the Chern numbers are the same (see
Supplementary Information 3). In the following, wewill thus use the
tight-binding Rice–Mele Hamiltonian to simplify the discussion of
the pumping sequence as a closed trajectory in the �–� parameter
plane (Fig. 1b). Note that, as shown in Fig. 1c, our system has
metallic edge states and thermal holes due to the combination of the
trapping potential and finite temperature. We estimate the filling of
the lattice is typically ⇠0.7 for each spin at the centre of the trap.
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pumping (Fig. 3e).

298

© 2016 Macmillan Publishers Limited. All rights reserved

NATURE PHYSICS | VOL 12 | APRIL 2016 | www.nature.com/naturephysics

LETTERS NATURE PHYSICS DOI: 10.1038/NPHYS3622

−15
−20
−25
−30
−35
−40

0 1/4 1/2 3/4 0 1/4 1/2 3/4 1 −π 0 1/4 1/2 3/4 1
−π1 0 1/4 1/2 3/4 1 −π

t/T

0 0 0

0

∆ ∆ ∆ ∆

w = +1

0.85 0.85 0.85

8.5−8.5
−7.5 7.5

8.5−8.5 −8.5 −8.5 8.5−7.5 7.5 8.5

−0.85 w = +1
−0.51

t/T t/T

w = 0

t /
T

En
er

gy
 E

(k
, t

) (
E R)

0.8
0.6
0.4
0.2

2.4

1.8

1.2

0.6

0.0

0.8
0.0
−0.8
−1.6
−2.4

−0.2
−0.4
−0.6
−0.8

π
kd

t/T

π
kd

ππ
kdkd

kd kd kd kd

w = −1

0.85

−0.85

a b c d e

C
en

tr
e 

of
 m

as
s 

po
si

tio
n 

z 
(d

)

Berry curvature (a.u.)

−4

−2

0

2

4

Time t (T)

b (forward cRM pump)
e (backward cRM pump)
c
d

543210

δ δ δ δ

0.51

0

1

−π

−π π −π π −π π −π π

 = +1ν

 = −1ν
 = 0ν
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as �(t) =�t/T , the hopping amplitudes and on-site energies are
modulated periodically. Our ab initio calculation shows that the
cRM pumping scheme used in the experiment is topologically
equivalent to the Rice–Mele model for atoms that reside in the
lowest energy band, because the Chern numbers are the same (see
Supplementary Information 3). In the following, wewill thus use the
tight-binding Rice–Mele Hamiltonian to simplify the discussion of
the pumping sequence as a closed trajectory in the �–� parameter
plane (Fig. 1b). Note that, as shown in Fig. 1c, our system has
metallic edge states and thermal holes due to the combination of the
trapping potential and finite temperature. We estimate the filling of
the lattice is typically ⇠0.7 for each spin at the centre of the trap.
However, in the case of our deep optical lattice systems, the shift
of the CoM of the atomic cloud still constitutes a quantized shift
in spite of these thermal and finite size e�ects (see Supplementary
Information 2).

Figure 2 shows the main results of our pumping experiments.
Our stable absorption imaging systemwith a charge-coupled-device
(CCD) camera enables us to accuratelymeasure the shift of the CoM
of the atomic cloud after several pumping cycles (see Supplementary
Information 5), as shown in Fig. 2a,b. The period T is fixed to
50ms for the results shown in Fig. 2. One can clearly recognize the
sizable CoM shift along the z-direction. We plot the in situ CoM
positions of the atomic cloud after a few pumping cycles in Fig. 2d.
The averaged CoM shift per cycle hz(t) � z(0)i/(td) of the cRM
pumping with (VS,VL) = (20, 30)ER is evaluated to be 0.94(7) for
t6T . This provides a direct measurement of the Chern number of
the occupied energy band, which is consistent with the ideal value
⌫ =1. As a comparison, the observed average CoM shift per cycle of
a sliding lattice (VS,VL)= (0, 40)ER is 0.94(4), which is again close
to the ideal value of ⌫ = 1. Classically it is fairly intuitive that the
sliding lattice is able to transfer atoms because the potential minima
are moving in space. However, even though the potential minima
of the cRM pump (VS,VL)= (20, 30)ER are not moving in space, as
shown in Fig. 1c, the pumping is topologically equivalent because of
the same Chern number of the occupied band. The cRM lattice has
the same ability to transfer atoms residing in the lowest energy band,
even though the pumping is achieved by a sequence of quantum

tunnelling events between the double wells (see Supplementary
Information 4). We attribute the saturating behaviour of the cRM
pumping for t > 6T to the e�ect of the harmonic confinement,
whose variation can be comparable to the bandgap for a large CoM
shift22 (see Supplementary Information 6).

A striking feature of our pump is its topological nature. In
particular, the pumped amount in the Rice–Mele model23,24 is
directly related to the topology of the trajectory in the �–� plane.
It depends only on the winding number w of the trajectory that
encloses the origin � =�= 0 (see Supplementary Information 3).
Note that electron pumping in restricted nano-devices8–11 is not
topological, because in that case the amount of the charge
pumped per cycle instead depends on the area of the enclosed
parameter space25, which is the geometry but not the topology of
the trajectory. To highlight the topological nature of Rice–Mele
pumping, we investigate four distinct pumping sequences with
trajectories shown schematically in Fig. 3b–e. In Fig. 3a, we plot
the CoM shifts of two cRM pumping schemes with (VS, VL) =

(20, 30)ER (Fig. 3b,e) and two amplitude-modified cRM pumping
schemes (Fig. 3c,d). Evidently, the sequence which does not wind
around the origin (Fig. 3d) results in no pumping, and those
with winding trajectories (Fig. 3b,c,e) result in finite pumping.
Also the forward cRM pumping (Fig. 3b) and the amplitude-
modified cRM pumping (Fig. 3c) exhibit almost the same pumping
behaviour, although the area enclosed by the trajectory of Fig. 3c
is actually smaller than that of Fig. 3b. This is direct evidence of
the topological nature of the pump. Note that the band structure
in the k–t space of the nontrivial pumping sequence (Fig. 3c)
is identical to that of the trivial pumping (Fig. 3d). However,
the Berry curvature and the Chern number of the lowest band
are di�erent. This highlights the fact that the pumped charge is
a topological quantity, which depends on the wavefunction but
not on the band dispersions. Furthermore, we also performed the
cRM pumping with a negative sweep of the phase �(t)=��t/T ,
which corresponds to an opposite winding in the �–� plane, and
the cloud is pumped in the opposite direction even though the
band dispersion remains identical to that of the forward sweep
pumping (Fig. 3e).
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b c

Fig. 1.1 Experiment on charge pumping in the Kane-Mele model: The shift of center-of-mass
position v.s. time (a) for different pumping protocols (corresponding to different time dependence
of D and d ) as shown in (d-e). The dashed lines in (a) are fitting line with slope n = ±1 and 0.
Reprinted from Ref. [6]

is

DQ =
Z T
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dtJ(t) =�Â
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F n
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n
Ch1,n (1.25)

That shows the pumped charge is quantized.
For the Rice-Mele model at half-filling, the sum over n filled bands is reduced to

just the lower band, and the pumped charge can be rewritten as

DQ =� 1
2p

Z

BZ
dk

Z T

0
dt

1
2

d̂(k, t) ·
⇣

∂kd̂(k, t)⇥∂t d̂(k, t)
⌘
=�Ch1 (1.26)

where the integration is taken over the torus of T 2 = BZ ⇥ S1. In order to have a
non-zero quantized charge pumped, it is necessary to have a non-zero Ch1. With the
choice of D(t) = D0 cos t,d (t) = d0 sin t for the Rice-Mele model, going over the
entire torus manifold BZ1 ⇥ S1 the d̂ vector encloses the double-degenerate point
D = 0, d = 0 and k = p/a, which tells us that Ch1 =±1 .

The real experiment is of course carried out with the open boundary condition.
With the open boundary condition, one could measure the movement of center of
mass (COM) of the system to observe charge pumping as [5],

hx(t)i= 1
N

Z +•

�•
xr(x, t)dx. (1.27)

Using the continuity equation ∂r
∂ t +— · j = 0

Chern number defined in 1+1 space
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as �(t) =�t/T , the hopping amplitudes and on-site energies are
modulated periodically. Our ab initio calculation shows that the
cRM pumping scheme used in the experiment is topologically
equivalent to the Rice–Mele model for atoms that reside in the
lowest energy band, because the Chern numbers are the same (see
Supplementary Information 3). In the following, wewill thus use the
tight-binding Rice–Mele Hamiltonian to simplify the discussion of
the pumping sequence as a closed trajectory in the �–� parameter
plane (Fig. 1b). Note that, as shown in Fig. 1c, our system has
metallic edge states and thermal holes due to the combination of the
trapping potential and finite temperature. We estimate the filling of
the lattice is typically ⇠0.7 for each spin at the centre of the trap.
However, in the case of our deep optical lattice systems, the shift
of the CoM of the atomic cloud still constitutes a quantized shift
in spite of these thermal and finite size e�ects (see Supplementary
Information 2).

Figure 2 shows the main results of our pumping experiments.
Our stable absorption imaging systemwith a charge-coupled-device
(CCD) camera enables us to accuratelymeasure the shift of the CoM
of the atomic cloud after several pumping cycles (see Supplementary
Information 5), as shown in Fig. 2a,b. The period T is fixed to
50ms for the results shown in Fig. 2. One can clearly recognize the
sizable CoM shift along the z-direction. We plot the in situ CoM
positions of the atomic cloud after a few pumping cycles in Fig. 2d.
The averaged CoM shift per cycle hz(t) � z(0)i/(td) of the cRM
pumping with (VS,VL) = (20, 30)ER is evaluated to be 0.94(7) for
t6T . This provides a direct measurement of the Chern number of
the occupied energy band, which is consistent with the ideal value
⌫ =1. As a comparison, the observed average CoM shift per cycle of
a sliding lattice (VS,VL)= (0, 40)ER is 0.94(4), which is again close
to the ideal value of ⌫ = 1. Classically it is fairly intuitive that the
sliding lattice is able to transfer atoms because the potential minima
are moving in space. However, even though the potential minima
of the cRM pump (VS,VL)= (20, 30)ER are not moving in space, as
shown in Fig. 1c, the pumping is topologically equivalent because of
the same Chern number of the occupied band. The cRM lattice has
the same ability to transfer atoms residing in the lowest energy band,
even though the pumping is achieved by a sequence of quantum

tunnelling events between the double wells (see Supplementary
Information 4). We attribute the saturating behaviour of the cRM
pumping for t > 6T to the e�ect of the harmonic confinement,
whose variation can be comparable to the bandgap for a large CoM
shift22 (see Supplementary Information 6).

A striking feature of our pump is its topological nature. In
particular, the pumped amount in the Rice–Mele model23,24 is
directly related to the topology of the trajectory in the �–� plane.
It depends only on the winding number w of the trajectory that
encloses the origin � =�= 0 (see Supplementary Information 3).
Note that electron pumping in restricted nano-devices8–11 is not
topological, because in that case the amount of the charge
pumped per cycle instead depends on the area of the enclosed
parameter space25, which is the geometry but not the topology of
the trajectory. To highlight the topological nature of Rice–Mele
pumping, we investigate four distinct pumping sequences with
trajectories shown schematically in Fig. 3b–e. In Fig. 3a, we plot
the CoM shifts of two cRM pumping schemes with (VS, VL) =

(20, 30)ER (Fig. 3b,e) and two amplitude-modified cRM pumping
schemes (Fig. 3c,d). Evidently, the sequence which does not wind
around the origin (Fig. 3d) results in no pumping, and those
with winding trajectories (Fig. 3b,c,e) result in finite pumping.
Also the forward cRM pumping (Fig. 3b) and the amplitude-
modified cRM pumping (Fig. 3c) exhibit almost the same pumping
behaviour, although the area enclosed by the trajectory of Fig. 3c
is actually smaller than that of Fig. 3b. This is direct evidence of
the topological nature of the pump. Note that the band structure
in the k–t space of the nontrivial pumping sequence (Fig. 3c)
is identical to that of the trivial pumping (Fig. 3d). However,
the Berry curvature and the Chern number of the lowest band
are di�erent. This highlights the fact that the pumped charge is
a topological quantity, which depends on the wavefunction but
not on the band dispersions. Furthermore, we also performed the
cRM pumping with a negative sweep of the phase �(t)=��t/T ,
which corresponds to an opposite winding in the �–� plane, and
the cloud is pumped in the opposite direction even though the
band dispersion remains identical to that of the forward sweep
pumping (Fig. 3e).
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as �(t) =�t/T , the hopping amplitudes and on-site energies are
modulated periodically. Our ab initio calculation shows that the
cRM pumping scheme used in the experiment is topologically
equivalent to the Rice–Mele model for atoms that reside in the
lowest energy band, because the Chern numbers are the same (see
Supplementary Information 3). In the following, wewill thus use the
tight-binding Rice–Mele Hamiltonian to simplify the discussion of
the pumping sequence as a closed trajectory in the �–� parameter
plane (Fig. 1b). Note that, as shown in Fig. 1c, our system has
metallic edge states and thermal holes due to the combination of the
trapping potential and finite temperature. We estimate the filling of
the lattice is typically ⇠0.7 for each spin at the centre of the trap.
However, in the case of our deep optical lattice systems, the shift
of the CoM of the atomic cloud still constitutes a quantized shift
in spite of these thermal and finite size e�ects (see Supplementary
Information 2).

Figure 2 shows the main results of our pumping experiments.
Our stable absorption imaging systemwith a charge-coupled-device
(CCD) camera enables us to accuratelymeasure the shift of the CoM
of the atomic cloud after several pumping cycles (see Supplementary
Information 5), as shown in Fig. 2a,b. The period T is fixed to
50ms for the results shown in Fig. 2. One can clearly recognize the
sizable CoM shift along the z-direction. We plot the in situ CoM
positions of the atomic cloud after a few pumping cycles in Fig. 2d.
The averaged CoM shift per cycle hz(t) � z(0)i/(td) of the cRM
pumping with (VS,VL) = (20, 30)ER is evaluated to be 0.94(7) for
t6T . This provides a direct measurement of the Chern number of
the occupied energy band, which is consistent with the ideal value
⌫ =1. As a comparison, the observed average CoM shift per cycle of
a sliding lattice (VS,VL)= (0, 40)ER is 0.94(4), which is again close
to the ideal value of ⌫ = 1. Classically it is fairly intuitive that the
sliding lattice is able to transfer atoms because the potential minima
are moving in space. However, even though the potential minima
of the cRM pump (VS,VL)= (20, 30)ER are not moving in space, as
shown in Fig. 1c, the pumping is topologically equivalent because of
the same Chern number of the occupied band. The cRM lattice has
the same ability to transfer atoms residing in the lowest energy band,
even though the pumping is achieved by a sequence of quantum

tunnelling events between the double wells (see Supplementary
Information 4). We attribute the saturating behaviour of the cRM
pumping for t > 6T to the e�ect of the harmonic confinement,
whose variation can be comparable to the bandgap for a large CoM
shift22 (see Supplementary Information 6).

A striking feature of our pump is its topological nature. In
particular, the pumped amount in the Rice–Mele model23,24 is
directly related to the topology of the trajectory in the �–� plane.
It depends only on the winding number w of the trajectory that
encloses the origin � =�= 0 (see Supplementary Information 3).
Note that electron pumping in restricted nano-devices8–11 is not
topological, because in that case the amount of the charge
pumped per cycle instead depends on the area of the enclosed
parameter space25, which is the geometry but not the topology of
the trajectory. To highlight the topological nature of Rice–Mele
pumping, we investigate four distinct pumping sequences with
trajectories shown schematically in Fig. 3b–e. In Fig. 3a, we plot
the CoM shifts of two cRM pumping schemes with (VS, VL) =

(20, 30)ER (Fig. 3b,e) and two amplitude-modified cRM pumping
schemes (Fig. 3c,d). Evidently, the sequence which does not wind
around the origin (Fig. 3d) results in no pumping, and those
with winding trajectories (Fig. 3b,c,e) result in finite pumping.
Also the forward cRM pumping (Fig. 3b) and the amplitude-
modified cRM pumping (Fig. 3c) exhibit almost the same pumping
behaviour, although the area enclosed by the trajectory of Fig. 3c
is actually smaller than that of Fig. 3b. This is direct evidence of
the topological nature of the pump. Note that the band structure
in the k–t space of the nontrivial pumping sequence (Fig. 3c)
is identical to that of the trivial pumping (Fig. 3d). However,
the Berry curvature and the Chern number of the lowest band
are di�erent. This highlights the fact that the pumped charge is
a topological quantity, which depends on the wavefunction but
not on the band dispersions. Furthermore, we also performed the
cRM pumping with a negative sweep of the phase �(t)=��t/T ,
which corresponds to an opposite winding in the �–� plane, and
the cloud is pumped in the opposite direction even though the
band dispersion remains identical to that of the forward sweep
pumping (Fig. 3e).
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as �(t) =�t/T , the hopping amplitudes and on-site energies are
modulated periodically. Our ab initio calculation shows that the
cRM pumping scheme used in the experiment is topologically
equivalent to the Rice–Mele model for atoms that reside in the
lowest energy band, because the Chern numbers are the same (see
Supplementary Information 3). In the following, wewill thus use the
tight-binding Rice–Mele Hamiltonian to simplify the discussion of
the pumping sequence as a closed trajectory in the �–� parameter
plane (Fig. 1b). Note that, as shown in Fig. 1c, our system has
metallic edge states and thermal holes due to the combination of the
trapping potential and finite temperature. We estimate the filling of
the lattice is typically ⇠0.7 for each spin at the centre of the trap.
However, in the case of our deep optical lattice systems, the shift
of the CoM of the atomic cloud still constitutes a quantized shift
in spite of these thermal and finite size e�ects (see Supplementary
Information 2).

Figure 2 shows the main results of our pumping experiments.
Our stable absorption imaging systemwith a charge-coupled-device
(CCD) camera enables us to accuratelymeasure the shift of the CoM
of the atomic cloud after several pumping cycles (see Supplementary
Information 5), as shown in Fig. 2a,b. The period T is fixed to
50ms for the results shown in Fig. 2. One can clearly recognize the
sizable CoM shift along the z-direction. We plot the in situ CoM
positions of the atomic cloud after a few pumping cycles in Fig. 2d.
The averaged CoM shift per cycle hz(t) � z(0)i/(td) of the cRM
pumping with (VS,VL) = (20, 30)ER is evaluated to be 0.94(7) for
t6T . This provides a direct measurement of the Chern number of
the occupied energy band, which is consistent with the ideal value
⌫ =1. As a comparison, the observed average CoM shift per cycle of
a sliding lattice (VS,VL)= (0, 40)ER is 0.94(4), which is again close
to the ideal value of ⌫ = 1. Classically it is fairly intuitive that the
sliding lattice is able to transfer atoms because the potential minima
are moving in space. However, even though the potential minima
of the cRM pump (VS,VL)= (20, 30)ER are not moving in space, as
shown in Fig. 1c, the pumping is topologically equivalent because of
the same Chern number of the occupied band. The cRM lattice has
the same ability to transfer atoms residing in the lowest energy band,
even though the pumping is achieved by a sequence of quantum

tunnelling events between the double wells (see Supplementary
Information 4). We attribute the saturating behaviour of the cRM
pumping for t > 6T to the e�ect of the harmonic confinement,
whose variation can be comparable to the bandgap for a large CoM
shift22 (see Supplementary Information 6).

A striking feature of our pump is its topological nature. In
particular, the pumped amount in the Rice–Mele model23,24 is
directly related to the topology of the trajectory in the �–� plane.
It depends only on the winding number w of the trajectory that
encloses the origin � =�= 0 (see Supplementary Information 3).
Note that electron pumping in restricted nano-devices8–11 is not
topological, because in that case the amount of the charge
pumped per cycle instead depends on the area of the enclosed
parameter space25, which is the geometry but not the topology of
the trajectory. To highlight the topological nature of Rice–Mele
pumping, we investigate four distinct pumping sequences with
trajectories shown schematically in Fig. 3b–e. In Fig. 3a, we plot
the CoM shifts of two cRM pumping schemes with (VS, VL) =

(20, 30)ER (Fig. 3b,e) and two amplitude-modified cRM pumping
schemes (Fig. 3c,d). Evidently, the sequence which does not wind
around the origin (Fig. 3d) results in no pumping, and those
with winding trajectories (Fig. 3b,c,e) result in finite pumping.
Also the forward cRM pumping (Fig. 3b) and the amplitude-
modified cRM pumping (Fig. 3c) exhibit almost the same pumping
behaviour, although the area enclosed by the trajectory of Fig. 3c
is actually smaller than that of Fig. 3b. This is direct evidence of
the topological nature of the pump. Note that the band structure
in the k–t space of the nontrivial pumping sequence (Fig. 3c)
is identical to that of the trivial pumping (Fig. 3d). However,
the Berry curvature and the Chern number of the lowest band
are di�erent. This highlights the fact that the pumped charge is
a topological quantity, which depends on the wavefunction but
not on the band dispersions. Furthermore, we also performed the
cRM pumping with a negative sweep of the phase �(t)=��t/T ,
which corresponds to an opposite winding in the �–� plane, and
the cloud is pumped in the opposite direction even though the
band dispersion remains identical to that of the forward sweep
pumping (Fig. 3e).
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Fig. 1.1 Experiment on charge pumping in the Kane-Mele model: The shift of center-of-mass
position v.s. time (a) for different pumping protocols (corresponding to different time dependence
of D and d ) as shown in (d-e). The dashed lines in (a) are fitting line with slope n = ±1 and 0.
Reprinted from Ref. [6]

is

DQ =
Z T

0
dtJ(t) =�Â

n

Z

BZ

Z T

0
dt

dk
2p

F n
kt =�Â

n
Ch1,n (1.25)

That shows the pumped charge is quantized.
For the Rice-Mele model at half-filling, the sum over n filled bands is reduced to

just the lower band, and the pumped charge can be rewritten as

DQ =� 1
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⌘
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where the integration is taken over the torus of T 2 = BZ ⇥ S1. In order to have a
non-zero quantized charge pumped, it is necessary to have a non-zero Ch1. With the
choice of D(t) = D0 cos t,d (t) = d0 sin t for the Rice-Mele model, going over the
entire torus manifold BZ1 ⇥ S1 the d̂ vector encloses the double-degenerate point
D = 0, d = 0 and k = p/a, which tells us that Ch1 =±1 .

The real experiment is of course carried out with the open boundary condition.
With the open boundary condition, one could measure the movement of center of
mass (COM) of the system to observe charge pumping as [5],

hx(t)i= 1
N

Z +•

�•
xr(x, t)dx. (1.27)

Using the continuity equation ∂r
∂ t +— · j = 0
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An electron gas in a one-dimensional periodic potential can be
transportedeven in theabsenceofavoltagebias if thepotential
is slowly and periodically modulated in time. Remarkably, the
transferred charge per cycle is sensitive only to the topology of
the path in parameter space. Although this so-called Thouless
charge pump was first proposed more than thirty years ago1, it
has not yet been realized. Here we report the demonstration of
topological Thouless pumping using ultracold fermionic atoms
in a dynamically controlled optical superlattice. We observe a
shift of the atomic cloud as a result of pumping, and extract the
topological invariance of the pumping process from this shift.
We demonstrate the topological nature of the Thouless pump
by varying the topology of the pumping path and verify that
the topological pump indeed works in the quantum regime by
varying the speed and temperature.

Topology manifests itself in physics in a variety of ways2–4, with
the integer quantumHall e�ect (IQHE) being one of the best-known
examples in condensedmatter systems. There, theHall conductance
of a two-dimensional electron gas is quantized very precisely in
units of fundamental constants5. As discussed in the celebrated
Thouless–Kohmoto–Nightingale–den Nijs paper6, this quantized
value is given by a topological invariant, the sum of the Chern
numbers of the occupied energy bands.

In 1983, Thouless considered a seemingly di�erent phenomenon
of quantum transport of an electron gas in an infinite one-
dimensional periodic potential, driven in a periodic cycle1. This
seems to be similar to the famous Archimedes screw7, which
pumps water via a rotating spiral tube. However, whereas the
Archimedes screw follows classical physics and the pumped amount
of water can be changed continuously by tilting the screw, the
charge pumped by the Thouless pump is a topological quantum
number and not a�ected by a smooth change of parameters1.
Interestingly, this quantization of pumped charge shares the same
topological origin as the IQHE. The charge pumped per cycle
can be expressed by the Chern number defined over a (1+ 1)-
dimensional periodic Brillouin zone formed by quasimomentum k
and time t . Although several single-electron pumping experiments
have been implemented in nanoscale devices, such as quantum
dots with modulated gate voltages8–10 or surface acoustic waves
to create a potential periodic in time11, the topological Thouless
pump, which should have the spatial periodicity to define the Bloch
wavefunction as well as the temporal periodicity, has not been
realized in electron systems.

In this Letter, we report a realization of Thouless’ topological
charge pump by exploiting the controllability of ultracold atoms
in an optical superlattice. Di�erently from recent realizations of
topological bands in two (spatial or synthetic) dimensions12–17,
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Figure 1 | The Rice–Mele model. a, Schematic of the Rice–Mele model. b, A
pumping cycle sketched (qualitatively) in �–� space. c. Schematic of the
continuous Rice–Mele (cRM) pumping sequence. The pink shaded packet
indicates the wavefunction of a particular atom initially localized at the unit
cell i. The wavefunction shifts to right as the pumping proceeds and the
atom moves to unit cell i+ 1 after one pumping cycle. The blue dashed
curve and the green arrow indicate the harmonic confinement (not in scale)
and an initial hole, respectively.

our experiment explores the topology of a (1 + 1)-dimensional
adiabatic process, in which a dynamically controllable one-
dimensional optical superlattice is implemented following the
proposal of ref. 18. Topological pumping is seen as a shift of
the centre of mass (CoM) of an atomic cloud measured with
in situ imaging. We extract the Chern number of the pumping
procedure from the average shift of the CoM per pumping
cycle. The topological nature of the pump is revealed by the
clear dependence on the topology of the pumping trajectories
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transferred charge per cycle is sensitive only to the topology of
the path in parameter space. Although this so-called Thouless
charge pump was first proposed more than thirty years ago1, it
has not yet been realized. Here we report the demonstration of
topological Thouless pumping using ultracold fermionic atoms
in a dynamically controlled optical superlattice. We observe a
shift of the atomic cloud as a result of pumping, and extract the
topological invariance of the pumping process from this shift.
We demonstrate the topological nature of the Thouless pump
by varying the topology of the pumping path and verify that
the topological pump indeed works in the quantum regime by
varying the speed and temperature.

Topology manifests itself in physics in a variety of ways2–4, with
the integer quantumHall e�ect (IQHE) being one of the best-known
examples in condensedmatter systems. There, theHall conductance
of a two-dimensional electron gas is quantized very precisely in
units of fundamental constants5. As discussed in the celebrated
Thouless–Kohmoto–Nightingale–den Nijs paper6, this quantized
value is given by a topological invariant, the sum of the Chern
numbers of the occupied energy bands.

In 1983, Thouless considered a seemingly di�erent phenomenon
of quantum transport of an electron gas in an infinite one-
dimensional periodic potential, driven in a periodic cycle1. This
seems to be similar to the famous Archimedes screw7, which
pumps water via a rotating spiral tube. However, whereas the
Archimedes screw follows classical physics and the pumped amount
of water can be changed continuously by tilting the screw, the
charge pumped by the Thouless pump is a topological quantum
number and not a�ected by a smooth change of parameters1.
Interestingly, this quantization of pumped charge shares the same
topological origin as the IQHE. The charge pumped per cycle
can be expressed by the Chern number defined over a (1+ 1)-
dimensional periodic Brillouin zone formed by quasimomentum k
and time t . Although several single-electron pumping experiments
have been implemented in nanoscale devices, such as quantum
dots with modulated gate voltages8–10 or surface acoustic waves
to create a potential periodic in time11, the topological Thouless
pump, which should have the spatial periodicity to define the Bloch
wavefunction as well as the temporal periodicity, has not been
realized in electron systems.

In this Letter, we report a realization of Thouless’ topological
charge pump by exploiting the controllability of ultracold atoms
in an optical superlattice. Di�erently from recent realizations of
topological bands in two (spatial or synthetic) dimensions12–17,
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our experiment explores the topology of a (1 + 1)-dimensional
adiabatic process, in which a dynamically controllable one-
dimensional optical superlattice is implemented following the
proposal of ref. 18. Topological pumping is seen as a shift of
the centre of mass (CoM) of an atomic cloud measured with
in situ imaging. We extract the Chern number of the pumping
procedure from the average shift of the CoM per pumping
cycle. The topological nature of the pump is revealed by the
clear dependence on the topology of the pumping trajectories
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Figure 2 | Observation of cRM pumping and sliding lattice pumping. a,b, In situ absorption images on the CCD before and after 10 cRM pumpings,
respectively. c, One-dimensional optical densities (integrated along the x axis) before pumping (red circles, same data as a) and after 10 cRM pumping
(blue diamonds, same data as b). d, The centre of mass (CoM) of the atomic cloud after up to ten pumping cycles. Red circles and blue open diamonds
indicate the CoM shift of the sliding lattice and the cRM pumping lattice, respectively. Error bars denote the standard deviation of five
independent measurements.

in parameter space as to whether the trajectory is enclosing the
degenerate point or not. Our work introduces a new experimental
platform to study topological quantum phenomena in adiabatic
driven systems.

In our experiments, an ultracold Fermi gas of ytterbium atoms
171Yb is prepared (see Methods) and loaded into a dynamically
controlled optical superlattice. Specifically, we construct a stationary
lattice (short lattice) with a period of 266 nm and a dynamical
interferometric lattice (long lattice) with a period of 532 nm whose
phase is stabilized and controlled by a Michelson interferometer
(see Methods). As a result, these laser beams create the
required18 time-dependent one-dimensional optical superlattice of
the form

V (z , t)=�VS(t)cos2
✓
2⇡z
d

◆
�VL(t)cos2

⇣⇡z
d

��(t)
⌘

(1)

where d = 532 nm is the lattice constant of the superlattice, VS
is the depth of the short lattice, VL the depth of the long lattice,
and � is the phase di�erence between the two lattices. In our
experiments,VS andVL are controlled by the respective laser powers
and � by changing the optical path di�erence between the two
interfering beams with a piezo-transducer (PZT)-mounted mirror,
which enables us to sweep � up to ⇠11⇡, corresponding to more
than ten pumping cycles. In the following, we use the lattice constant
d as the unit of length and the recoil energy ER =h2/(8md2) as the
unit of energy, where h denotes Planck’s constant andm is the atomic
mass of 174Yb (see Methods).

We load 171Yb atoms into an array of one-dimensional optical
superlattices, ensuring that they occupy the lowest energy band
(see Supplementary Information 4), and slowly sweep � over time.
The lattice potential returns to its initial configuration whenever
� changes by ⇡, thus completing a pumping cycle. Because the
lattice potential is periodic both in space and time, one can define
energy bands, the Bloch wavefunction | k(t)i = eikz |uk(t)i, and

corresponding topological invariants such as the Chern number ⌫
in a k–t Brillouin zone:

⌫=
1
2⇡

Z T

0
dt

Z ⇡/d

�⇡/d
dk�(k, t) (2)

where �(k, t)= i(h@t uk|@kuki� h@kuk|@t uki) is the Berry curvature
(see Methods) and T the pumping period. We have ensured that
the bandgap never closes during the whole pumping procedure,
so ideally the atoms stay in the lowest band during the adiabatic
pumping process. The phase sweep breaks time-reversal symmetry
and the energy bands can acquire a non-zero Chern number ⌫.
The shift of the CoM of the atomic cloud in such a topologically
nontrivial band after one pumping cycle is simply given by ⌫d .

The ability to tune all parameters of the lattice potential (1)
independently in a dynamic way o�ers the opportunity to realize
various pumping protocols. In the absence of the static short
lattice, V (z , t) describes the simple sliding lattice which Thouless
originally proposed1. Including theVS term, one realizes the double-
well lattice illustrated in Fig. 1. A pictorial understanding of
this alternative pumping process is provided by the tight-binding
Rice–Mele model19,20,

Ĥ=

X

i

⇣
�(J +�)â†

i b̂i �(J ��)â†
i b̂i+1 +h.c.+�(â†

i âi � b̂†
i b̂i)

⌘
(3)

where âi (â†
i ) and b̂i (b̂†

i ) are fermionic annihilation (creation)
operators in the two sublattices of the ith unit cell, J ± � is the
tunnelling amplitude within and between unit cells, and � denotes
a staggered on-site energy o�set, as shown in Fig. 1a. We ignore
the spin degree of freedom because we can neglect the interaction
between the two spin components owing to a very small s-wave
scattering length21.

Figure 1c shows the schematics of our ‘continuous Rice–Mele’
(cRM) pumping sequence. Sweeping the phase linearly in time
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Figure 2 | Observation of cRM pumping and sliding lattice pumping. a,b, In situ absorption images on the CCD before and after 10 cRM pumpings,
respectively. c, One-dimensional optical densities (integrated along the x axis) before pumping (red circles, same data as a) and after 10 cRM pumping
(blue diamonds, same data as b). d, The centre of mass (CoM) of the atomic cloud after up to ten pumping cycles. Red circles and blue open diamonds
indicate the CoM shift of the sliding lattice and the cRM pumping lattice, respectively. Error bars denote the standard deviation of five
independent measurements.

in parameter space as to whether the trajectory is enclosing the
degenerate point or not. Our work introduces a new experimental
platform to study topological quantum phenomena in adiabatic
driven systems.

In our experiments, an ultracold Fermi gas of ytterbium atoms
171Yb is prepared (see Methods) and loaded into a dynamically
controlled optical superlattice. Specifically, we construct a stationary
lattice (short lattice) with a period of 266 nm and a dynamical
interferometric lattice (long lattice) with a period of 532 nm whose
phase is stabilized and controlled by a Michelson interferometer
(see Methods). As a result, these laser beams create the
required18 time-dependent one-dimensional optical superlattice of
the form

V (z , t)=�VS(t)cos2
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where d = 532 nm is the lattice constant of the superlattice, VS
is the depth of the short lattice, VL the depth of the long lattice,
and � is the phase di�erence between the two lattices. In our
experiments,VS andVL are controlled by the respective laser powers
and � by changing the optical path di�erence between the two
interfering beams with a piezo-transducer (PZT)-mounted mirror,
which enables us to sweep � up to ⇠11⇡, corresponding to more
than ten pumping cycles. In the following, we use the lattice constant
d as the unit of length and the recoil energy ER =h2/(8md2) as the
unit of energy, where h denotes Planck’s constant andm is the atomic
mass of 174Yb (see Methods).

We load 171Yb atoms into an array of one-dimensional optical
superlattices, ensuring that they occupy the lowest energy band
(see Supplementary Information 4), and slowly sweep � over time.
The lattice potential returns to its initial configuration whenever
� changes by ⇡, thus completing a pumping cycle. Because the
lattice potential is periodic both in space and time, one can define
energy bands, the Bloch wavefunction | k(t)i = eikz |uk(t)i, and

corresponding topological invariants such as the Chern number ⌫
in a k–t Brillouin zone:
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where �(k, t)= i(h@t uk|@kuki� h@kuk|@t uki) is the Berry curvature
(see Methods) and T the pumping period. We have ensured that
the bandgap never closes during the whole pumping procedure,
so ideally the atoms stay in the lowest band during the adiabatic
pumping process. The phase sweep breaks time-reversal symmetry
and the energy bands can acquire a non-zero Chern number ⌫.
The shift of the CoM of the atomic cloud in such a topologically
nontrivial band after one pumping cycle is simply given by ⌫d .

The ability to tune all parameters of the lattice potential (1)
independently in a dynamic way o�ers the opportunity to realize
various pumping protocols. In the absence of the static short
lattice, V (z , t) describes the simple sliding lattice which Thouless
originally proposed1. Including theVS term, one realizes the double-
well lattice illustrated in Fig. 1. A pictorial understanding of
this alternative pumping process is provided by the tight-binding
Rice–Mele model19,20,
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where âi (â†
i ) and b̂i (b̂†

i ) are fermionic annihilation (creation)
operators in the two sublattices of the ith unit cell, J ± � is the
tunnelling amplitude within and between unit cells, and � denotes
a staggered on-site energy o�set, as shown in Fig. 1a. We ignore
the spin degree of freedom because we can neglect the interaction
between the two spin components owing to a very small s-wave
scattering length21.

Figure 1c shows the schematics of our ‘continuous Rice–Mele’
(cRM) pumping sequence. Sweeping the phase linearly in time
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Figure 2 | Observation of cRM pumping and sliding lattice pumping. a,b, In situ absorption images on the CCD before and after 10 cRM pumpings,
respectively. c, One-dimensional optical densities (integrated along the x axis) before pumping (red circles, same data as a) and after 10 cRM pumping
(blue diamonds, same data as b). d, The centre of mass (CoM) of the atomic cloud after up to ten pumping cycles. Red circles and blue open diamonds
indicate the CoM shift of the sliding lattice and the cRM pumping lattice, respectively. Error bars denote the standard deviation of five
independent measurements.

in parameter space as to whether the trajectory is enclosing the
degenerate point or not. Our work introduces a new experimental
platform to study topological quantum phenomena in adiabatic
driven systems.

In our experiments, an ultracold Fermi gas of ytterbium atoms
171Yb is prepared (see Methods) and loaded into a dynamically
controlled optical superlattice. Specifically, we construct a stationary
lattice (short lattice) with a period of 266 nm and a dynamical
interferometric lattice (long lattice) with a period of 532 nm whose
phase is stabilized and controlled by a Michelson interferometer
(see Methods). As a result, these laser beams create the
required18 time-dependent one-dimensional optical superlattice of
the form
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where d = 532 nm is the lattice constant of the superlattice, VS
is the depth of the short lattice, VL the depth of the long lattice,
and � is the phase di�erence between the two lattices. In our
experiments,VS andVL are controlled by the respective laser powers
and � by changing the optical path di�erence between the two
interfering beams with a piezo-transducer (PZT)-mounted mirror,
which enables us to sweep � up to ⇠11⇡, corresponding to more
than ten pumping cycles. In the following, we use the lattice constant
d as the unit of length and the recoil energy ER =h2/(8md2) as the
unit of energy, where h denotes Planck’s constant andm is the atomic
mass of 174Yb (see Methods).

We load 171Yb atoms into an array of one-dimensional optical
superlattices, ensuring that they occupy the lowest energy band
(see Supplementary Information 4), and slowly sweep � over time.
The lattice potential returns to its initial configuration whenever
� changes by ⇡, thus completing a pumping cycle. Because the
lattice potential is periodic both in space and time, one can define
energy bands, the Bloch wavefunction | k(t)i = eikz |uk(t)i, and

corresponding topological invariants such as the Chern number ⌫
in a k–t Brillouin zone:
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where �(k, t)= i(h@t uk|@kuki� h@kuk|@t uki) is the Berry curvature
(see Methods) and T the pumping period. We have ensured that
the bandgap never closes during the whole pumping procedure,
so ideally the atoms stay in the lowest band during the adiabatic
pumping process. The phase sweep breaks time-reversal symmetry
and the energy bands can acquire a non-zero Chern number ⌫.
The shift of the CoM of the atomic cloud in such a topologically
nontrivial band after one pumping cycle is simply given by ⌫d .

The ability to tune all parameters of the lattice potential (1)
independently in a dynamic way o�ers the opportunity to realize
various pumping protocols. In the absence of the static short
lattice, V (z , t) describes the simple sliding lattice which Thouless
originally proposed1. Including theVS term, one realizes the double-
well lattice illustrated in Fig. 1. A pictorial understanding of
this alternative pumping process is provided by the tight-binding
Rice–Mele model19,20,
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where âi (â†
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i ) are fermionic annihilation (creation)
operators in the two sublattices of the ith unit cell, J ± � is the
tunnelling amplitude within and between unit cells, and � denotes
a staggered on-site energy o�set, as shown in Fig. 1a. We ignore
the spin degree of freedom because we can neglect the interaction
between the two spin components owing to a very small s-wave
scattering length21.

Figure 1c shows the schematics of our ‘continuous Rice–Mele’
(cRM) pumping sequence. Sweeping the phase linearly in time
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as �(t) =�t/T , the hopping amplitudes and on-site energies are
modulated periodically. Our ab initio calculation shows that the
cRM pumping scheme used in the experiment is topologically
equivalent to the Rice–Mele model for atoms that reside in the
lowest energy band, because the Chern numbers are the same (see
Supplementary Information 3). In the following, wewill thus use the
tight-binding Rice–Mele Hamiltonian to simplify the discussion of
the pumping sequence as a closed trajectory in the �–� parameter
plane (Fig. 1b). Note that, as shown in Fig. 1c, our system has
metallic edge states and thermal holes due to the combination of the
trapping potential and finite temperature. We estimate the filling of
the lattice is typically ⇠0.7 for each spin at the centre of the trap.
However, in the case of our deep optical lattice systems, the shift
of the CoM of the atomic cloud still constitutes a quantized shift
in spite of these thermal and finite size e�ects (see Supplementary
Information 2).

Figure 2 shows the main results of our pumping experiments.
Our stable absorption imaging systemwith a charge-coupled-device
(CCD) camera enables us to accuratelymeasure the shift of the CoM
of the atomic cloud after several pumping cycles (see Supplementary
Information 5), as shown in Fig. 2a,b. The period T is fixed to
50ms for the results shown in Fig. 2. One can clearly recognize the
sizable CoM shift along the z-direction. We plot the in situ CoM
positions of the atomic cloud after a few pumping cycles in Fig. 2d.
The averaged CoM shift per cycle hz(t) � z(0)i/(td) of the cRM
pumping with (VS,VL) = (20, 30)ER is evaluated to be 0.94(7) for
t6T . This provides a direct measurement of the Chern number of
the occupied energy band, which is consistent with the ideal value
⌫ =1. As a comparison, the observed average CoM shift per cycle of
a sliding lattice (VS,VL)= (0, 40)ER is 0.94(4), which is again close
to the ideal value of ⌫ = 1. Classically it is fairly intuitive that the
sliding lattice is able to transfer atoms because the potential minima
are moving in space. However, even though the potential minima
of the cRM pump (VS,VL)= (20, 30)ER are not moving in space, as
shown in Fig. 1c, the pumping is topologically equivalent because of
the same Chern number of the occupied band. The cRM lattice has
the same ability to transfer atoms residing in the lowest energy band,
even though the pumping is achieved by a sequence of quantum

tunnelling events between the double wells (see Supplementary
Information 4). We attribute the saturating behaviour of the cRM
pumping for t > 6T to the e�ect of the harmonic confinement,
whose variation can be comparable to the bandgap for a large CoM
shift22 (see Supplementary Information 6).

A striking feature of our pump is its topological nature. In
particular, the pumped amount in the Rice–Mele model23,24 is
directly related to the topology of the trajectory in the �–� plane.
It depends only on the winding number w of the trajectory that
encloses the origin � =�= 0 (see Supplementary Information 3).
Note that electron pumping in restricted nano-devices8–11 is not
topological, because in that case the amount of the charge
pumped per cycle instead depends on the area of the enclosed
parameter space25, which is the geometry but not the topology of
the trajectory. To highlight the topological nature of Rice–Mele
pumping, we investigate four distinct pumping sequences with
trajectories shown schematically in Fig. 3b–e. In Fig. 3a, we plot
the CoM shifts of two cRM pumping schemes with (VS, VL) =

(20, 30)ER (Fig. 3b,e) and two amplitude-modified cRM pumping
schemes (Fig. 3c,d). Evidently, the sequence which does not wind
around the origin (Fig. 3d) results in no pumping, and those
with winding trajectories (Fig. 3b,c,e) result in finite pumping.
Also the forward cRM pumping (Fig. 3b) and the amplitude-
modified cRM pumping (Fig. 3c) exhibit almost the same pumping
behaviour, although the area enclosed by the trajectory of Fig. 3c
is actually smaller than that of Fig. 3b. This is direct evidence of
the topological nature of the pump. Note that the band structure
in the k–t space of the nontrivial pumping sequence (Fig. 3c)
is identical to that of the trivial pumping (Fig. 3d). However,
the Berry curvature and the Chern number of the lowest band
are di�erent. This highlights the fact that the pumped charge is
a topological quantity, which depends on the wavefunction but
not on the band dispersions. Furthermore, we also performed the
cRM pumping with a negative sweep of the phase �(t)=��t/T ,
which corresponds to an opposite winding in the �–� plane, and
the cloud is pumped in the opposite direction even though the
band dispersion remains identical to that of the forward sweep
pumping (Fig. 3e).
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as �(t) =�t/T , the hopping amplitudes and on-site energies are
modulated periodically. Our ab initio calculation shows that the
cRM pumping scheme used in the experiment is topologically
equivalent to the Rice–Mele model for atoms that reside in the
lowest energy band, because the Chern numbers are the same (see
Supplementary Information 3). In the following, wewill thus use the
tight-binding Rice–Mele Hamiltonian to simplify the discussion of
the pumping sequence as a closed trajectory in the �–� parameter
plane (Fig. 1b). Note that, as shown in Fig. 1c, our system has
metallic edge states and thermal holes due to the combination of the
trapping potential and finite temperature. We estimate the filling of
the lattice is typically ⇠0.7 for each spin at the centre of the trap.
However, in the case of our deep optical lattice systems, the shift
of the CoM of the atomic cloud still constitutes a quantized shift
in spite of these thermal and finite size e�ects (see Supplementary
Information 2).

Figure 2 shows the main results of our pumping experiments.
Our stable absorption imaging systemwith a charge-coupled-device
(CCD) camera enables us to accuratelymeasure the shift of the CoM
of the atomic cloud after several pumping cycles (see Supplementary
Information 5), as shown in Fig. 2a,b. The period T is fixed to
50ms for the results shown in Fig. 2. One can clearly recognize the
sizable CoM shift along the z-direction. We plot the in situ CoM
positions of the atomic cloud after a few pumping cycles in Fig. 2d.
The averaged CoM shift per cycle hz(t) � z(0)i/(td) of the cRM
pumping with (VS,VL) = (20, 30)ER is evaluated to be 0.94(7) for
t6T . This provides a direct measurement of the Chern number of
the occupied energy band, which is consistent with the ideal value
⌫ =1. As a comparison, the observed average CoM shift per cycle of
a sliding lattice (VS,VL)= (0, 40)ER is 0.94(4), which is again close
to the ideal value of ⌫ = 1. Classically it is fairly intuitive that the
sliding lattice is able to transfer atoms because the potential minima
are moving in space. However, even though the potential minima
of the cRM pump (VS,VL)= (20, 30)ER are not moving in space, as
shown in Fig. 1c, the pumping is topologically equivalent because of
the same Chern number of the occupied band. The cRM lattice has
the same ability to transfer atoms residing in the lowest energy band,
even though the pumping is achieved by a sequence of quantum

tunnelling events between the double wells (see Supplementary
Information 4). We attribute the saturating behaviour of the cRM
pumping for t > 6T to the e�ect of the harmonic confinement,
whose variation can be comparable to the bandgap for a large CoM
shift22 (see Supplementary Information 6).

A striking feature of our pump is its topological nature. In
particular, the pumped amount in the Rice–Mele model23,24 is
directly related to the topology of the trajectory in the �–� plane.
It depends only on the winding number w of the trajectory that
encloses the origin � =�= 0 (see Supplementary Information 3).
Note that electron pumping in restricted nano-devices8–11 is not
topological, because in that case the amount of the charge
pumped per cycle instead depends on the area of the enclosed
parameter space25, which is the geometry but not the topology of
the trajectory. To highlight the topological nature of Rice–Mele
pumping, we investigate four distinct pumping sequences with
trajectories shown schematically in Fig. 3b–e. In Fig. 3a, we plot
the CoM shifts of two cRM pumping schemes with (VS, VL) =

(20, 30)ER (Fig. 3b,e) and two amplitude-modified cRM pumping
schemes (Fig. 3c,d). Evidently, the sequence which does not wind
around the origin (Fig. 3d) results in no pumping, and those
with winding trajectories (Fig. 3b,c,e) result in finite pumping.
Also the forward cRM pumping (Fig. 3b) and the amplitude-
modified cRM pumping (Fig. 3c) exhibit almost the same pumping
behaviour, although the area enclosed by the trajectory of Fig. 3c
is actually smaller than that of Fig. 3b. This is direct evidence of
the topological nature of the pump. Note that the band structure
in the k–t space of the nontrivial pumping sequence (Fig. 3c)
is identical to that of the trivial pumping (Fig. 3d). However,
the Berry curvature and the Chern number of the lowest band
are di�erent. This highlights the fact that the pumped charge is
a topological quantity, which depends on the wavefunction but
not on the band dispersions. Furthermore, we also performed the
cRM pumping with a negative sweep of the phase �(t)=��t/T ,
which corresponds to an opposite winding in the �–� plane, and
the cloud is pumped in the opposite direction even though the
band dispersion remains identical to that of the forward sweep
pumping (Fig. 3e).
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as �(t) =�t/T , the hopping amplitudes and on-site energies are
modulated periodically. Our ab initio calculation shows that the
cRM pumping scheme used in the experiment is topologically
equivalent to the Rice–Mele model for atoms that reside in the
lowest energy band, because the Chern numbers are the same (see
Supplementary Information 3). In the following, wewill thus use the
tight-binding Rice–Mele Hamiltonian to simplify the discussion of
the pumping sequence as a closed trajectory in the �–� parameter
plane (Fig. 1b). Note that, as shown in Fig. 1c, our system has
metallic edge states and thermal holes due to the combination of the
trapping potential and finite temperature. We estimate the filling of
the lattice is typically ⇠0.7 for each spin at the centre of the trap.
However, in the case of our deep optical lattice systems, the shift
of the CoM of the atomic cloud still constitutes a quantized shift
in spite of these thermal and finite size e�ects (see Supplementary
Information 2).

Figure 2 shows the main results of our pumping experiments.
Our stable absorption imaging systemwith a charge-coupled-device
(CCD) camera enables us to accuratelymeasure the shift of the CoM
of the atomic cloud after several pumping cycles (see Supplementary
Information 5), as shown in Fig. 2a,b. The period T is fixed to
50ms for the results shown in Fig. 2. One can clearly recognize the
sizable CoM shift along the z-direction. We plot the in situ CoM
positions of the atomic cloud after a few pumping cycles in Fig. 2d.
The averaged CoM shift per cycle hz(t) � z(0)i/(td) of the cRM
pumping with (VS,VL) = (20, 30)ER is evaluated to be 0.94(7) for
t6T . This provides a direct measurement of the Chern number of
the occupied energy band, which is consistent with the ideal value
⌫ =1. As a comparison, the observed average CoM shift per cycle of
a sliding lattice (VS,VL)= (0, 40)ER is 0.94(4), which is again close
to the ideal value of ⌫ = 1. Classically it is fairly intuitive that the
sliding lattice is able to transfer atoms because the potential minima
are moving in space. However, even though the potential minima
of the cRM pump (VS,VL)= (20, 30)ER are not moving in space, as
shown in Fig. 1c, the pumping is topologically equivalent because of
the same Chern number of the occupied band. The cRM lattice has
the same ability to transfer atoms residing in the lowest energy band,
even though the pumping is achieved by a sequence of quantum

tunnelling events between the double wells (see Supplementary
Information 4). We attribute the saturating behaviour of the cRM
pumping for t > 6T to the e�ect of the harmonic confinement,
whose variation can be comparable to the bandgap for a large CoM
shift22 (see Supplementary Information 6).

A striking feature of our pump is its topological nature. In
particular, the pumped amount in the Rice–Mele model23,24 is
directly related to the topology of the trajectory in the �–� plane.
It depends only on the winding number w of the trajectory that
encloses the origin � =�= 0 (see Supplementary Information 3).
Note that electron pumping in restricted nano-devices8–11 is not
topological, because in that case the amount of the charge
pumped per cycle instead depends on the area of the enclosed
parameter space25, which is the geometry but not the topology of
the trajectory. To highlight the topological nature of Rice–Mele
pumping, we investigate four distinct pumping sequences with
trajectories shown schematically in Fig. 3b–e. In Fig. 3a, we plot
the CoM shifts of two cRM pumping schemes with (VS, VL) =

(20, 30)ER (Fig. 3b,e) and two amplitude-modified cRM pumping
schemes (Fig. 3c,d). Evidently, the sequence which does not wind
around the origin (Fig. 3d) results in no pumping, and those
with winding trajectories (Fig. 3b,c,e) result in finite pumping.
Also the forward cRM pumping (Fig. 3b) and the amplitude-
modified cRM pumping (Fig. 3c) exhibit almost the same pumping
behaviour, although the area enclosed by the trajectory of Fig. 3c
is actually smaller than that of Fig. 3b. This is direct evidence of
the topological nature of the pump. Note that the band structure
in the k–t space of the nontrivial pumping sequence (Fig. 3c)
is identical to that of the trivial pumping (Fig. 3d). However,
the Berry curvature and the Chern number of the lowest band
are di�erent. This highlights the fact that the pumped charge is
a topological quantity, which depends on the wavefunction but
not on the band dispersions. Furthermore, we also performed the
cRM pumping with a negative sweep of the phase �(t)=��t/T ,
which corresponds to an opposite winding in the �–� plane, and
the cloud is pumped in the opposite direction even though the
band dispersion remains identical to that of the forward sweep
pumping (Fig. 3e).
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d e

b c

Fig. 1.1 Experiment on charge pumping in the Kane-Mele model: The shift of center-of-mass
position v.s. time (a) for different pumping protocols (corresponding to different time dependence
of D and d ) as shown in (d-e). The dashed lines in (a) are fitting line with slope n = ±1 and 0.
Reprinted from Ref. [6]

is

DQ =
Z T

0
dtJ(t) =�Â

n

Z

BZ

Z T

0
dt

dk
2p

F n
kt =�Â

n
Ch1,n (1.25)

That shows the pumped charge is quantized.
For the Rice-Mele model at half-filling, the sum over n filled bands is reduced to

just the lower band, and the pumped charge can be rewritten as

DQ =� 1
2p

Z

BZ
dk

Z T

0
dt

1
2

d̂(k, t) ·
⇣

∂kd̂(k, t)⇥∂t d̂(k, t)
⌘
=�Ch1 (1.26)

where the integration is taken over the torus of T 2 = BZ ⇥ S1. In order to have a
non-zero quantized charge pumped, it is necessary to have a non-zero Ch1. With the
choice of D(t) = D0 cos t,d (t) = d0 sin t for the Rice-Mele model, going over the
entire torus manifold BZ1 ⇥ S1 the d̂ vector encloses the double-degenerate point
D = 0, d = 0 and k = p/a, which tells us that Ch1 =±1 .

The real experiment is of course carried out with the open boundary condition.
With the open boundary condition, one could measure the movement of center of
mass (COM) of the system to observe charge pumping as [5],

hx(t)i= 1
N

Z +•

�•
xr(x, t)dx. (1.27)

Using the continuity equation ∂r
∂ t +— · j = 0
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as �(t) =⇡t/T , the hopping amplitudes and on-site energies are
modulated periodically. Our ab initio calculation shows that the
cRM pumping scheme used in the experiment is topologically
equivalent to the Rice–Mele model for atoms that reside in the
lowest energy band, because the Chern numbers are the same (see
Supplementary Information 3). In the following, wewill thus use the
tight-binding Rice–Mele Hamiltonian to simplify the discussion of
the pumping sequence as a closed trajectory in the �–� parameter
plane (Fig. 1b). Note that, as shown in Fig. 1c, our system has
metallic edge states and thermal holes due to the combination of the
trapping potential and finite temperature. We estimate the filling of
the lattice is typically ⇠0.7 for each spin at the centre of the trap.
However, in the case of our deep optical lattice systems, the shift
of the CoM of the atomic cloud still constitutes a quantized shift
in spite of these thermal and finite size e�ects (see Supplementary
Information 2).

Figure 2 shows the main results of our pumping experiments.
Our stable absorption imaging systemwith a charge-coupled-device
(CCD) camera enables us to accuratelymeasure the shift of the CoM
of the atomic cloud after several pumping cycles (see Supplementary
Information 5), as shown in Fig. 2a,b. The period T is fixed to
50ms for the results shown in Fig. 2. One can clearly recognize the
sizable CoM shift along the z-direction. We plot the in situ CoM
positions of the atomic cloud after a few pumping cycles in Fig. 2d.
The averaged CoM shift per cycle hz(t) � z(0)i/(td) of the cRM
pumping with (VS,VL) = (20, 30)ER is evaluated to be 0.94(7) for
t6T . This provides a direct measurement of the Chern number of
the occupied energy band, which is consistent with the ideal value
⌫ =1. As a comparison, the observed average CoM shift per cycle of
a sliding lattice (VS,VL)= (0, 40)ER is 0.94(4), which is again close
to the ideal value of ⌫ = 1. Classically it is fairly intuitive that the
sliding lattice is able to transfer atoms because the potential minima
are moving in space. However, even though the potential minima
of the cRM pump (VS,VL)= (20, 30)ER are not moving in space, as
shown in Fig. 1c, the pumping is topologically equivalent because of
the same Chern number of the occupied band. The cRM lattice has
the same ability to transfer atoms residing in the lowest energy band,
even though the pumping is achieved by a sequence of quantum

tunnelling events between the double wells (see Supplementary
Information 4). We attribute the saturating behaviour of the cRM
pumping for t > 6T to the e�ect of the harmonic confinement,
whose variation can be comparable to the bandgap for a large CoM
shift22 (see Supplementary Information 6).

A striking feature of our pump is its topological nature. In
particular, the pumped amount in the Rice–Mele model23,24 is
directly related to the topology of the trajectory in the �–� plane.
It depends only on the winding number w of the trajectory that
encloses the origin � =�= 0 (see Supplementary Information 3).
Note that electron pumping in restricted nano-devices8–11 is not
topological, because in that case the amount of the charge
pumped per cycle instead depends on the area of the enclosed
parameter space25, which is the geometry but not the topology of
the trajectory. To highlight the topological nature of Rice–Mele
pumping, we investigate four distinct pumping sequences with
trajectories shown schematically in Fig. 3b–e. In Fig. 3a, we plot
the CoM shifts of two cRM pumping schemes with (VS, VL) =

(20, 30)ER (Fig. 3b,e) and two amplitude-modified cRM pumping
schemes (Fig. 3c,d). Evidently, the sequence which does not wind
around the origin (Fig. 3d) results in no pumping, and those
with winding trajectories (Fig. 3b,c,e) result in finite pumping.
Also the forward cRM pumping (Fig. 3b) and the amplitude-
modified cRM pumping (Fig. 3c) exhibit almost the same pumping
behaviour, although the area enclosed by the trajectory of Fig. 3c
is actually smaller than that of Fig. 3b. This is direct evidence of
the topological nature of the pump. Note that the band structure
in the k–t space of the nontrivial pumping sequence (Fig. 3c)
is identical to that of the trivial pumping (Fig. 3d). However,
the Berry curvature and the Chern number of the lowest band
are di�erent. This highlights the fact that the pumped charge is
a topological quantity, which depends on the wavefunction but
not on the band dispersions. Furthermore, we also performed the
cRM pumping with a negative sweep of the phase �(t)=�⇡t/T ,
which corresponds to an opposite winding in the �–� plane, and
the cloud is pumped in the opposite direction even though the
band dispersion remains identical to that of the forward sweep
pumping (Fig. 3e).
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as �(t) =⇡t/T , the hopping amplitudes and on-site energies are
modulated periodically. Our ab initio calculation shows that the
cRM pumping scheme used in the experiment is topologically
equivalent to the Rice–Mele model for atoms that reside in the
lowest energy band, because the Chern numbers are the same (see
Supplementary Information 3). In the following, wewill thus use the
tight-binding Rice–Mele Hamiltonian to simplify the discussion of
the pumping sequence as a closed trajectory in the �–� parameter
plane (Fig. 1b). Note that, as shown in Fig. 1c, our system has
metallic edge states and thermal holes due to the combination of the
trapping potential and finite temperature. We estimate the filling of
the lattice is typically ⇠0.7 for each spin at the centre of the trap.
However, in the case of our deep optical lattice systems, the shift
of the CoM of the atomic cloud still constitutes a quantized shift
in spite of these thermal and finite size e�ects (see Supplementary
Information 2).

Figure 2 shows the main results of our pumping experiments.
Our stable absorption imaging systemwith a charge-coupled-device
(CCD) camera enables us to accuratelymeasure the shift of the CoM
of the atomic cloud after several pumping cycles (see Supplementary
Information 5), as shown in Fig. 2a,b. The period T is fixed to
50ms for the results shown in Fig. 2. One can clearly recognize the
sizable CoM shift along the z-direction. We plot the in situ CoM
positions of the atomic cloud after a few pumping cycles in Fig. 2d.
The averaged CoM shift per cycle hz(t) � z(0)i/(td) of the cRM
pumping with (VS,VL) = (20, 30)ER is evaluated to be 0.94(7) for
t6T . This provides a direct measurement of the Chern number of
the occupied energy band, which is consistent with the ideal value
⌫ =1. As a comparison, the observed average CoM shift per cycle of
a sliding lattice (VS,VL)= (0, 40)ER is 0.94(4), which is again close
to the ideal value of ⌫ = 1. Classically it is fairly intuitive that the
sliding lattice is able to transfer atoms because the potential minima
are moving in space. However, even though the potential minima
of the cRM pump (VS,VL)= (20, 30)ER are not moving in space, as
shown in Fig. 1c, the pumping is topologically equivalent because of
the same Chern number of the occupied band. The cRM lattice has
the same ability to transfer atoms residing in the lowest energy band,
even though the pumping is achieved by a sequence of quantum

tunnelling events between the double wells (see Supplementary
Information 4). We attribute the saturating behaviour of the cRM
pumping for t > 6T to the e�ect of the harmonic confinement,
whose variation can be comparable to the bandgap for a large CoM
shift22 (see Supplementary Information 6).

A striking feature of our pump is its topological nature. In
particular, the pumped amount in the Rice–Mele model23,24 is
directly related to the topology of the trajectory in the �–� plane.
It depends only on the winding number w of the trajectory that
encloses the origin � =�= 0 (see Supplementary Information 3).
Note that electron pumping in restricted nano-devices8–11 is not
topological, because in that case the amount of the charge
pumped per cycle instead depends on the area of the enclosed
parameter space25, which is the geometry but not the topology of
the trajectory. To highlight the topological nature of Rice–Mele
pumping, we investigate four distinct pumping sequences with
trajectories shown schematically in Fig. 3b–e. In Fig. 3a, we plot
the CoM shifts of two cRM pumping schemes with (VS, VL) =

(20, 30)ER (Fig. 3b,e) and two amplitude-modified cRM pumping
schemes (Fig. 3c,d). Evidently, the sequence which does not wind
around the origin (Fig. 3d) results in no pumping, and those
with winding trajectories (Fig. 3b,c,e) result in finite pumping.
Also the forward cRM pumping (Fig. 3b) and the amplitude-
modified cRM pumping (Fig. 3c) exhibit almost the same pumping
behaviour, although the area enclosed by the trajectory of Fig. 3c
is actually smaller than that of Fig. 3b. This is direct evidence of
the topological nature of the pump. Note that the band structure
in the k–t space of the nontrivial pumping sequence (Fig. 3c)
is identical to that of the trivial pumping (Fig. 3d). However,
the Berry curvature and the Chern number of the lowest band
are di�erent. This highlights the fact that the pumped charge is
a topological quantity, which depends on the wavefunction but
not on the band dispersions. Furthermore, we also performed the
cRM pumping with a negative sweep of the phase �(t)=�⇡t/T ,
which corresponds to an opposite winding in the �–� plane, and
the cloud is pumped in the opposite direction even though the
band dispersion remains identical to that of the forward sweep
pumping (Fig. 3e).
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as �(t) =⇡t/T , the hopping amplitudes and on-site energies are
modulated periodically. Our ab initio calculation shows that the
cRM pumping scheme used in the experiment is topologically
equivalent to the Rice–Mele model for atoms that reside in the
lowest energy band, because the Chern numbers are the same (see
Supplementary Information 3). In the following, wewill thus use the
tight-binding Rice–Mele Hamiltonian to simplify the discussion of
the pumping sequence as a closed trajectory in the �–� parameter
plane (Fig. 1b). Note that, as shown in Fig. 1c, our system has
metallic edge states and thermal holes due to the combination of the
trapping potential and finite temperature. We estimate the filling of
the lattice is typically ⇠0.7 for each spin at the centre of the trap.
However, in the case of our deep optical lattice systems, the shift
of the CoM of the atomic cloud still constitutes a quantized shift
in spite of these thermal and finite size e�ects (see Supplementary
Information 2).

Figure 2 shows the main results of our pumping experiments.
Our stable absorption imaging systemwith a charge-coupled-device
(CCD) camera enables us to accuratelymeasure the shift of the CoM
of the atomic cloud after several pumping cycles (see Supplementary
Information 5), as shown in Fig. 2a,b. The period T is fixed to
50ms for the results shown in Fig. 2. One can clearly recognize the
sizable CoM shift along the z-direction. We plot the in situ CoM
positions of the atomic cloud after a few pumping cycles in Fig. 2d.
The averaged CoM shift per cycle hz(t) � z(0)i/(td) of the cRM
pumping with (VS,VL) = (20, 30)ER is evaluated to be 0.94(7) for
t6T . This provides a direct measurement of the Chern number of
the occupied energy band, which is consistent with the ideal value
⌫ =1. As a comparison, the observed average CoM shift per cycle of
a sliding lattice (VS,VL)= (0, 40)ER is 0.94(4), which is again close
to the ideal value of ⌫ = 1. Classically it is fairly intuitive that the
sliding lattice is able to transfer atoms because the potential minima
are moving in space. However, even though the potential minima
of the cRM pump (VS,VL)= (20, 30)ER are not moving in space, as
shown in Fig. 1c, the pumping is topologically equivalent because of
the same Chern number of the occupied band. The cRM lattice has
the same ability to transfer atoms residing in the lowest energy band,
even though the pumping is achieved by a sequence of quantum

tunnelling events between the double wells (see Supplementary
Information 4). We attribute the saturating behaviour of the cRM
pumping for t > 6T to the e�ect of the harmonic confinement,
whose variation can be comparable to the bandgap for a large CoM
shift22 (see Supplementary Information 6).

A striking feature of our pump is its topological nature. In
particular, the pumped amount in the Rice–Mele model23,24 is
directly related to the topology of the trajectory in the �–� plane.
It depends only on the winding number w of the trajectory that
encloses the origin � =�= 0 (see Supplementary Information 3).
Note that electron pumping in restricted nano-devices8–11 is not
topological, because in that case the amount of the charge
pumped per cycle instead depends on the area of the enclosed
parameter space25, which is the geometry but not the topology of
the trajectory. To highlight the topological nature of Rice–Mele
pumping, we investigate four distinct pumping sequences with
trajectories shown schematically in Fig. 3b–e. In Fig. 3a, we plot
the CoM shifts of two cRM pumping schemes with (VS, VL) =

(20, 30)ER (Fig. 3b,e) and two amplitude-modified cRM pumping
schemes (Fig. 3c,d). Evidently, the sequence which does not wind
around the origin (Fig. 3d) results in no pumping, and those
with winding trajectories (Fig. 3b,c,e) result in finite pumping.
Also the forward cRM pumping (Fig. 3b) and the amplitude-
modified cRM pumping (Fig. 3c) exhibit almost the same pumping
behaviour, although the area enclosed by the trajectory of Fig. 3c
is actually smaller than that of Fig. 3b. This is direct evidence of
the topological nature of the pump. Note that the band structure
in the k–t space of the nontrivial pumping sequence (Fig. 3c)
is identical to that of the trivial pumping (Fig. 3d). However,
the Berry curvature and the Chern number of the lowest band
are di�erent. This highlights the fact that the pumped charge is
a topological quantity, which depends on the wavefunction but
not on the band dispersions. Furthermore, we also performed the
cRM pumping with a negative sweep of the phase �(t)=�⇡t/T ,
which corresponds to an opposite winding in the �–� plane, and
the cloud is pumped in the opposite direction even though the
band dispersion remains identical to that of the forward sweep
pumping (Fig. 3e).
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as �(t) =⇡t/T , the hopping amplitudes and on-site energies are
modulated periodically. Our ab initio calculation shows that the
cRM pumping scheme used in the experiment is topologically
equivalent to the Rice–Mele model for atoms that reside in the
lowest energy band, because the Chern numbers are the same (see
Supplementary Information 3). In the following, wewill thus use the
tight-binding Rice–Mele Hamiltonian to simplify the discussion of
the pumping sequence as a closed trajectory in the �–� parameter
plane (Fig. 1b). Note that, as shown in Fig. 1c, our system has
metallic edge states and thermal holes due to the combination of the
trapping potential and finite temperature. We estimate the filling of
the lattice is typically ⇠0.7 for each spin at the centre of the trap.
However, in the case of our deep optical lattice systems, the shift
of the CoM of the atomic cloud still constitutes a quantized shift
in spite of these thermal and finite size e�ects (see Supplementary
Information 2).

Figure 2 shows the main results of our pumping experiments.
Our stable absorption imaging systemwith a charge-coupled-device
(CCD) camera enables us to accuratelymeasure the shift of the CoM
of the atomic cloud after several pumping cycles (see Supplementary
Information 5), as shown in Fig. 2a,b. The period T is fixed to
50ms for the results shown in Fig. 2. One can clearly recognize the
sizable CoM shift along the z-direction. We plot the in situ CoM
positions of the atomic cloud after a few pumping cycles in Fig. 2d.
The averaged CoM shift per cycle hz(t) � z(0)i/(td) of the cRM
pumping with (VS,VL) = (20, 30)ER is evaluated to be 0.94(7) for
t6T . This provides a direct measurement of the Chern number of
the occupied energy band, which is consistent with the ideal value
⌫ =1. As a comparison, the observed average CoM shift per cycle of
a sliding lattice (VS,VL)= (0, 40)ER is 0.94(4), which is again close
to the ideal value of ⌫ = 1. Classically it is fairly intuitive that the
sliding lattice is able to transfer atoms because the potential minima
are moving in space. However, even though the potential minima
of the cRM pump (VS,VL)= (20, 30)ER are not moving in space, as
shown in Fig. 1c, the pumping is topologically equivalent because of
the same Chern number of the occupied band. The cRM lattice has
the same ability to transfer atoms residing in the lowest energy band,
even though the pumping is achieved by a sequence of quantum

tunnelling events between the double wells (see Supplementary
Information 4). We attribute the saturating behaviour of the cRM
pumping for t > 6T to the e�ect of the harmonic confinement,
whose variation can be comparable to the bandgap for a large CoM
shift22 (see Supplementary Information 6).

A striking feature of our pump is its topological nature. In
particular, the pumped amount in the Rice–Mele model23,24 is
directly related to the topology of the trajectory in the �–� plane.
It depends only on the winding number w of the trajectory that
encloses the origin � =�= 0 (see Supplementary Information 3).
Note that electron pumping in restricted nano-devices8–11 is not
topological, because in that case the amount of the charge
pumped per cycle instead depends on the area of the enclosed
parameter space25, which is the geometry but not the topology of
the trajectory. To highlight the topological nature of Rice–Mele
pumping, we investigate four distinct pumping sequences with
trajectories shown schematically in Fig. 3b–e. In Fig. 3a, we plot
the CoM shifts of two cRM pumping schemes with (VS, VL) =

(20, 30)ER (Fig. 3b,e) and two amplitude-modified cRM pumping
schemes (Fig. 3c,d). Evidently, the sequence which does not wind
around the origin (Fig. 3d) results in no pumping, and those
with winding trajectories (Fig. 3b,c,e) result in finite pumping.
Also the forward cRM pumping (Fig. 3b) and the amplitude-
modified cRM pumping (Fig. 3c) exhibit almost the same pumping
behaviour, although the area enclosed by the trajectory of Fig. 3c
is actually smaller than that of Fig. 3b. This is direct evidence of
the topological nature of the pump. Note that the band structure
in the k–t space of the nontrivial pumping sequence (Fig. 3c)
is identical to that of the trivial pumping (Fig. 3d). However,
the Berry curvature and the Chern number of the lowest band
are di�erent. This highlights the fact that the pumped charge is
a topological quantity, which depends on the wavefunction but
not on the band dispersions. Furthermore, we also performed the
cRM pumping with a negative sweep of the phase �(t)=�⇡t/T ,
which corresponds to an opposite winding in the �–� plane, and
the cloud is pumped in the opposite direction even though the
band dispersion remains identical to that of the forward sweep
pumping (Fig. 3e).
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as �(t) =⇡t/T , the hopping amplitudes and on-site energies are
modulated periodically. Our ab initio calculation shows that the
cRM pumping scheme used in the experiment is topologically
equivalent to the Rice–Mele model for atoms that reside in the
lowest energy band, because the Chern numbers are the same (see
Supplementary Information 3). In the following, wewill thus use the
tight-binding Rice–Mele Hamiltonian to simplify the discussion of
the pumping sequence as a closed trajectory in the �–� parameter
plane (Fig. 1b). Note that, as shown in Fig. 1c, our system has
metallic edge states and thermal holes due to the combination of the
trapping potential and finite temperature. We estimate the filling of
the lattice is typically ⇠0.7 for each spin at the centre of the trap.
However, in the case of our deep optical lattice systems, the shift
of the CoM of the atomic cloud still constitutes a quantized shift
in spite of these thermal and finite size e�ects (see Supplementary
Information 2).

Figure 2 shows the main results of our pumping experiments.
Our stable absorption imaging systemwith a charge-coupled-device
(CCD) camera enables us to accuratelymeasure the shift of the CoM
of the atomic cloud after several pumping cycles (see Supplementary
Information 5), as shown in Fig. 2a,b. The period T is fixed to
50ms for the results shown in Fig. 2. One can clearly recognize the
sizable CoM shift along the z-direction. We plot the in situ CoM
positions of the atomic cloud after a few pumping cycles in Fig. 2d.
The averaged CoM shift per cycle hz(t) � z(0)i/(td) of the cRM
pumping with (VS,VL) = (20, 30)ER is evaluated to be 0.94(7) for
t6T . This provides a direct measurement of the Chern number of
the occupied energy band, which is consistent with the ideal value
⌫ =1. As a comparison, the observed average CoM shift per cycle of
a sliding lattice (VS,VL)= (0, 40)ER is 0.94(4), which is again close
to the ideal value of ⌫ = 1. Classically it is fairly intuitive that the
sliding lattice is able to transfer atoms because the potential minima
are moving in space. However, even though the potential minima
of the cRM pump (VS,VL)= (20, 30)ER are not moving in space, as
shown in Fig. 1c, the pumping is topologically equivalent because of
the same Chern number of the occupied band. The cRM lattice has
the same ability to transfer atoms residing in the lowest energy band,
even though the pumping is achieved by a sequence of quantum

tunnelling events between the double wells (see Supplementary
Information 4). We attribute the saturating behaviour of the cRM
pumping for t > 6T to the e�ect of the harmonic confinement,
whose variation can be comparable to the bandgap for a large CoM
shift22 (see Supplementary Information 6).

A striking feature of our pump is its topological nature. In
particular, the pumped amount in the Rice–Mele model23,24 is
directly related to the topology of the trajectory in the �–� plane.
It depends only on the winding number w of the trajectory that
encloses the origin � =�= 0 (see Supplementary Information 3).
Note that electron pumping in restricted nano-devices8–11 is not
topological, because in that case the amount of the charge
pumped per cycle instead depends on the area of the enclosed
parameter space25, which is the geometry but not the topology of
the trajectory. To highlight the topological nature of Rice–Mele
pumping, we investigate four distinct pumping sequences with
trajectories shown schematically in Fig. 3b–e. In Fig. 3a, we plot
the CoM shifts of two cRM pumping schemes with (VS, VL) =

(20, 30)ER (Fig. 3b,e) and two amplitude-modified cRM pumping
schemes (Fig. 3c,d). Evidently, the sequence which does not wind
around the origin (Fig. 3d) results in no pumping, and those
with winding trajectories (Fig. 3b,c,e) result in finite pumping.
Also the forward cRM pumping (Fig. 3b) and the amplitude-
modified cRM pumping (Fig. 3c) exhibit almost the same pumping
behaviour, although the area enclosed by the trajectory of Fig. 3c
is actually smaller than that of Fig. 3b. This is direct evidence of
the topological nature of the pump. Note that the band structure
in the k–t space of the nontrivial pumping sequence (Fig. 3c)
is identical to that of the trivial pumping (Fig. 3d). However,
the Berry curvature and the Chern number of the lowest band
are di�erent. This highlights the fact that the pumped charge is
a topological quantity, which depends on the wavefunction but
not on the band dispersions. Furthermore, we also performed the
cRM pumping with a negative sweep of the phase �(t)=�⇡t/T ,
which corresponds to an opposite winding in the �–� plane, and
the cloud is pumped in the opposite direction even though the
band dispersion remains identical to that of the forward sweep
pumping (Fig. 3e).
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Exploring 4D quantum Hall physics with a 2D 
topological charge pump
Michael Lohse1,2, Christian Schweizer1,2, Hannah M. Price3,4, Oded Zilberberg5 & Immanuel Bloch1,2

The discovery of topological states of matter has greatly improved 
our understanding of phase transitions in physical systems. Instead 
of being described by local order parameters, topological phases are 
described by global topological invariants and are therefore robust 
against perturbations. A prominent example is the two-dimensional 
(2D) integer quantum Hall effect1: it is characterized by the first 
Chern number, which manifests in the quantized Hall response 
that is induced by an external electric field2. Generalizing the 
quantum Hall effect to four-dimensional (4D) systems leads to the 
appearance of an additional quantized Hall response, but one that is 
nonlinear and described by a 4D topological invariant—the second 
Chern number3,4. Here we report the observation of a bulk response 
with intrinsic 4D topology and demonstrate its quantization by 
measuring the associated second Chern number. By implementing 
a 2D topological charge pump using ultracold bosonic atoms in an 
angled optical superlattice, we realize a dynamical version of the 4D 
integer quantum Hall effect5,6. Using a small cloud of atoms as a local 
probe, we fully characterize the nonlinear response of the system via 
in situ imaging and site-resolved band mapping. Our findings pave 
the way to experimentally probing higher-dimensional quantum 
Hall systems, in which additional strongly correlated topological 
phases, exotic collective excitations and boundary phenomena such 
as isolated Weyl fermions are predicted4.

Topology, originally a branch of mathematics, has become an impor-
tant concept in different fields of physics, including particle physics7, 
solid-state physics8 and quantum computation9. In this context, a 
hallmark achievement was the discovery of the 2D integer quantum 
Hall effect1. This discovery demonstrated that the Hall conductance 
in a perpendicular magnetic field and in response to an electric field 
E is quantized. In a cylindrical geometry, following Laughlin’s thought 
experiment, E can be generated by varying the time-dependant mag-
netic flux φx(t) along the axis (x) of the cylinder10 (Fig. 1a). The inter-
play between the perpendicular magnetic field and the induced electric 
field Ez creates a quantized Hall response in the x direction: an integer 
number of particles, determined by the first Chern number, is trans-
ported between the edges per quantum of magnetic flux that is threaded 
through the cylinder2.

Dimensionality is crucial for topological phases and many intrigu-
ing states were recently discovered in three dimensions, such as Weyl 
semimetals11,12 and three-dimensional (3D) topological insulators13. 
Ascending further in dimensions, a 4D generalization of the quan-
tum Hall effect has been proposed in the context of astrophysics3 and 
condensed-matter systems4, and has received much attention in theo-
retical studies8. Unlike its 2D equivalent, the 4D quantum Hall effect 
can occur in systems with and without time-reversal symmetry3,4. The 
former constitutes the fundamental model from which many low-
er-dimensional time-reversal-symmetric topological insulators can 
be derived8,14. Furthermore, a 4D quantum Hall system might exhibit 
relativistic collective hyperedge excitations and new strongly corre-
lated quantum Hall phases, revealing the interplay between quantum 
correlations and dimensionality4. This interest was renewed recently as 

a result of the unprecedented control and flexibility made possible by 
engineered systems such as ultracold atoms and photonics. Such sys-
tems have been used to study various topological effects15,16, including 
a measurement of the second Chern number in an artificially generated 
parameter space17, and offer a direct route for realizing 4D physics 
using synthetic dimensions18–20.

In the simplest case, a 4D quantum Hall system can be composed of 
two 2D quantum Hall systems in orthogonal subspaces (Fig. 1a, b). In 
addition to the quantized linear response that underlies the 2D quan-
tum Hall effect, a 4D quantum Hall system exhibits a quantized non-
linear 4D Hall response6. The latter arises when—simultaneously with 
the perturbing electric field E—a magnetic perturbation B is added. 
The 4D geometry implies multiple possibilities for the orientation of E 
and B; however, the resulting nonlinear response is always character-
ized by the same 4D topological invariant, the second Chern number. 
Here, we focus on the geometry depicted in Fig. 1a, b, in which the 
nonlinear response can be understood semi-classically as originat-
ing from a Lorentz force created by B, which couples the motion in 
the two 2D quantum Hall systems21. The direction of this response is 
transverse to both perturbing fields. Hence, it can occur only in four 
or more dimensions and has therefore never been observed in any 
physical system.

Topological charge pumps exhibit topological transport properties 
that are similar to higher-dimensional quantum Hall systems and pro-
vide a way to probe 4D quantum Hall physics in lower-dimensional 
dynamical systems. The first example of a topological charge pump 
was the one-dimensional (1D) Thouless pump5, in which an adiaba-
tic periodic modulation generates a quantized particle transport. This 
modulation can be parameterized by a pump parameter and, at each 
point in the cycle, the 1D system constitutes a Fourier component of 
a 2D quantum Hall system14,22. The induced motion is thus equiva-
lent to the linear Hall response and is characterized by the same 2D 
topological invariant, the first Chern number. Indeed, the quantum 
Hall effect on a cylinder can be mapped to a 1D charge pump with the 
threaded magnetic flux φx acting as the pump parameter10 (Fig. 1a). 
Building on early condensed-matter experiments23, topological charge 
pumps have recently been realized in photonic waveguides24 and by 
using ultracold atoms25,26.

A dynamical 4D quantum Hall effect can accordingly be realized by 
using a 2D topological charge pump6. Using dimensional reduction14,22, 
the Fourier components of a 4D quantum Hall system can be mapped 
onto a 2D system. For the geometry in Fig. 1a, b, the corresponding 2D 
model is a square superlattice (Fig. 1c, Methods), which consists of two 
1D superlattices along the x and y directions, each formed by superim-
posing two lattices: Vs,µsin2(πµ/ds,µ) + Vl,µsin2(πµ/dl,µ −  ϕµ/2), with 
µ ∈ {x, y}. Here, ds,µ and dl,µ > ds,µ denote the period of the short and 
long lattices, respectively, and Vs,µ and Vl,µ the depths of the short and 
long lattice potentials. The position of the long lattice is determined by 
the corresponding superlattice phase ϕµ.

The phase ϕx is chosen as the pump parameter; that is, pumping is 
performed by moving the long lattice along x. This method of pumping 

1Fakultät für Physik, Ludwig-Maximilians-Universität, Schellingstraße 4, 80799 München, Germany. 2Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany. 
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B15 2TT, UK. 5Institut für Theoretische Physik, ETH Zürich, Wolfgang-Pauli-Straße 27, 8093 Zürich, Switzerland.
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Figure 6: The blue curve shows the Hall resistance ⇢yx as a function of the gate

voltage at zero magnetic field. Note the plateau at Vg = 0, which is the point corre-

sponding to a filled band. (Figure from Ref. [15].)

breaks the invariance under time reversal, which is necessary to have a Hall
effect. This phase of matter described by Haldane is now called a Chern insu-

lator, and twentyfive years later, in 2013, a quantized Hall effect was observed
in thin films of Cr-doped (Bi,Sb)2Te3 at zero magnetic field, thus providing
the first experimental detection of this phase of matter [15]. In Fig. 6 we see
a clear plateau in the Hall resistance ⇢yx at a density (regulated by the gate
voltage) corresponding to a filled band. The later development of topological

band theory will be discussed in the concluding section.

5 Quantum spin chains and symmetry-protected

topological phases of matter

One dimensional systems, such as spin chains, or electrons moving in thin
wires, are radically different from their relatives in higher dimensions. The
reason for this is that both thermal and quantum fluctuations are much more
important and prevent most of the symmetry-breaking patterns that charac-
terise phases in higher dimension. A lot of important work in the 1960s and
1970s had established quite a complete and coherent picture of both quantum
and classical one-dimensional systems. In the quantum case there are various
transformations, both in the continuum and on the lattice, that map seem-
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Quench Dynamics 

ζðk; tÞ ¼ exp
!
−
i
2
hfðkÞ · σt

"
ζiðkÞ; ð2Þ

and by introducing a Bloch vector,

n ¼ ζ†ðk; tÞσζðk; tÞ; ð3Þ

Eqs. (2) and (3) together define a mapping f from ½kx; ky; t%
to the Bloch sphere n.
Scheme.—Taking any two constant vectors n1 and n2 on

the Bloch sphere, their inverse images f−1ðn1Þ and f−1ðn2Þ
are two trajectories in the ½kx; ky; t% space. The linking
number of these two trajectories within the first Brillouin
zone equals the Chern number of the ground state for the
final Hamiltonian at the same filling [23].
Example to illustrate the scheme.—As a concrete exam-

ple to illustrate our proposal, we consider the Haldane
model in a honeycomb lattice [see Fig. 1(a)]. The particle
annihilation operators at two sublattices of the honeycomb
lattices are denoted by âri and b̂ri . The tight-binding model
is written as

Ĥ ¼ −J0
X

ri;j

ðâ†ri b̂riþ dj þ H:c:Þ þ M
X

ri

ðâ†ri âri − b̂†ri b̂riÞ

þ J1
X

ri;j

ðe−iϕâ†ri âriþ aj þ eiϕb̂†ri b̂riþ aj þ H:c:Þ; ð4Þ

where d1;2 ¼ ð'
ffiffiffi
3
p

=2; 1=2Þa0, d3 ¼ ð0;−1Þa0 are the
three vectors connecting the nearest-neighboring sites,
and a1;2 ¼ ð−

ffiffiffi
3
p

=2; ' 3=2Þa0 and a3 ¼ ð
ffiffiffi
3
p

; 0Þa0 are
the three vectors connecting the next-nearest-neighboring
sites, with a0 being the lattice spacing. The next-nearest
hopping has a phase factor that is opposite between A and B
sublattices. In the momentum space, Eq. (4) becomes

Ĥ ¼
X

k

ðâ†k; b̂
†
kÞHðkÞ

!
âk
b̂k

"
; ð5Þ

and aside from a term proportional to the identity matrix,
HðkÞ takes the same form as Eq. (1), with

hxðkÞ ¼ −2J0
X

i

cosðk · diÞ; ð6Þ

hyðkÞ ¼ −2J0
X

i

sinðk · diÞ; ð7Þ

hzðkÞ ¼ 2M þ 4J1 sinϕ
X

i

sinðk · aiÞ: ð8Þ

The phase diagram of this Haldane model at half filling
(with the lower band filled) is shown in Fig. 1(b), where
two topologically nontrivial regimes have Chern numbers
þ 1 and −1, respectively. Here, we consider a sudden
change of M and ϕ starting from the topologically trivial
regime, as indicated by the arrow in Fig. 1(b).
In Fig. 2 we show two sets of examples. In Figs. 2(a)

and 2(b), we consider the inverse image of two vectors n
and −n on the equator. One can see that if Hf is in the
topologically trivial regime, as shown in Fig. 2(a), f−1ðnÞ
sits inside the trajectory of f−1ð−nÞ, and the linking
number is zero; while if Hf is in the topologically non-
trivial regime, as shown in Fig. 2(b), these two trajectories
link 3 times. This is because, to avoid the discontinuity
of the trajectory across the boundary of the first Brillouin
zone, our plot spans the momentum regime including
three replicas of the first Brillouin zone. Within the first
Brillouin zone, the linking number is unity that equals
to the Chern number of Hf. Similarly, we consider the
inverse images of the north and the south pole. As shown in
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FIG. 1. (a) Schematic of hopping in the Haldane model in a
honeycomb lattice. (b) Phase diagram of the Haldane model. The
arrow indicates a quench from a topologically trivial regime to a
topologically nontrivial regime.

FIG. 2. (a),(b) Inverse images of two vectors n and −n on the
equator, when the Hamiltonian is quenched from hiðkÞ with
M ¼ −∞ (topologically trivial regime) to hfðkÞ with ϕ ¼ 0.1
and M ¼ 1 (topologically trivial regime) (a), and to hfðkÞ with
ϕ ¼ π=2 and M ¼ 0 (topologically nontrivial regime) (b), re-
spectively. (c),(d) Inverse images of the north and the south poles,
when the Hamiltonian is quenched from hiðkÞ withM ¼ −1 and
ϕ ¼ π=2 to hfðkÞwithM ¼ 0.33

ffiffiffi
3
p

and ϕ ¼ π=2 (topologically
trivial regime) (c), and to hfðkÞ with M ¼ 0.27

ffiffiffi
3
p

and ϕ ¼ π=2
(topologically nontrivial regime) (d). For all plots we have taken
J0 ¼ 1 and J1 ¼ 0.1.
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Measuring Topological Number of a Chern-Insulator from Quench Dynamics

Ce Wang, Pengfei Zhang,⇤ Xin Chen, Jinlong Yu, and Hui Zhai†

Institute for Advanced Study, Tsinghua University, Beijing, 100084, China
(Dated: November 30, 2016)

In this letter we show how the topological number of a static Hamiltonian can be measured
from a dynamical quench process. We focus on a two-band Chern insulator in two-dimension, for
instance, the Haldane model, whose dynamical process can be described by a mapping from the
[kx, ky, t] space to the Bloch sphere, characterized by the Hopf invariant. Such a mapping has been
constructed experimentally by measurements in cold atom systems. We show that, taking any two
constant vectors on the Bloch sphere, their inverse images of this mapping are two trajectories in
the [kx, ky, t] space, and the linking number of these two trajectories exactly equals to the Chern
number of the static Hamiltonian. Applying this result to a recent experiment from the Hamburg
group, we show that the linking number of the trajectories of the phase vortices determines the
phase boundary of the static Hamiltonian.

Recently cold atom experiments have realized a num-
ber of topological models including the Hofstadter model
[1–3], the Haldane (and the Haldane-type) model [4,
5], the Su-Schrie↵er-Heeger model [6] and its Thouless
charge pumping [7–9]. One major advantage of studying
topological models in the context of cold atom systems,
in comparison with its condensed matter counterpart, is
that the experimental investigation of the dynamic pro-
cesses can be more easily accessible. For example, consid-
ering non-interacting fermions initially in a topologically
trivial insulator state of the initial Hamiltonian H

i, we
shall focus on a sudden quench to a final Hamiltonian
H

f, whose ground state is a topologically nontrivial insu-
lator (e.g. a Chern insulator) at the same filling, and the
question is whether the change of the topological number
can be revealed from measuring the dynamical process af-
ter the quench. In fact, such a quench experiment has
been performed recently in a Haldane-type model with
cold atoms by the Hamburg group [10]. Using a momen-
tum resolved quantum state tomography method [11–13],
they can map out the evolution of the wave function as
time evolves after the quench.

At equilibrium, for a Chern insulator, it is known that
the bulk Chern number, the number of edge states and
the quantization value of the Hall conductance are equal,
which is termed as “ the bulk-edge correspondence ”.
While for the non-equilibrium process after the quench,
there is no such clear relations between them. First of
all, because the time evolution after the quench is unitary,
the Chern number of the quantum state does not change
and does not reflect the topological number of the final
Hamiltonian [14]. Nevertheless, the edge state gradually
emerges [14–17]. Second, without dephasing, the Hall re-
sponse will not be well quantized for either a slow or a
sudden quench [18, 19]. While it is also found that the
Hall conductance can become finite even after quenching
to a topologically trivial final Hamiltonian [20]. There-
fore, it is desirable to know whether there is a way to
rigorously map out the topology of the band structure of
H

f through the quench dynamics.
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FIG. 1: (a) Schematic of hopping in the Haldane model in
a honeycomb lattice; (b) The phase diagram of the Haldane
model. The arrow indicates a quench from topologically triv-
ial regime to a topologically nontrivial regime.

In this letter we present a scheme to extract a quan-
tized value from the dynamical process after the quench,
and this quantized value is exactly the same as the topo-
logical Chern number of the final Hamiltonian H

f. This
scheme can be directly applied to analyze the recent ex-
perimental data from the Hamburg group (Ref. [10]), as
well as other similar systems (such as the ETH [4] and
the USTC experiments [5]), to determine the topological
phase diagram.
Summary of the Scheme. Before proceeding to details,

let us briefly summarize our scheme as follows:
Let us consider a general two-band tight-binding model

in two-dimension, and at each momentum, the Hamilto-
nian can be written as

H(k) =
1

2
h(k) · �, (1)

where � = (�x,�y,�z) is a vector of the Pauli matri-
ces. Thus, the eigen-energies of the Hamiltonian are
±|h(k)|/2, corresponding to the upper- and the lower-
bands, respectively. We further consider at each k, |h(k)|
is always non-zero, and the system is an insulator at half
filling. The two-component wave function is denoted by
⇣(k).
Here we consider the quench process that corresponds

to a sudden change of h(k) from a topologically trivial
hi(k) to hf(k). The initial wave function ⇣

i(k) is taken as

Description of Quench Dynamics

A two-band Chern Insulator

2

FIG. 2: (a-b) The inverse images of two vectors n and �n on
the equator, when the Hamiltonian is quenched from hi(k)
withM = �1 (topologically trivial regime) to hf(k) with � =
0.1 and M = 1 (topologically trivial regime)(a), and to hf(k)
with � = ⇡/2 and M = 0 (topologically nontrivial regime)(b),
respectively; (c-d) The inverse images of the north and the
south poles, when the Hamiltonian is quenched from hi(k)
with M = �1 and � = ⇡/2 to hf(k) with M = 0.33

p
3 and

� = ⇡/2 (topologically trivial regime) (c), and to hf(k) with
M = 0.27

p
3 and � = ⇡/2 (topologically nontrivial regime)

(d). For all plots we have taken J0 = 1 and J1 = 0.1.

the lower-band eigenstate of the initial Hamiltonian. Af-
ter the quench, the wave function will involve according
to the final Hamiltonian as

⇣(k, t) = exp

⇢
�
i

2
hf(k) · �t

�
⇣
i(k), (2)

and by introducing a Bloch vector

n = ⇣
†(k, t)�⇣(k, t), (3)

Eq. 2 and Eq. 3 together define a mapping f from
[kx, ky, t] to the Bloch sphere n.
The Scheme: Taking any two constant vectors n1

and n2 on the Bloch sphere, their inverse images f�1(n1)
and f

�1(n2) are two trajectories in the [kx, ky, t] space.
The linking number of these two trajectories within the
first Brillouin zone equals to the Chern number of the
ground state for the final Hamiltonian at the same filling
[21].
Example to Illustrate the Scheme. As a concrete ex-

ample to illustrate our proposal, we consider the Hal-
dane model in a honeycomb lattice [see Fig. 1(a)]. The
particle annihilation operators at two sublattices of the
honeycomb lattices are denoted by âri and b̂ri . The tight-
binding model is written as

Ĥ =� J0

X

ri,j

⇣
â
†
ri b̂ri+dj + h.c.

⌘
+M

X

ri

⇣
â
†
ri âri � b̂

†
ri b̂ri

⌘

+ J1

X

ri,j

⇣
e
�i�

â
†
ri âri+aj + e

i�
b̂
†
ri b̂ri+aj + h.c.

⌘
,

(4)

where d1,2 = (±
p
3/2, 1/2)a0, d3 = (0,�1)a0 are the

three vectors connecting the nearest neighboring sites;
and a1,2 = (�

p
3/2,±3/2)a0 and a3 = (

p
3, 0)a0 are

the three vectors connecting the next nearest neighboring
sites, with a0 being the lattice spacing. The next nearest
hopping has phase factor that is opposite between A and
B sublattices. In the momentum space, Eq. 4 becomes

Ĥ =
X

k

(â†k, b̂
†
k)H(k)

✓
âk

b̂k

◆
, (5)

and aside from a term proportional to the identity ma-
trix, H(k) takes the same form as Eq. 1 with

hx(k) = �2J0
X

i

cos(k · di), (6)

hy(k) = �2J0
X

i

sin(k · di), (7)

hz(k) = 2M + 4J1 sin�
X

i

sin(k · ai). (8)

The phase diagram of this Haldane model at half filling
(with the lower-band filled) is shown in Fig. 1(b), where
two topologically nontrivial regimes have the Chern num-
bers +1 and �1, respectively. Here we consider a sudden
change of M and � starting from the topologically trivial
regime, as indicated by the arrow in Fig. 1(b).
In Fig. 2 we show two sets of examples. In Fig. 2(a-b),

we consider the inverse image of two vectors n and �n
on the equator. One can see that if Hf is in the topolog-
ically trivial regime, as shown in Fig. 2(a), f�1(n) sets
inside the trajectory of f�1(�n), and the linking num-
ber is zero; while if Hf is in the topologically nontrivial
regime, as shown in Fig. 2(b), these two trajectories
link three times. This is because, to avoid the disconti-
nuity of the trajectory across the boundary of the first
Brillouin zone, our plot spans the momentum regime in-
cluding three replicas of the first Brillouin zone. Within
the first Brillouin zone, the linking number is unity that
equals to the Chern number of Hf. Similarly, we consider
the inverse images of the north and the south pole. As
shown in Fig. 2(c-d), the inverse image of the north pole
is a straight line in the K and K

0 points. While the in-
verse image of the south pole does not enclose the K or
K

0 point if Hf is in the topologically trivial regime [Fig.
2(c)], giving rise to linking number zero; and it encloses
three equivalent K or K 0 point when H

f is topologically
nontrivial [Fig. 2(d)], giving rise to linking number unity
within the first Brillouin zone.
Here we should put a remark of how to determine the

sign of the linking number. First of all, we note that
each trajectory actually has a direction, defining as the
direction of J with [22]

J
µ =

1

8⇡
✏
µ⌫�n · (@⌫n⇥ @�n), (9)

Initial  
hamiltonian
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In this letter we show how the topological number of a static Hamiltonian can be measured
from a dynamical quench process. We focus on a two-band Chern insulator in two-dimension, for
instance, the Haldane model, whose dynamical process can be described by a mapping from the
[kx, ky, t] space to the Bloch sphere, characterized by the Hopf invariant. Such a mapping has been
constructed experimentally by measurements in cold atom systems. We show that, taking any two
constant vectors on the Bloch sphere, their inverse images of this mapping are two trajectories in
the [kx, ky, t] space, and the linking number of these two trajectories exactly equals to the Chern
number of the static Hamiltonian. Applying this result to a recent experiment from the Hamburg
group, we show that the linking number of the trajectories of the phase vortices determines the
phase boundary of the static Hamiltonian.

Recently cold atom experiments have realized a num-
ber of topological models including the Hofstadter model
[1–3], the Haldane (and the Haldane-type) model [4,
5], the Su-Schrie↵er-Heeger model [6] and its Thouless
charge pumping [7–9]. One major advantage of studying
topological models in the context of cold atom systems,
in comparison with its condensed matter counterpart, is
that the experimental investigation of the dynamic pro-
cesses can be more easily accessible. For example, consid-
ering non-interacting fermions initially in a topologically
trivial insulator state of the initial Hamiltonian H

i, we
shall focus on a sudden quench to a final Hamiltonian
H

f, whose ground state is a topologically nontrivial insu-
lator (e.g. a Chern insulator) at the same filling, and the
question is whether the change of the topological number
can be revealed from measuring the dynamical process af-
ter the quench. In fact, such a quench experiment has
been performed recently in a Haldane-type model with
cold atoms by the Hamburg group [10]. Using a momen-
tum resolved quantum state tomography method [11–13],
they can map out the evolution of the wave function as
time evolves after the quench.

At equilibrium, for a Chern insulator, it is known that
the bulk Chern number, the number of edge states and
the quantization value of the Hall conductance are equal,
which is termed as “ the bulk-edge correspondence ”.
While for the non-equilibrium process after the quench,
there is no such clear relations between them. First of
all, because the time evolution after the quench is unitary,
the Chern number of the quantum state does not change
and does not reflect the topological number of the final
Hamiltonian [14]. Nevertheless, the edge state gradually
emerges [14–17]. Second, without dephasing, the Hall re-
sponse will not be well quantized for either a slow or a
sudden quench [18, 19]. While it is also found that the
Hall conductance can become finite even after quenching
to a topologically trivial final Hamiltonian [20]. There-
fore, it is desirable to know whether there is a way to
rigorously map out the topology of the band structure of
H

f through the quench dynamics.
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FIG. 1: (a) Schematic of hopping in the Haldane model in
a honeycomb lattice; (b) The phase diagram of the Haldane
model. The arrow indicates a quench from topologically triv-
ial regime to a topologically nontrivial regime.

In this letter we present a scheme to extract a quan-
tized value from the dynamical process after the quench,
and this quantized value is exactly the same as the topo-
logical Chern number of the final Hamiltonian H

f. This
scheme can be directly applied to analyze the recent ex-
perimental data from the Hamburg group (Ref. [10]), as
well as other similar systems (such as the ETH [4] and
the USTC experiments [5]), to determine the topological
phase diagram.

Summary of the Scheme. Before proceeding to details,
let us briefly summarize our scheme as follows:

Let us consider a general two-band tight-binding model
in two-dimension, and at each momentum, the Hamilto-
nian can be written as

H(k) =
1

2
h(k) · �, (1)

where � = (�x,�y,�z) is a vector of the Pauli matri-
ces. Thus, the eigen-energies of the Hamiltonian are
±|h(k)|/2, corresponding to the upper- and the lower-
bands, respectively. We further consider at each k, |h(k)|
is always non-zero, and the system is an insulator at half
filling. The two-component wave function is denoted by
⇣(k).

Here we consider the quench process that corresponds
to a sudden change of h(k) from a topologically trivial
hi(k) to hf(k). The initial wave function ⇣

i(k) is taken as
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instance, the Haldane model, whose dynamical process can be described by a mapping from the
[kx, ky, t] space to the Bloch sphere, characterized by the Hopf invariant. Such a mapping has been
constructed experimentally by measurements in cold atom systems. We show that, taking any two
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the [kx, ky, t] space, and the linking number of these two trajectories exactly equals to the Chern
number of the static Hamiltonian. Applying this result to a recent experiment from the Hamburg
group, we show that the linking number of the trajectories of the phase vortices determines the
phase boundary of the static Hamiltonian.

Recently cold atom experiments have realized a num-
ber of topological models including the Hofstadter model
[1–3], the Haldane (and the Haldane-type) model [4,
5], the Su-Schrie↵er-Heeger model [6] and its Thouless
charge pumping [7–9]. One major advantage of studying
topological models in the context of cold atom systems,
in comparison with its condensed matter counterpart, is
that the experimental investigation of the dynamic pro-
cesses can be more easily accessible. For example, consid-
ering non-interacting fermions initially in a topologically
trivial insulator state of the initial Hamiltonian H

i, we
shall focus on a sudden quench to a final Hamiltonian
H

f, whose ground state is a topologically nontrivial insu-
lator (e.g. a Chern insulator) at the same filling, and the
question is whether the change of the topological number
can be revealed from measuring the dynamical process af-
ter the quench. In fact, such a quench experiment has
been performed recently in a Haldane-type model with
cold atoms by the Hamburg group [10]. Using a momen-
tum resolved quantum state tomography method [11–13],
they can map out the evolution of the wave function as
time evolves after the quench.

At equilibrium, for a Chern insulator, it is known that
the bulk Chern number, the number of edge states and
the quantization value of the Hall conductance are equal,
which is termed as “ the bulk-edge correspondence ”.
While for the non-equilibrium process after the quench,
there is no such clear relations between them. First of
all, because the time evolution after the quench is unitary,
the Chern number of the quantum state does not change
and does not reflect the topological number of the final
Hamiltonian [14]. Nevertheless, the edge state gradually
emerges [14–17]. Second, without dephasing, the Hall re-
sponse will not be well quantized for either a slow or a
sudden quench [18, 19]. While it is also found that the
Hall conductance can become finite even after quenching
to a topologically trivial final Hamiltonian [20]. There-
fore, it is desirable to know whether there is a way to
rigorously map out the topology of the band structure of
H

f through the quench dynamics.
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FIG. 1: (a) Schematic of hopping in the Haldane model in
a honeycomb lattice; (b) The phase diagram of the Haldane
model. The arrow indicates a quench from topologically triv-
ial regime to a topologically nontrivial regime.

In this letter we present a scheme to extract a quan-
tized value from the dynamical process after the quench,
and this quantized value is exactly the same as the topo-
logical Chern number of the final Hamiltonian H

f. This
scheme can be directly applied to analyze the recent ex-
perimental data from the Hamburg group (Ref. [10]), as
well as other similar systems (such as the ETH [4] and
the USTC experiments [5]), to determine the topological
phase diagram.
Summary of the Scheme. Before proceeding to details,

let us briefly summarize our scheme as follows:
Let us consider a general two-band tight-binding model

in two-dimension, and at each momentum, the Hamilto-
nian can be written as

H(k) =
1

2
h(k) · �, (1)

where � = (�x,�y,�z) is a vector of the Pauli matri-
ces. Thus, the eigen-energies of the Hamiltonian are
±|h(k)|/2, corresponding to the upper- and the lower-
bands, respectively. We further consider at each k, |h(k)|
is always non-zero, and the system is an insulator at half
filling. The two-component wave function is denoted by
⇣(k).
Here we consider the quench process that corresponds

to a sudden change of h(k) from a topologically trivial
hi(k) to hf(k). The initial wave function ⇣

i(k) is taken as

A two-band Chern Insulator

2

FIG. 2: (a-b) The inverse images of two vectors n and �n on
the equator, when the Hamiltonian is quenched from hi(k)
withM = �1 (topologically trivial regime) to hf(k) with � =
0.1 and M = 1 (topologically trivial regime)(a), and to hf(k)
with � = ⇡/2 and M = 0 (topologically nontrivial regime)(b),
respectively; (c-d) The inverse images of the north and the
south poles, when the Hamiltonian is quenched from hi(k)
with M = �1 and � = ⇡/2 to hf(k) with M = 0.33

p
3 and

� = ⇡/2 (topologically trivial regime) (c), and to hf(k) with
M = 0.27

p
3 and � = ⇡/2 (topologically nontrivial regime)

(d). For all plots we have taken J0 = 1 and J1 = 0.1.

the lower-band eigenstate of the initial Hamiltonian. Af-
ter the quench, the wave function will involve according
to the final Hamiltonian as

⇣(k, t) = exp

⇢
�
i

2
hf(k) · �t

�
⇣
i(k), (2)

and by introducing a Bloch vector

n = ⇣
†(k, t)�⇣(k, t), (3)

Eq. 2 and Eq. 3 together define a mapping f from
[kx, ky, t] to the Bloch sphere n.
The Scheme: Taking any two constant vectors n1

and n2 on the Bloch sphere, their inverse images f�1(n1)
and f

�1(n2) are two trajectories in the [kx, ky, t] space.
The linking number of these two trajectories within the
first Brillouin zone equals to the Chern number of the
ground state for the final Hamiltonian at the same filling
[21].
Example to Illustrate the Scheme. As a concrete ex-

ample to illustrate our proposal, we consider the Hal-
dane model in a honeycomb lattice [see Fig. 1(a)]. The
particle annihilation operators at two sublattices of the
honeycomb lattices are denoted by âri and b̂ri . The tight-
binding model is written as

Ĥ =� J0

X

ri,j

⇣
â
†
ri b̂ri+dj + h.c.

⌘
+M

X

ri

⇣
â
†
ri âri � b̂

†
ri b̂ri

⌘

+ J1

X

ri,j

⇣
e
�i�

â
†
ri âri+aj + e

i�
b̂
†
ri b̂ri+aj + h.c.

⌘
,

(4)

where d1,2 = (±
p
3/2, 1/2)a0, d3 = (0,�1)a0 are the

three vectors connecting the nearest neighboring sites;
and a1,2 = (�

p
3/2,±3/2)a0 and a3 = (

p
3, 0)a0 are

the three vectors connecting the next nearest neighboring
sites, with a0 being the lattice spacing. The next nearest
hopping has phase factor that is opposite between A and
B sublattices. In the momentum space, Eq. 4 becomes

Ĥ =
X

k

(â†k, b̂
†
k)H(k)

✓
âk

b̂k

◆
, (5)

and aside from a term proportional to the identity ma-
trix, H(k) takes the same form as Eq. 1 with

hx(k) = �2J0
X

i

cos(k · di), (6)

hy(k) = �2J0
X

i

sin(k · di), (7)

hz(k) = 2M + 4J1 sin�
X

i

sin(k · ai). (8)

The phase diagram of this Haldane model at half filling
(with the lower-band filled) is shown in Fig. 1(b), where
two topologically nontrivial regimes have the Chern num-
bers +1 and �1, respectively. Here we consider a sudden
change of M and � starting from the topologically trivial
regime, as indicated by the arrow in Fig. 1(b).
In Fig. 2 we show two sets of examples. In Fig. 2(a-b),

we consider the inverse image of two vectors n and �n
on the equator. One can see that if Hf is in the topolog-
ically trivial regime, as shown in Fig. 2(a), f�1(n) sets
inside the trajectory of f�1(�n), and the linking num-
ber is zero; while if Hf is in the topologically nontrivial
regime, as shown in Fig. 2(b), these two trajectories
link three times. This is because, to avoid the disconti-
nuity of the trajectory across the boundary of the first
Brillouin zone, our plot spans the momentum regime in-
cluding three replicas of the first Brillouin zone. Within
the first Brillouin zone, the linking number is unity that
equals to the Chern number of Hf. Similarly, we consider
the inverse images of the north and the south pole. As
shown in Fig. 2(c-d), the inverse image of the north pole
is a straight line in the K and K

0 points. While the in-
verse image of the south pole does not enclose the K or
K

0 point if Hf is in the topologically trivial regime [Fig.
2(c)], giving rise to linking number zero; and it encloses
three equivalent K or K 0 point when H

f is topologically
nontrivial [Fig. 2(d)], giving rise to linking number unity
within the first Brillouin zone.
Here we should put a remark of how to determine the

sign of the linking number. First of all, we note that
each trajectory actually has a direction, defining as the
direction of J with [22]

J
µ =

1

8⇡
✏
µ⌫�n · (@⌫n⇥ @�n), (9)
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In this letter we show how the topological number of a static Hamiltonian can be measured
from a dynamical quench process. We focus on a two-band Chern insulator in two-dimension, for
instance, the Haldane model, whose dynamical process can be described by a mapping from the
[kx, ky, t] space to the Bloch sphere, characterized by the Hopf invariant. Such a mapping has been
constructed experimentally by measurements in cold atom systems. We show that, taking any two
constant vectors on the Bloch sphere, their inverse images of this mapping are two trajectories in
the [kx, ky, t] space, and the linking number of these two trajectories exactly equals to the Chern
number of the static Hamiltonian. Applying this result to a recent experiment from the Hamburg
group, we show that the linking number of the trajectories of the phase vortices determines the
phase boundary of the static Hamiltonian.

Recently cold atom experiments have realized a num-
ber of topological models including the Hofstadter model
[1–3], the Haldane (and the Haldane-type) model [4,
5], the Su-Schrie↵er-Heeger model [6] and its Thouless
charge pumping [7–9]. One major advantage of studying
topological models in the context of cold atom systems,
in comparison with its condensed matter counterpart, is
that the experimental investigation of the dynamic pro-
cesses can be more easily accessible. For example, consid-
ering non-interacting fermions initially in a topologically
trivial insulator state of the initial Hamiltonian H

i, we
shall focus on a sudden quench to a final Hamiltonian
H

f, whose ground state is a topologically nontrivial insu-
lator (e.g. a Chern insulator) at the same filling, and the
question is whether the change of the topological number
can be revealed from measuring the dynamical process af-
ter the quench. In fact, such a quench experiment has
been performed recently in a Haldane-type model with
cold atoms by the Hamburg group [10]. Using a momen-
tum resolved quantum state tomography method [11–13],
they can map out the evolution of the wave function as
time evolves after the quench.

At equilibrium, for a Chern insulator, it is known that
the bulk Chern number, the number of edge states and
the quantization value of the Hall conductance are equal,
which is termed as “ the bulk-edge correspondence ”.
While for the non-equilibrium process after the quench,
there is no such clear relations between them. First of
all, because the time evolution after the quench is unitary,
the Chern number of the quantum state does not change
and does not reflect the topological number of the final
Hamiltonian [14]. Nevertheless, the edge state gradually
emerges [14–17]. Second, without dephasing, the Hall re-
sponse will not be well quantized for either a slow or a
sudden quench [18, 19]. While it is also found that the
Hall conductance can become finite even after quenching
to a topologically trivial final Hamiltonian [20]. There-
fore, it is desirable to know whether there is a way to
rigorously map out the topology of the band structure of
H

f through the quench dynamics.
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FIG. 1: (a) Schematic of hopping in the Haldane model in
a honeycomb lattice; (b) The phase diagram of the Haldane
model. The arrow indicates a quench from topologically triv-
ial regime to a topologically nontrivial regime.

In this letter we present a scheme to extract a quan-
tized value from the dynamical process after the quench,
and this quantized value is exactly the same as the topo-
logical Chern number of the final Hamiltonian H

f. This
scheme can be directly applied to analyze the recent ex-
perimental data from the Hamburg group (Ref. [10]), as
well as other similar systems (such as the ETH [4] and
the USTC experiments [5]), to determine the topological
phase diagram.

Summary of the Scheme. Before proceeding to details,
let us briefly summarize our scheme as follows:

Let us consider a general two-band tight-binding model
in two-dimension, and at each momentum, the Hamilto-
nian can be written as

H(k) =
1

2
h(k) · �, (1)

where � = (�x,�y,�z) is a vector of the Pauli matri-
ces. Thus, the eigen-energies of the Hamiltonian are
±|h(k)|/2, corresponding to the upper- and the lower-
bands, respectively. We further consider at each k, |h(k)|
is always non-zero, and the system is an insulator at half
filling. The two-component wave function is denoted by
⇣(k).

Here we consider the quench process that corresponds
to a sudden change of h(k) from a topologically trivial
hi(k) to hf(k). The initial wave function ⇣

i(k) is taken as
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In this letter we show how the topological number of a static Hamiltonian can be measured
from a dynamical quench process. We focus on a two-band Chern insulator in two-dimension, for
instance, the Haldane model, whose dynamical process can be described by a mapping from the
[kx, ky, t] space to the Bloch sphere, characterized by the Hopf invariant. Such a mapping has been
constructed experimentally by measurements in cold atom systems. We show that, taking any two
constant vectors on the Bloch sphere, their inverse images of this mapping are two trajectories in
the [kx, ky, t] space, and the linking number of these two trajectories exactly equals to the Chern
number of the static Hamiltonian. Applying this result to a recent experiment from the Hamburg
group, we show that the linking number of the trajectories of the phase vortices determines the
phase boundary of the static Hamiltonian.

Recently cold atom experiments have realized a num-
ber of topological models including the Hofstadter model
[1–3], the Haldane (and the Haldane-type) model [4,
5], the Su-Schrie↵er-Heeger model [6] and its Thouless
charge pumping [7–9]. One major advantage of studying
topological models in the context of cold atom systems,
in comparison with its condensed matter counterpart, is
that the experimental investigation of the dynamic pro-
cesses can be more easily accessible. For example, consid-
ering non-interacting fermions initially in a topologically
trivial insulator state of the initial Hamiltonian H

i, we
shall focus on a sudden quench to a final Hamiltonian
H

f, whose ground state is a topologically nontrivial insu-
lator (e.g. a Chern insulator) at the same filling, and the
question is whether the change of the topological number
can be revealed from measuring the dynamical process af-
ter the quench. In fact, such a quench experiment has
been performed recently in a Haldane-type model with
cold atoms by the Hamburg group [10]. Using a momen-
tum resolved quantum state tomography method [11–13],
they can map out the evolution of the wave function as
time evolves after the quench.

At equilibrium, for a Chern insulator, it is known that
the bulk Chern number, the number of edge states and
the quantization value of the Hall conductance are equal,
which is termed as “ the bulk-edge correspondence ”.
While for the non-equilibrium process after the quench,
there is no such clear relations between them. First of
all, because the time evolution after the quench is unitary,
the Chern number of the quantum state does not change
and does not reflect the topological number of the final
Hamiltonian [14]. Nevertheless, the edge state gradually
emerges [14–17]. Second, without dephasing, the Hall re-
sponse will not be well quantized for either a slow or a
sudden quench [18, 19]. While it is also found that the
Hall conductance can become finite even after quenching
to a topologically trivial final Hamiltonian [20]. There-
fore, it is desirable to know whether there is a way to
rigorously map out the topology of the band structure of
H

f through the quench dynamics.
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FIG. 1: (a) Schematic of hopping in the Haldane model in
a honeycomb lattice; (b) The phase diagram of the Haldane
model. The arrow indicates a quench from topologically triv-
ial regime to a topologically nontrivial regime.

In this letter we present a scheme to extract a quan-
tized value from the dynamical process after the quench,
and this quantized value is exactly the same as the topo-
logical Chern number of the final Hamiltonian H

f. This
scheme can be directly applied to analyze the recent ex-
perimental data from the Hamburg group (Ref. [10]), as
well as other similar systems (such as the ETH [4] and
the USTC experiments [5]), to determine the topological
phase diagram.
Summary of the Scheme. Before proceeding to details,

let us briefly summarize our scheme as follows:
Let us consider a general two-band tight-binding model

in two-dimension, and at each momentum, the Hamilto-
nian can be written as

H(k) =
1

2
h(k) · �, (1)

where � = (�x,�y,�z) is a vector of the Pauli matri-
ces. Thus, the eigen-energies of the Hamiltonian are
±|h(k)|/2, corresponding to the upper- and the lower-
bands, respectively. We further consider at each k, |h(k)|
is always non-zero, and the system is an insulator at half
filling. The two-component wave function is denoted by
⇣(k).
Here we consider the quench process that corresponds

to a sudden change of h(k) from a topologically trivial
hi(k) to hf(k). The initial wave function ⇣

i(k) is taken as

Description of Quench Dynamics
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In this letter we show how the topological number of a static Hamiltonian can be measured
from a dynamical quench process. We focus on a two-band Chern insulator in two-dimension, for
instance, the Haldane model, whose dynamical process can be described by a mapping from the
[kx, ky, t] space to the Bloch sphere, characterized by the Hopf invariant. Such a mapping has been
constructed experimentally by measurements in cold atom systems. We show that, taking any two
constant vectors on the Bloch sphere, their inverse images of this mapping are two trajectories in
the [kx, ky, t] space, and the linking number of these two trajectories exactly equals to the Chern
number of the static Hamiltonian. Applying this result to a recent experiment from the Hamburg
group, we show that the linking number of the trajectories of the phase vortices determines the
phase boundary of the static Hamiltonian.

Recently cold atom experiments have realized a num-
ber of topological models including the Hofstadter model
[1–3], the Haldane (and the Haldane-type) model [4,
5], the Su-Schrie↵er-Heeger model [6] and its Thouless
charge pumping [7–9]. One major advantage of studying
topological models in the context of cold atom systems,
in comparison with its condensed matter counterpart, is
that the experimental investigation of the dynamic pro-
cesses can be more easily accessible. For example, consid-
ering non-interacting fermions initially in a topologically
trivial insulator state of the initial Hamiltonian H

i, we
shall focus on a sudden quench to a final Hamiltonian
H

f, whose ground state is a topologically nontrivial insu-
lator (e.g. a Chern insulator) at the same filling, and the
question is whether the change of the topological number
can be revealed from measuring the dynamical process af-
ter the quench. In fact, such a quench experiment has
been performed recently in a Haldane-type model with
cold atoms by the Hamburg group [10]. Using a momen-
tum resolved quantum state tomography method [11–13],
they can map out the evolution of the wave function as
time evolves after the quench.

At equilibrium, for a Chern insulator, it is known that
the bulk Chern number, the number of edge states and
the quantization value of the Hall conductance are equal,
which is termed as “ the bulk-edge correspondence ”.
While for the non-equilibrium process after the quench,
there is no such clear relations between them. First of
all, because the time evolution after the quench is unitary,
the Chern number of the quantum state does not change
and does not reflect the topological number of the final
Hamiltonian [14]. Nevertheless, the edge state gradually
emerges [14–17]. Second, without dephasing, the Hall re-
sponse will not be well quantized for either a slow or a
sudden quench [18, 19]. While it is also found that the
Hall conductance can become finite even after quenching
to a topologically trivial final Hamiltonian [20]. There-
fore, it is desirable to know whether there is a way to
rigorously map out the topology of the band structure of
H

f through the quench dynamics.
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FIG. 1: (a) Schematic of hopping in the Haldane model in
a honeycomb lattice; (b) The phase diagram of the Haldane
model. The arrow indicates a quench from topologically triv-
ial regime to a topologically nontrivial regime.

In this letter we present a scheme to extract a quan-
tized value from the dynamical process after the quench,
and this quantized value is exactly the same as the topo-
logical Chern number of the final Hamiltonian H

f. This
scheme can be directly applied to analyze the recent ex-
perimental data from the Hamburg group (Ref. [10]), as
well as other similar systems (such as the ETH [4] and
the USTC experiments [5]), to determine the topological
phase diagram.
Summary of the Scheme. Before proceeding to details,

let us briefly summarize our scheme as follows:
Let us consider a general two-band tight-binding model

in two-dimension, and at each momentum, the Hamilto-
nian can be written as

H(k) =
1

2
h(k) · �, (1)

where � = (�x,�y,�z) is a vector of the Pauli matri-
ces. Thus, the eigen-energies of the Hamiltonian are
±|h(k)|/2, corresponding to the upper- and the lower-
bands, respectively. We further consider at each k, |h(k)|
is always non-zero, and the system is an insulator at half
filling. The two-component wave function is denoted by
⇣(k).
Here we consider the quench process that corresponds

to a sudden change of h(k) from a topologically trivial
hi(k) to hf(k). The initial wave function ⇣

i(k) is taken as

A two-band Chern Insulator

2

FIG. 2: (a-b) The inverse images of two vectors n and �n on
the equator, when the Hamiltonian is quenched from hi(k)
withM = �1 (topologically trivial regime) to hf(k) with � =
0.1 and M = 1 (topologically trivial regime)(a), and to hf(k)
with � = ⇡/2 and M = 0 (topologically nontrivial regime)(b),
respectively; (c-d) The inverse images of the north and the
south poles, when the Hamiltonian is quenched from hi(k)
with M = �1 and � = ⇡/2 to hf(k) with M = 0.33

p
3 and

� = ⇡/2 (topologically trivial regime) (c), and to hf(k) with
M = 0.27

p
3 and � = ⇡/2 (topologically nontrivial regime)

(d). For all plots we have taken J0 = 1 and J1 = 0.1.

the lower-band eigenstate of the initial Hamiltonian. Af-
ter the quench, the wave function will involve according
to the final Hamiltonian as

⇣(k, t) = exp

⇢
�
i

2
hf(k) · �t

�
⇣
i(k), (2)

and by introducing a Bloch vector

n = ⇣
†(k, t)�⇣(k, t), (3)

Eq. 2 and Eq. 3 together define a mapping f from
[kx, ky, t] to the Bloch sphere n.
The Scheme: Taking any two constant vectors n1

and n2 on the Bloch sphere, their inverse images f�1(n1)
and f

�1(n2) are two trajectories in the [kx, ky, t] space.
The linking number of these two trajectories within the
first Brillouin zone equals to the Chern number of the
ground state for the final Hamiltonian at the same filling
[21].
Example to Illustrate the Scheme. As a concrete ex-

ample to illustrate our proposal, we consider the Hal-
dane model in a honeycomb lattice [see Fig. 1(a)]. The
particle annihilation operators at two sublattices of the
honeycomb lattices are denoted by âri and b̂ri . The tight-
binding model is written as

Ĥ =� J0

X

ri,j

⇣
â
†
ri b̂ri+dj + h.c.

⌘
+M

X

ri

⇣
â
†
ri âri � b̂

†
ri b̂ri

⌘

+ J1

X

ri,j

⇣
e
�i�

â
†
ri âri+aj + e

i�
b̂
†
ri b̂ri+aj + h.c.

⌘
,

(4)

where d1,2 = (±
p
3/2, 1/2)a0, d3 = (0,�1)a0 are the

three vectors connecting the nearest neighboring sites;
and a1,2 = (�

p
3/2,±3/2)a0 and a3 = (

p
3, 0)a0 are

the three vectors connecting the next nearest neighboring
sites, with a0 being the lattice spacing. The next nearest
hopping has phase factor that is opposite between A and
B sublattices. In the momentum space, Eq. 4 becomes

Ĥ =
X

k

(â†k, b̂
†
k)H(k)

✓
âk

b̂k

◆
, (5)

and aside from a term proportional to the identity ma-
trix, H(k) takes the same form as Eq. 1 with

hx(k) = �2J0
X

i

cos(k · di), (6)

hy(k) = �2J0
X

i

sin(k · di), (7)

hz(k) = 2M + 4J1 sin�
X

i

sin(k · ai). (8)

The phase diagram of this Haldane model at half filling
(with the lower-band filled) is shown in Fig. 1(b), where
two topologically nontrivial regimes have the Chern num-
bers +1 and �1, respectively. Here we consider a sudden
change of M and � starting from the topologically trivial
regime, as indicated by the arrow in Fig. 1(b).
In Fig. 2 we show two sets of examples. In Fig. 2(a-b),

we consider the inverse image of two vectors n and �n
on the equator. One can see that if Hf is in the topolog-
ically trivial regime, as shown in Fig. 2(a), f�1(n) sets
inside the trajectory of f�1(�n), and the linking num-
ber is zero; while if Hf is in the topologically nontrivial
regime, as shown in Fig. 2(b), these two trajectories
link three times. This is because, to avoid the disconti-
nuity of the trajectory across the boundary of the first
Brillouin zone, our plot spans the momentum regime in-
cluding three replicas of the first Brillouin zone. Within
the first Brillouin zone, the linking number is unity that
equals to the Chern number of Hf. Similarly, we consider
the inverse images of the north and the south pole. As
shown in Fig. 2(c-d), the inverse image of the north pole
is a straight line in the K and K

0 points. While the in-
verse image of the south pole does not enclose the K or
K

0 point if Hf is in the topologically trivial regime [Fig.
2(c)], giving rise to linking number zero; and it encloses
three equivalent K or K 0 point when H

f is topologically
nontrivial [Fig. 2(d)], giving rise to linking number unity
within the first Brillouin zone.
Here we should put a remark of how to determine the

sign of the linking number. First of all, we note that
each trajectory actually has a direction, defining as the
direction of J with [22]

J
µ =

1

8⇡
✏
µ⌫�n · (@⌫n⇥ @�n), (9)
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In this letter we show how the topological number of a static Hamiltonian can be measured
from a dynamical quench process. We focus on a two-band Chern insulator in two-dimension, for
instance, the Haldane model, whose dynamical process can be described by a mapping from the
[kx, ky, t] space to the Bloch sphere, characterized by the Hopf invariant. Such a mapping has been
constructed experimentally by measurements in cold atom systems. We show that, taking any two
constant vectors on the Bloch sphere, their inverse images of this mapping are two trajectories in
the [kx, ky, t] space, and the linking number of these two trajectories exactly equals to the Chern
number of the static Hamiltonian. Applying this result to a recent experiment from the Hamburg
group, we show that the linking number of the trajectories of the phase vortices determines the
phase boundary of the static Hamiltonian.

Recently cold atom experiments have realized a num-
ber of topological models including the Hofstadter model
[1–3], the Haldane (and the Haldane-type) model [4,
5], the Su-Schrie↵er-Heeger model [6] and its Thouless
charge pumping [7–9]. One major advantage of studying
topological models in the context of cold atom systems,
in comparison with its condensed matter counterpart, is
that the experimental investigation of the dynamic pro-
cesses can be more easily accessible. For example, consid-
ering non-interacting fermions initially in a topologically
trivial insulator state of the initial Hamiltonian H

i, we
shall focus on a sudden quench to a final Hamiltonian
H

f, whose ground state is a topologically nontrivial insu-
lator (e.g. a Chern insulator) at the same filling, and the
question is whether the change of the topological number
can be revealed from measuring the dynamical process af-
ter the quench. In fact, such a quench experiment has
been performed recently in a Haldane-type model with
cold atoms by the Hamburg group [10]. Using a momen-
tum resolved quantum state tomography method [11–13],
they can map out the evolution of the wave function as
time evolves after the quench.

At equilibrium, for a Chern insulator, it is known that
the bulk Chern number, the number of edge states and
the quantization value of the Hall conductance are equal,
which is termed as “ the bulk-edge correspondence ”.
While for the non-equilibrium process after the quench,
there is no such clear relations between them. First of
all, because the time evolution after the quench is unitary,
the Chern number of the quantum state does not change
and does not reflect the topological number of the final
Hamiltonian [14]. Nevertheless, the edge state gradually
emerges [14–17]. Second, without dephasing, the Hall re-
sponse will not be well quantized for either a slow or a
sudden quench [18, 19]. While it is also found that the
Hall conductance can become finite even after quenching
to a topologically trivial final Hamiltonian [20]. There-
fore, it is desirable to know whether there is a way to
rigorously map out the topology of the band structure of
H

f through the quench dynamics.
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FIG. 1: (a) Schematic of hopping in the Haldane model in
a honeycomb lattice; (b) The phase diagram of the Haldane
model. The arrow indicates a quench from topologically triv-
ial regime to a topologically nontrivial regime.

In this letter we present a scheme to extract a quan-
tized value from the dynamical process after the quench,
and this quantized value is exactly the same as the topo-
logical Chern number of the final Hamiltonian H

f. This
scheme can be directly applied to analyze the recent ex-
perimental data from the Hamburg group (Ref. [10]), as
well as other similar systems (such as the ETH [4] and
the USTC experiments [5]), to determine the topological
phase diagram.

Summary of the Scheme. Before proceeding to details,
let us briefly summarize our scheme as follows:

Let us consider a general two-band tight-binding model
in two-dimension, and at each momentum, the Hamilto-
nian can be written as

H(k) =
1

2
h(k) · �, (1)

where � = (�x,�y,�z) is a vector of the Pauli matri-
ces. Thus, the eigen-energies of the Hamiltonian are
±|h(k)|/2, corresponding to the upper- and the lower-
bands, respectively. We further consider at each k, |h(k)|
is always non-zero, and the system is an insulator at half
filling. The two-component wave function is denoted by
⇣(k).

Here we consider the quench process that corresponds
to a sudden change of h(k) from a topologically trivial
hi(k) to hf(k). The initial wave function ⇣

i(k) is taken as
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In this letter we show how the topological number of a static Hamiltonian can be measured
from a dynamical quench process. We focus on a two-band Chern insulator in two-dimension, for
instance, the Haldane model, whose dynamical process can be described by a mapping from the
[kx, ky, t] space to the Bloch sphere, characterized by the Hopf invariant. Such a mapping has been
constructed experimentally by measurements in cold atom systems. We show that, taking any two
constant vectors on the Bloch sphere, their inverse images of this mapping are two trajectories in
the [kx, ky, t] space, and the linking number of these two trajectories exactly equals to the Chern
number of the static Hamiltonian. Applying this result to a recent experiment from the Hamburg
group, we show that the linking number of the trajectories of the phase vortices determines the
phase boundary of the static Hamiltonian.

Recently cold atom experiments have realized a num-
ber of topological models including the Hofstadter model
[1–3], the Haldane (and the Haldane-type) model [4,
5], the Su-Schrie↵er-Heeger model [6] and its Thouless
charge pumping [7–9]. One major advantage of studying
topological models in the context of cold atom systems,
in comparison with its condensed matter counterpart, is
that the experimental investigation of the dynamic pro-
cesses can be more easily accessible. For example, consid-
ering non-interacting fermions initially in a topologically
trivial insulator state of the initial Hamiltonian H

i, we
shall focus on a sudden quench to a final Hamiltonian
H

f, whose ground state is a topologically nontrivial insu-
lator (e.g. a Chern insulator) at the same filling, and the
question is whether the change of the topological number
can be revealed from measuring the dynamical process af-
ter the quench. In fact, such a quench experiment has
been performed recently in a Haldane-type model with
cold atoms by the Hamburg group [10]. Using a momen-
tum resolved quantum state tomography method [11–13],
they can map out the evolution of the wave function as
time evolves after the quench.

At equilibrium, for a Chern insulator, it is known that
the bulk Chern number, the number of edge states and
the quantization value of the Hall conductance are equal,
which is termed as “ the bulk-edge correspondence ”.
While for the non-equilibrium process after the quench,
there is no such clear relations between them. First of
all, because the time evolution after the quench is unitary,
the Chern number of the quantum state does not change
and does not reflect the topological number of the final
Hamiltonian [14]. Nevertheless, the edge state gradually
emerges [14–17]. Second, without dephasing, the Hall re-
sponse will not be well quantized for either a slow or a
sudden quench [18, 19]. While it is also found that the
Hall conductance can become finite even after quenching
to a topologically trivial final Hamiltonian [20]. There-
fore, it is desirable to know whether there is a way to
rigorously map out the topology of the band structure of
H

f through the quench dynamics.
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FIG. 1: (a) Schematic of hopping in the Haldane model in
a honeycomb lattice; (b) The phase diagram of the Haldane
model. The arrow indicates a quench from topologically triv-
ial regime to a topologically nontrivial regime.

In this letter we present a scheme to extract a quan-
tized value from the dynamical process after the quench,
and this quantized value is exactly the same as the topo-
logical Chern number of the final Hamiltonian H

f. This
scheme can be directly applied to analyze the recent ex-
perimental data from the Hamburg group (Ref. [10]), as
well as other similar systems (such as the ETH [4] and
the USTC experiments [5]), to determine the topological
phase diagram.
Summary of the Scheme. Before proceeding to details,

let us briefly summarize our scheme as follows:
Let us consider a general two-band tight-binding model

in two-dimension, and at each momentum, the Hamilto-
nian can be written as

H(k) =
1

2
h(k) · �, (1)

where � = (�x,�y,�z) is a vector of the Pauli matri-
ces. Thus, the eigen-energies of the Hamiltonian are
±|h(k)|/2, corresponding to the upper- and the lower-
bands, respectively. We further consider at each k, |h(k)|
is always non-zero, and the system is an insulator at half
filling. The two-component wave function is denoted by
⇣(k).
Here we consider the quench process that corresponds

to a sudden change of h(k) from a topologically trivial
hi(k) to hf(k). The initial wave function ⇣

i(k) is taken as

2

FIG. 2: (a-b) The inverse images of two vectors n and �n on
the equator, when the Hamiltonian is quenched from hi(k)
withM = �1 (topologically trivial regime) to hf(k) with � =
0.1 and M = 1 (topologically trivial regime)(a), and to hf(k)
with � = ⇡/2 and M = 0 (topologically nontrivial regime)(b),
respectively; (c-d) The inverse images of the north and the
south poles, when the Hamiltonian is quenched from hi(k)
with M = �1 and � = ⇡/2 to hf(k) with M = 0.33

p
3 and

� = ⇡/2 (topologically trivial regime) (c), and to hf(k) with
M = 0.27

p
3 and � = ⇡/2 (topologically nontrivial regime)

(d). For all plots we have taken J0 = 1 and J1 = 0.1.

the lower-band eigenstate of the initial Hamiltonian. Af-
ter the quench, the wave function will involve according
to the final Hamiltonian as

⇣(k, t) = exp

⇢
�
i

2
hf(k) · �t

�
⇣
i(k), (2)

and by introducing a Bloch vector

n = ⇣
†(k, t)�⇣(k, t), (3)

Eq. 2 and Eq. 3 together define a mapping f from
[kx, ky, t] to the Bloch sphere n.
The Scheme: Taking any two constant vectors n1

and n2 on the Bloch sphere, their inverse images f�1(n1)
and f

�1(n2) are two trajectories in the [kx, ky, t] space.
The linking number of these two trajectories within the
first Brillouin zone equals to the Chern number of the
ground state for the final Hamiltonian at the same filling
[21].

Example to Illustrate the Scheme. As a concrete ex-
ample to illustrate our proposal, we consider the Hal-
dane model in a honeycomb lattice [see Fig. 1(a)]. The
particle annihilation operators at two sublattices of the
honeycomb lattices are denoted by âri and b̂ri . The tight-
binding model is written as

Ĥ =� J0

X

ri,j

⇣
â
†
ri b̂ri+dj + h.c.

⌘
+M

X

ri

⇣
â
†
ri âri � b̂

†
ri b̂ri

⌘
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⇣
e
�i�

â
†
ri âri+aj + e

i�
b̂
†
ri b̂ri+aj + h.c.

⌘
,

(4)

where d1,2 = (±
p
3/2, 1/2)a0, d3 = (0,�1)a0 are the

three vectors connecting the nearest neighboring sites;
and a1,2 = (�

p
3/2,±3/2)a0 and a3 = (

p
3, 0)a0 are

the three vectors connecting the next nearest neighboring
sites, with a0 being the lattice spacing. The next nearest
hopping has phase factor that is opposite between A and
B sublattices. In the momentum space, Eq. 4 becomes

Ĥ =
X

k

(â†k, b̂
†
k)H(k)

✓
âk

b̂k

◆
, (5)

and aside from a term proportional to the identity ma-
trix, H(k) takes the same form as Eq. 1 with

hx(k) = �2J0
X

i

cos(k · di), (6)

hy(k) = �2J0
X

i

sin(k · di), (7)

hz(k) = 2M + 4J1 sin�
X

i

sin(k · ai). (8)

The phase diagram of this Haldane model at half filling
(with the lower-band filled) is shown in Fig. 1(b), where
two topologically nontrivial regimes have the Chern num-
bers +1 and �1, respectively. Here we consider a sudden
change of M and � starting from the topologically trivial
regime, as indicated by the arrow in Fig. 1(b).

In Fig. 2 we show two sets of examples. In Fig. 2(a-b),
we consider the inverse image of two vectors n and �n
on the equator. One can see that if Hf is in the topolog-
ically trivial regime, as shown in Fig. 2(a), f�1(n) sets
inside the trajectory of f�1(�n), and the linking num-
ber is zero; while if Hf is in the topologically nontrivial
regime, as shown in Fig. 2(b), these two trajectories
link three times. This is because, to avoid the disconti-
nuity of the trajectory across the boundary of the first
Brillouin zone, our plot spans the momentum regime in-
cluding three replicas of the first Brillouin zone. Within
the first Brillouin zone, the linking number is unity that
equals to the Chern number of Hf. Similarly, we consider
the inverse images of the north and the south pole. As
shown in Fig. 2(c-d), the inverse image of the north pole
is a straight line in the K and K

0 points. While the in-
verse image of the south pole does not enclose the K or
K

0 point if Hf is in the topologically trivial regime [Fig.
2(c)], giving rise to linking number zero; and it encloses
three equivalent K or K 0 point when H

f is topologically
nontrivial [Fig. 2(d)], giving rise to linking number unity
within the first Brillouin zone.

Here we should put a remark of how to determine the
sign of the linking number. First of all, we note that
each trajectory actually has a direction, defining as the
direction of J with [22]

J
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the equator, when the Hamiltonian is quenched from hi(k)
withM = �1 (topologically trivial regime) to hf(k) with � =
0.1 and M = 1 (topologically trivial regime)(a), and to hf(k)
with � = ⇡/2 and M = 0 (topologically nontrivial regime)(b),
respectively; (c-d) The inverse images of the north and the
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with M = �1 and � = ⇡/2 to hf(k) with M = 0.33
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3 and
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M = 0.27
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(d). For all plots we have taken J0 = 1 and J1 = 0.1.

the lower-band eigenstate of the initial Hamiltonian. Af-
ter the quench, the wave function will involve according
to the final Hamiltonian as

⇣(k, t) = exp

⇢
�
i

2
hf(k) · �t

�
⇣
i(k), (2)

and by introducing a Bloch vector

n = ⇣
†(k, t)�⇣(k, t), (3)

Eq. 2 and Eq. 3 together define a mapping f from
[kx, ky, t] to the Bloch sphere n.
The Scheme: Taking any two constant vectors n1

and n2 on the Bloch sphere, their inverse images f�1(n1)
and f

�1(n2) are two trajectories in the [kx, ky, t] space.
The linking number of these two trajectories within the
first Brillouin zone equals to the Chern number of the
ground state for the final Hamiltonian at the same filling
[21].
Example to Illustrate the Scheme. As a concrete ex-

ample to illustrate our proposal, we consider the Hal-
dane model in a honeycomb lattice [see Fig. 1(a)]. The
particle annihilation operators at two sublattices of the
honeycomb lattices are denoted by âri and b̂ri . The tight-
binding model is written as
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where d1,2 = (±
p
3/2, 1/2)a0, d3 = (0,�1)a0 are the

three vectors connecting the nearest neighboring sites;
and a1,2 = (�

p
3/2,±3/2)a0 and a3 = (

p
3, 0)a0 are

the three vectors connecting the next nearest neighboring
sites, with a0 being the lattice spacing. The next nearest
hopping has phase factor that is opposite between A and
B sublattices. In the momentum space, Eq. 4 becomes

Ĥ =
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†
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and aside from a term proportional to the identity ma-
trix, H(k) takes the same form as Eq. 1 with
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The phase diagram of this Haldane model at half filling
(with the lower-band filled) is shown in Fig. 1(b), where
two topologically nontrivial regimes have the Chern num-
bers +1 and �1, respectively. Here we consider a sudden
change of M and � starting from the topologically trivial
regime, as indicated by the arrow in Fig. 1(b).
In Fig. 2 we show two sets of examples. In Fig. 2(a-b),

we consider the inverse image of two vectors n and �n
on the equator. One can see that if Hf is in the topolog-
ically trivial regime, as shown in Fig. 2(a), f�1(n) sets
inside the trajectory of f�1(�n), and the linking num-
ber is zero; while if Hf is in the topologically nontrivial
regime, as shown in Fig. 2(b), these two trajectories
link three times. This is because, to avoid the disconti-
nuity of the trajectory across the boundary of the first
Brillouin zone, our plot spans the momentum regime in-
cluding three replicas of the first Brillouin zone. Within
the first Brillouin zone, the linking number is unity that
equals to the Chern number of Hf. Similarly, we consider
the inverse images of the north and the south pole. As
shown in Fig. 2(c-d), the inverse image of the north pole
is a straight line in the K and K

0 points. While the in-
verse image of the south pole does not enclose the K or
K

0 point if Hf is in the topologically trivial regime [Fig.
2(c)], giving rise to linking number zero; and it encloses
three equivalent K or K 0 point when H

f is topologically
nontrivial [Fig. 2(d)], giving rise to linking number unity
within the first Brillouin zone.
Here we should put a remark of how to determine the

sign of the linking number. First of all, we note that
each trajectory actually has a direction, defining as the
direction of J with [22]
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the lower-band eigenstate of the initial Hamiltonian. Af-
ter the quench, the wave function will involve according
to the final Hamiltonian as
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and by introducing a Bloch vector
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†(k, t)�⇣(k, t), (3)

Eq. 2 and Eq. 3 together define a mapping f from
[kx, ky, t] to the Bloch sphere n.
The Scheme: Taking any two constant vectors n1

and n2 on the Bloch sphere, their inverse images f�1(n1)
and f

�1(n2) are two trajectories in the [kx, ky, t] space.
The linking number of these two trajectories within the
first Brillouin zone equals to the Chern number of the
ground state for the final Hamiltonian at the same filling
[21].
Example to Illustrate the Scheme. As a concrete ex-

ample to illustrate our proposal, we consider the Hal-
dane model in a honeycomb lattice [see Fig. 1(a)]. The
particle annihilation operators at two sublattices of the
honeycomb lattices are denoted by âri and b̂ri . The tight-
binding model is written as
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B sublattices. In the momentum space, Eq. 4 becomes
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and aside from a term proportional to the identity ma-
trix, H(k) takes the same form as Eq. 1 with
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The phase diagram of this Haldane model at half filling
(with the lower-band filled) is shown in Fig. 1(b), where
two topologically nontrivial regimes have the Chern num-
bers +1 and �1, respectively. Here we consider a sudden
change of M and � starting from the topologically trivial
regime, as indicated by the arrow in Fig. 1(b).
In Fig. 2 we show two sets of examples. In Fig. 2(a-b),

we consider the inverse image of two vectors n and �n
on the equator. One can see that if Hf is in the topolog-
ically trivial regime, as shown in Fig. 2(a), f�1(n) sets
inside the trajectory of f�1(�n), and the linking num-
ber is zero; while if Hf is in the topologically nontrivial
regime, as shown in Fig. 2(b), these two trajectories
link three times. This is because, to avoid the disconti-
nuity of the trajectory across the boundary of the first
Brillouin zone, our plot spans the momentum regime in-
cluding three replicas of the first Brillouin zone. Within
the first Brillouin zone, the linking number is unity that
equals to the Chern number of Hf. Similarly, we consider
the inverse images of the north and the south pole. As
shown in Fig. 2(c-d), the inverse image of the north pole
is a straight line in the K and K

0 points. While the in-
verse image of the south pole does not enclose the K or
K

0 point if Hf is in the topologically trivial regime [Fig.
2(c)], giving rise to linking number zero; and it encloses
three equivalent K or K 0 point when H

f is topologically
nontrivial [Fig. 2(d)], giving rise to linking number unity
within the first Brillouin zone.
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the lower-band eigenstate of the initial Hamiltonian. Af-
ter the quench, the wave function will involve according
to the final Hamiltonian as

⇣(k, t) = exp
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and by introducing a Bloch vector
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Eq. 2 and Eq. 3 together define a mapping f from
[kx, ky, t] to the Bloch sphere n.
The Scheme: Taking any two constant vectors n1

and n2 on the Bloch sphere, their inverse images f�1(n1)
and f

�1(n2) are two trajectories in the [kx, ky, t] space.
The linking number of these two trajectories within the
first Brillouin zone equals to the Chern number of the
ground state for the final Hamiltonian at the same filling
[21].
Example to Illustrate the Scheme. As a concrete ex-

ample to illustrate our proposal, we consider the Hal-
dane model in a honeycomb lattice [see Fig. 1(a)]. The
particle annihilation operators at two sublattices of the
honeycomb lattices are denoted by âri and b̂ri . The tight-
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ri âri+aj + e

i�
b̂
†
ri b̂ri+aj + h.c.

⌘
,

(4)

where d1,2 = (±
p
3/2, 1/2)a0, d3 = (0,�1)a0 are the

three vectors connecting the nearest neighboring sites;
and a1,2 = (�

p
3/2,±3/2)a0 and a3 = (

p
3, 0)a0 are
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Ĥ =
X

k
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and aside from a term proportional to the identity ma-
trix, H(k) takes the same form as Eq. 1 with
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The phase diagram of this Haldane model at half filling
(with the lower-band filled) is shown in Fig. 1(b), where
two topologically nontrivial regimes have the Chern num-
bers +1 and �1, respectively. Here we consider a sudden
change of M and � starting from the topologically trivial
regime, as indicated by the arrow in Fig. 1(b).
In Fig. 2 we show two sets of examples. In Fig. 2(a-b),

we consider the inverse image of two vectors n and �n
on the equator. One can see that if Hf is in the topolog-
ically trivial regime, as shown in Fig. 2(a), f�1(n) sets
inside the trajectory of f�1(�n), and the linking num-
ber is zero; while if Hf is in the topologically nontrivial
regime, as shown in Fig. 2(b), these two trajectories
link three times. This is because, to avoid the disconti-
nuity of the trajectory across the boundary of the first
Brillouin zone, our plot spans the momentum regime in-
cluding three replicas of the first Brillouin zone. Within
the first Brillouin zone, the linking number is unity that
equals to the Chern number of Hf. Similarly, we consider
the inverse images of the north and the south pole. As
shown in Fig. 2(c-d), the inverse image of the north pole
is a straight line in the K and K

0 points. While the in-
verse image of the south pole does not enclose the K or
K

0 point if Hf is in the topologically trivial regime [Fig.
2(c)], giving rise to linking number zero; and it encloses
three equivalent K or K 0 point when H

f is topologically
nontrivial [Fig. 2(d)], giving rise to linking number unity
within the first Brillouin zone.
Here we should put a remark of how to determine the

sign of the linking number. First of all, we note that
each trajectory actually has a direction, defining as the
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In this letter we show how the topological number of a static Hamiltonian can be measured
from a dynamical quench process. We focus on a two-band Chern insulator in two-dimension, for
instance, the Haldane model, whose dynamical process can be described by a mapping from the
[kx, ky, t] space to the Bloch sphere, characterized by the Hopf invariant. Such a mapping has been
constructed experimentally by measurements in cold atom systems. We show that, taking any two
constant vectors on the Bloch sphere, their inverse images of this mapping are two trajectories in
the [kx, ky, t] space, and the linking number of these two trajectories exactly equals to the Chern
number of the static Hamiltonian. Applying this result to a recent experiment from the Hamburg
group, we show that the linking number of the trajectories of the phase vortices determines the
phase boundary of the static Hamiltonian.

Recently cold atom experiments have realized a num-
ber of topological models including the Hofstadter model
[1–3], the Haldane (and the Haldane-type) model [4,
5], the Su-Schrie↵er-Heeger model [6] and its Thouless
charge pumping [7–9]. One major advantage of studying
topological models in the context of cold atom systems,
in comparison with its condensed matter counterpart, is
that the experimental investigation of the dynamic pro-
cesses can be more easily accessible. For example, consid-
ering non-interacting fermions initially in a topologically
trivial insulator state of the initial Hamiltonian H

i, we
shall focus on a sudden quench to a final Hamiltonian
H

f, whose ground state is a topologically nontrivial insu-
lator (e.g. a Chern insulator) at the same filling, and the
question is whether the change of the topological number
can be revealed from measuring the dynamical process af-
ter the quench. In fact, such a quench experiment has
been performed recently in a Haldane-type model with
cold atoms by the Hamburg group [10]. Using a momen-
tum resolved quantum state tomography method [11–13],
they can map out the evolution of the wave function as
time evolves after the quench.

At equilibrium, for a Chern insulator, it is known that
the bulk Chern number, the number of edge states and
the quantization value of the Hall conductance are equal,
which is termed as “ the bulk-edge correspondence ”.
While for the non-equilibrium process after the quench,
there is no such clear relations between them. First of
all, because the time evolution after the quench is unitary,
the Chern number of the quantum state does not change
and does not reflect the topological number of the final
Hamiltonian [14]. Nevertheless, the edge state gradually
emerges [14–17]. Second, without dephasing, the Hall re-
sponse will not be well quantized for either a slow or a
sudden quench [18, 19]. While it is also found that the
Hall conductance can become finite even after quenching
to a topologically trivial final Hamiltonian [20]. There-
fore, it is desirable to know whether there is a way to
rigorously map out the topology of the band structure of
H

f through the quench dynamics.

(b)(a)
0J

1
φiJ e

1
/(
3
3
)

M
J

/φ π

iM

fM

=

↓1 1=C1 1= −C

1 0=C

FIG. 1: (a) Schematic of hopping in the Haldane model in
a honeycomb lattice; (b) The phase diagram of the Haldane
model. The arrow indicates a quench from topologically triv-
ial regime to a topologically nontrivial regime.

In this letter we present a scheme to extract a quan-
tized value from the dynamical process after the quench,
and this quantized value is exactly the same as the topo-
logical Chern number of the final Hamiltonian H

f. This
scheme can be directly applied to analyze the recent ex-
perimental data from the Hamburg group (Ref. [10]), as
well as other similar systems (such as the ETH [4] and
the USTC experiments [5]), to determine the topological
phase diagram.
Summary of the Scheme. Before proceeding to details,

let us briefly summarize our scheme as follows:
Let us consider a general two-band tight-binding model

in two-dimension, and at each momentum, the Hamilto-
nian can be written as

H(k) =
1

2
h(k) · �, (1)

where � = (�x,�y,�z) is a vector of the Pauli matri-
ces. Thus, the eigen-energies of the Hamiltonian are
±|h(k)|/2, corresponding to the upper- and the lower-
bands, respectively. We further consider at each k, |h(k)|
is always non-zero, and the system is an insulator at half
filling. The two-component wave function is denoted by
⇣(k).
Here we consider the quench process that corresponds

to a sudden change of h(k) from a topologically trivial
hi(k) to hf(k). The initial wave function ⇣

i(k) is taken as

Theorem: Topology from Dynamics

For a two-band Chern Insulator
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FIG. 2: (a-b) The inverse images of two vectors n and �n on
the equator, when the Hamiltonian is quenched from hi(k)
withM = �1 (topologically trivial regime) to hf(k) with � =
0.1 and M = 1 (topologically trivial regime)(a), and to hf(k)
with � = ⇡/2 and M = 0 (topologically nontrivial regime)(b),
respectively; (c-d) The inverse images of the north and the
south poles, when the Hamiltonian is quenched from hi(k)
with M = �1 and � = ⇡/2 to hf(k) with M = 0.33

p
3 and

� = ⇡/2 (topologically trivial regime) (c), and to hf(k) with
M = 0.27

p
3 and � = ⇡/2 (topologically nontrivial regime)

(d). For all plots we have taken J0 = 1 and J1 = 0.1.

the lower-band eigenstate of the initial Hamiltonian. Af-
ter the quench, the wave function will involve according
to the final Hamiltonian as

⇣(k, t) = exp

⇢
�
i

2
hf(k) · �t

�
⇣
i(k), (2)

and by introducing a Bloch vector

n = ⇣
†(k, t)�⇣(k, t), (3)

Eq. 2 and Eq. 3 together define a mapping f from
[kx, ky, t] to the Bloch sphere n.
The Scheme: Taking any two constant vectors n1

and n2 on the Bloch sphere, their inverse images f�1(n1)
and f

�1(n2) are two trajectories in the [kx, ky, t] space.
The linking number of these two trajectories within the
first Brillouin zone equals to the Chern number of the
ground state for the final Hamiltonian at the same filling
[21].

Example to Illustrate the Scheme. As a concrete ex-
ample to illustrate our proposal, we consider the Hal-
dane model in a honeycomb lattice [see Fig. 1(a)]. The
particle annihilation operators at two sublattices of the
honeycomb lattices are denoted by âri and b̂ri . The tight-
binding model is written as
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ri âri+aj + e

i�
b̂
†
ri b̂ri+aj + h.c.

⌘
,

(4)

where d1,2 = (±
p
3/2, 1/2)a0, d3 = (0,�1)a0 are the

three vectors connecting the nearest neighboring sites;
and a1,2 = (�

p
3/2,±3/2)a0 and a3 = (

p
3, 0)a0 are

the three vectors connecting the next nearest neighboring
sites, with a0 being the lattice spacing. The next nearest
hopping has phase factor that is opposite between A and
B sublattices. In the momentum space, Eq. 4 becomes

Ĥ =
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and aside from a term proportional to the identity ma-
trix, H(k) takes the same form as Eq. 1 with

hx(k) = �2J0
X

i

cos(k · di), (6)

hy(k) = �2J0
X
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sin(k · di), (7)

hz(k) = 2M + 4J1 sin�
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sin(k · ai). (8)

The phase diagram of this Haldane model at half filling
(with the lower-band filled) is shown in Fig. 1(b), where
two topologically nontrivial regimes have the Chern num-
bers +1 and �1, respectively. Here we consider a sudden
change of M and � starting from the topologically trivial
regime, as indicated by the arrow in Fig. 1(b).

In Fig. 2 we show two sets of examples. In Fig. 2(a-b),
we consider the inverse image of two vectors n and �n
on the equator. One can see that if Hf is in the topolog-
ically trivial regime, as shown in Fig. 2(a), f�1(n) sets
inside the trajectory of f�1(�n), and the linking num-
ber is zero; while if Hf is in the topologically nontrivial
regime, as shown in Fig. 2(b), these two trajectories
link three times. This is because, to avoid the disconti-
nuity of the trajectory across the boundary of the first
Brillouin zone, our plot spans the momentum regime in-
cluding three replicas of the first Brillouin zone. Within
the first Brillouin zone, the linking number is unity that
equals to the Chern number of Hf. Similarly, we consider
the inverse images of the north and the south pole. As
shown in Fig. 2(c-d), the inverse image of the north pole
is a straight line in the K and K

0 points. While the in-
verse image of the south pole does not enclose the K or
K

0 point if Hf is in the topologically trivial regime [Fig.
2(c)], giving rise to linking number zero; and it encloses
three equivalent K or K 0 point when H

f is topologically
nontrivial [Fig. 2(d)], giving rise to linking number unity
within the first Brillouin zone.

Here we should put a remark of how to determine the
sign of the linking number. First of all, we note that
each trajectory actually has a direction, defining as the
direction of J with [22]
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the lower-band eigenstate of the initial Hamiltonian. Af-
ter the quench, the wave function will involve according
to the final Hamiltonian as

⇣(k, t) = exp
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and by introducing a Bloch vector
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Eq. 2 and Eq. 3 together define a mapping f from
[kx, ky, t] to the Bloch sphere n.
The Scheme: Taking any two constant vectors n1

and n2 on the Bloch sphere, their inverse images f�1(n1)
and f

�1(n2) are two trajectories in the [kx, ky, t] space.
The linking number of these two trajectories within the
first Brillouin zone equals to the Chern number of the
ground state for the final Hamiltonian at the same filling
[21].

Example to Illustrate the Scheme. As a concrete ex-
ample to illustrate our proposal, we consider the Hal-
dane model in a honeycomb lattice [see Fig. 1(a)]. The
particle annihilation operators at two sublattices of the
honeycomb lattices are denoted by âri and b̂ri . The tight-
binding model is written as
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ri âri+aj + e

i�
b̂
†
ri b̂ri+aj + h.c.

⌘
,

(4)

where d1,2 = (±
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three vectors connecting the nearest neighboring sites;
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the three vectors connecting the next nearest neighboring
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Ĥ =
X

k
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and aside from a term proportional to the identity ma-
trix, H(k) takes the same form as Eq. 1 with
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The phase diagram of this Haldane model at half filling
(with the lower-band filled) is shown in Fig. 1(b), where
two topologically nontrivial regimes have the Chern num-
bers +1 and �1, respectively. Here we consider a sudden
change of M and � starting from the topologically trivial
regime, as indicated by the arrow in Fig. 1(b).

In Fig. 2 we show two sets of examples. In Fig. 2(a-b),
we consider the inverse image of two vectors n and �n
on the equator. One can see that if Hf is in the topolog-
ically trivial regime, as shown in Fig. 2(a), f�1(n) sets
inside the trajectory of f�1(�n), and the linking num-
ber is zero; while if Hf is in the topologically nontrivial
regime, as shown in Fig. 2(b), these two trajectories
link three times. This is because, to avoid the disconti-
nuity of the trajectory across the boundary of the first
Brillouin zone, our plot spans the momentum regime in-
cluding three replicas of the first Brillouin zone. Within
the first Brillouin zone, the linking number is unity that
equals to the Chern number of Hf. Similarly, we consider
the inverse images of the north and the south pole. As
shown in Fig. 2(c-d), the inverse image of the north pole
is a straight line in the K and K

0 points. While the in-
verse image of the south pole does not enclose the K or
K

0 point if Hf is in the topologically trivial regime [Fig.
2(c)], giving rise to linking number zero; and it encloses
three equivalent K or K 0 point when H

f is topologically
nontrivial [Fig. 2(d)], giving rise to linking number unity
within the first Brillouin zone.

Here we should put a remark of how to determine the
sign of the linking number. First of all, we note that
each trajectory actually has a direction, defining as the
direction of J with [22]
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FIG. 2: (a-b) The inverse images of two vectors n and �n on
the equator, when the Hamiltonian is quenched from hi(k)
withM = �1 (topologically trivial regime) to hf(k) with � =
0.1 and M = 1 (topologically trivial regime)(a), and to hf(k)
with � = ⇡/2 and M = 0 (topologically nontrivial regime)(b),
respectively; (c-d) The inverse images of the north and the
south poles, when the Hamiltonian is quenched from hi(k)
with M = �1 and � = ⇡/2 to hf(k) with M = 0.33

p
3 and

� = ⇡/2 (topologically trivial regime) (c), and to hf(k) with
M = 0.27

p
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(d). For all plots we have taken J0 = 1 and J1 = 0.1.

the lower-band eigenstate of the initial Hamiltonian. Af-
ter the quench, the wave function will involve according
to the final Hamiltonian as

⇣(k, t) = exp
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2
hf(k) · �t

�
⇣
i(k), (2)

and by introducing a Bloch vector

n = ⇣
†(k, t)�⇣(k, t), (3)

Eq. 2 and Eq. 3 together define a mapping f from
[kx, ky, t] to the Bloch sphere n.
The Scheme: Taking any two constant vectors n1

and n2 on the Bloch sphere, their inverse images f�1(n1)
and f

�1(n2) are two trajectories in the [kx, ky, t] space.
The linking number of these two trajectories within the
first Brillouin zone equals to the Chern number of the
ground state for the final Hamiltonian at the same filling
[21].
Example to Illustrate the Scheme. As a concrete ex-

ample to illustrate our proposal, we consider the Hal-
dane model in a honeycomb lattice [see Fig. 1(a)]. The
particle annihilation operators at two sublattices of the
honeycomb lattices are denoted by âri and b̂ri . The tight-
binding model is written as
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p
3, 0)a0 are

the three vectors connecting the next nearest neighboring
sites, with a0 being the lattice spacing. The next nearest
hopping has phase factor that is opposite between A and
B sublattices. In the momentum space, Eq. 4 becomes
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and aside from a term proportional to the identity ma-
trix, H(k) takes the same form as Eq. 1 with

hx(k) = �2J0
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cos(k · di), (6)

hy(k) = �2J0
X
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sin(k · di), (7)
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The phase diagram of this Haldane model at half filling
(with the lower-band filled) is shown in Fig. 1(b), where
two topologically nontrivial regimes have the Chern num-
bers +1 and �1, respectively. Here we consider a sudden
change of M and � starting from the topologically trivial
regime, as indicated by the arrow in Fig. 1(b).
In Fig. 2 we show two sets of examples. In Fig. 2(a-b),

we consider the inverse image of two vectors n and �n
on the equator. One can see that if Hf is in the topolog-
ically trivial regime, as shown in Fig. 2(a), f�1(n) sets
inside the trajectory of f�1(�n), and the linking num-
ber is zero; while if Hf is in the topologically nontrivial
regime, as shown in Fig. 2(b), these two trajectories
link three times. This is because, to avoid the disconti-
nuity of the trajectory across the boundary of the first
Brillouin zone, our plot spans the momentum regime in-
cluding three replicas of the first Brillouin zone. Within
the first Brillouin zone, the linking number is unity that
equals to the Chern number of Hf. Similarly, we consider
the inverse images of the north and the south pole. As
shown in Fig. 2(c-d), the inverse image of the north pole
is a straight line in the K and K

0 points. While the in-
verse image of the south pole does not enclose the K or
K

0 point if Hf is in the topologically trivial regime [Fig.
2(c)], giving rise to linking number zero; and it encloses
three equivalent K or K 0 point when H

f is topologically
nontrivial [Fig. 2(d)], giving rise to linking number unity
within the first Brillouin zone.
Here we should put a remark of how to determine the

sign of the linking number. First of all, we note that
each trajectory actually has a direction, defining as the
direction of J with [22]
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FIG. 2: (a-b) The inverse images of two vectors n and �n on
the equator, when the Hamiltonian is quenched from hi(k)
withM = �1 (topologically trivial regime) to hf(k) with � =
0.1 and M = 1 (topologically trivial regime)(a), and to hf(k)
with � = ⇡/2 and M = 0 (topologically nontrivial regime)(b),
respectively; (c-d) The inverse images of the north and the
south poles, when the Hamiltonian is quenched from hi(k)
with M = �1 and � = ⇡/2 to hf(k) with M = 0.33
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3 and
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(d). For all plots we have taken J0 = 1 and J1 = 0.1.

the lower-band eigenstate of the initial Hamiltonian. Af-
ter the quench, the wave function will involve according
to the final Hamiltonian as

⇣(k, t) = exp
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i(k), (2)

and by introducing a Bloch vector
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†(k, t)�⇣(k, t), (3)

Eq. 2 and Eq. 3 together define a mapping f from
[kx, ky, t] to the Bloch sphere n.
The Scheme: Taking any two constant vectors n1

and n2 on the Bloch sphere, their inverse images f�1(n1)
and f

�1(n2) are two trajectories in the [kx, ky, t] space.
The linking number of these two trajectories within the
first Brillouin zone equals to the Chern number of the
ground state for the final Hamiltonian at the same filling
[21].
Example to Illustrate the Scheme. As a concrete ex-

ample to illustrate our proposal, we consider the Hal-
dane model in a honeycomb lattice [see Fig. 1(a)]. The
particle annihilation operators at two sublattices of the
honeycomb lattices are denoted by âri and b̂ri . The tight-
binding model is written as
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â
†
ri âri � b̂

†
ri b̂ri

⌘

+ J1

X

ri,j

⇣
e
�i�

â
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the three vectors connecting the next nearest neighboring
sites, with a0 being the lattice spacing. The next nearest
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B sublattices. In the momentum space, Eq. 4 becomes
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and aside from a term proportional to the identity ma-
trix, H(k) takes the same form as Eq. 1 with
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cos(k · di), (6)
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The phase diagram of this Haldane model at half filling
(with the lower-band filled) is shown in Fig. 1(b), where
two topologically nontrivial regimes have the Chern num-
bers +1 and �1, respectively. Here we consider a sudden
change of M and � starting from the topologically trivial
regime, as indicated by the arrow in Fig. 1(b).
In Fig. 2 we show two sets of examples. In Fig. 2(a-b),

we consider the inverse image of two vectors n and �n
on the equator. One can see that if Hf is in the topolog-
ically trivial regime, as shown in Fig. 2(a), f�1(n) sets
inside the trajectory of f�1(�n), and the linking num-
ber is zero; while if Hf is in the topologically nontrivial
regime, as shown in Fig. 2(b), these two trajectories
link three times. This is because, to avoid the disconti-
nuity of the trajectory across the boundary of the first
Brillouin zone, our plot spans the momentum regime in-
cluding three replicas of the first Brillouin zone. Within
the first Brillouin zone, the linking number is unity that
equals to the Chern number of Hf. Similarly, we consider
the inverse images of the north and the south pole. As
shown in Fig. 2(c-d), the inverse image of the north pole
is a straight line in the K and K

0 points. While the in-
verse image of the south pole does not enclose the K or
K

0 point if Hf is in the topologically trivial regime [Fig.
2(c)], giving rise to linking number zero; and it encloses
three equivalent K or K 0 point when H

f is topologically
nontrivial [Fig. 2(d)], giving rise to linking number unity
within the first Brillouin zone.
Here we should put a remark of how to determine the

sign of the linking number. First of all, we note that
each trajectory actually has a direction, defining as the
direction of J with [22]
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FIG. 2: (a-b) The inverse images of two vectors n and �n on
the equator, when the Hamiltonian is quenched from hi(k)
withM = �1 (topologically trivial regime) to hf(k) with � =
0.1 and M = 1 (topologically trivial regime)(a), and to hf(k)
with � = ⇡/2 and M = 0 (topologically nontrivial regime)(b),
respectively; (c-d) The inverse images of the north and the
south poles, when the Hamiltonian is quenched from hi(k)
with M = �1 and � = ⇡/2 to hf(k) with M = 0.33

p
3 and

� = ⇡/2 (topologically trivial regime) (c), and to hf(k) with
M = 0.27

p
3 and � = ⇡/2 (topologically nontrivial regime)

(d). For all plots we have taken J0 = 1 and J1 = 0.1.

the lower-band eigenstate of the initial Hamiltonian. Af-
ter the quench, the wave function will involve according
to the final Hamiltonian as

⇣(k, t) = exp

⇢
�
i

2
hf(k) · �t

�
⇣
i(k), (2)

and by introducing a Bloch vector

n = ⇣
†(k, t)�⇣(k, t), (3)

Eq. 2 and Eq. 3 together define a mapping f from
[kx, ky, t] to the Bloch sphere n.
The Scheme: Taking any two constant vectors n1

and n2 on the Bloch sphere, their inverse images f�1(n1)
and f

�1(n2) are two trajectories in the [kx, ky, t] space.
The linking number of these two trajectories within the
first Brillouin zone equals to the Chern number of the
ground state for the final Hamiltonian at the same filling
[21].
Example to Illustrate the Scheme. As a concrete ex-

ample to illustrate our proposal, we consider the Hal-
dane model in a honeycomb lattice [see Fig. 1(a)]. The
particle annihilation operators at two sublattices of the
honeycomb lattices are denoted by âri and b̂ri . The tight-
binding model is written as

Ĥ =� J0
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where d1,2 = (±
p
3/2, 1/2)a0, d3 = (0,�1)a0 are the

three vectors connecting the nearest neighboring sites;
and a1,2 = (�

p
3/2,±3/2)a0 and a3 = (

p
3, 0)a0 are

the three vectors connecting the next nearest neighboring
sites, with a0 being the lattice spacing. The next nearest
hopping has phase factor that is opposite between A and
B sublattices. In the momentum space, Eq. 4 becomes

Ĥ =
X

k

(â†k, b̂
†
k)H(k)
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, (5)

and aside from a term proportional to the identity ma-
trix, H(k) takes the same form as Eq. 1 with

hx(k) = �2J0
X

i

cos(k · di), (6)

hy(k) = �2J0
X

i

sin(k · di), (7)

hz(k) = 2M + 4J1 sin�
X

i

sin(k · ai). (8)

The phase diagram of this Haldane model at half filling
(with the lower-band filled) is shown in Fig. 1(b), where
two topologically nontrivial regimes have the Chern num-
bers +1 and �1, respectively. Here we consider a sudden
change of M and � starting from the topologically trivial
regime, as indicated by the arrow in Fig. 1(b).
In Fig. 2 we show two sets of examples. In Fig. 2(a-b),

we consider the inverse image of two vectors n and �n
on the equator. One can see that if Hf is in the topolog-
ically trivial regime, as shown in Fig. 2(a), f�1(n) sets
inside the trajectory of f�1(�n), and the linking num-
ber is zero; while if Hf is in the topologically nontrivial
regime, as shown in Fig. 2(b), these two trajectories
link three times. This is because, to avoid the disconti-
nuity of the trajectory across the boundary of the first
Brillouin zone, our plot spans the momentum regime in-
cluding three replicas of the first Brillouin zone. Within
the first Brillouin zone, the linking number is unity that
equals to the Chern number of Hf. Similarly, we consider
the inverse images of the north and the south pole. As
shown in Fig. 2(c-d), the inverse image of the north pole
is a straight line in the K and K

0 points. While the in-
verse image of the south pole does not enclose the K or
K

0 point if Hf is in the topologically trivial regime [Fig.
2(c)], giving rise to linking number zero; and it encloses
three equivalent K or K 0 point when H

f is topologically
nontrivial [Fig. 2(d)], giving rise to linking number unity
within the first Brillouin zone.
Here we should put a remark of how to determine the

sign of the linking number. First of all, we note that
each trajectory actually has a direction, defining as the
direction of J with [22]
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FIG. 2: (a-b) The inverse images of two vectors n and �n on
the equator, when the Hamiltonian is quenched from hi(k)
withM = �1 (topologically trivial regime) to hf(k) with � =
0.1 and M = 1 (topologically trivial regime)(a), and to hf(k)
with � = ⇡/2 and M = 0 (topologically nontrivial regime)(b),
respectively; (c-d) The inverse images of the north and the
south poles, when the Hamiltonian is quenched from hi(k)
with M = �1 and � = ⇡/2 to hf(k) with M = 0.33

p
3 and

� = ⇡/2 (topologically trivial regime) (c), and to hf(k) with
M = 0.27
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(d). For all plots we have taken J0 = 1 and J1 = 0.1.

the lower-band eigenstate of the initial Hamiltonian. Af-
ter the quench, the wave function will involve according
to the final Hamiltonian as

⇣(k, t) = exp
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2
hf(k) · �t
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i(k), (2)

and by introducing a Bloch vector

n = ⇣
†(k, t)�⇣(k, t), (3)

Eq. 2 and Eq. 3 together define a mapping f from
[kx, ky, t] to the Bloch sphere n.
The Scheme: Taking any two constant vectors n1

and n2 on the Bloch sphere, their inverse images f�1(n1)
and f

�1(n2) are two trajectories in the [kx, ky, t] space.
The linking number of these two trajectories within the
first Brillouin zone equals to the Chern number of the
ground state for the final Hamiltonian at the same filling
[21].

Example to Illustrate the Scheme. As a concrete ex-
ample to illustrate our proposal, we consider the Hal-
dane model in a honeycomb lattice [see Fig. 1(a)]. The
particle annihilation operators at two sublattices of the
honeycomb lattices are denoted by âri and b̂ri . The tight-
binding model is written as

Ĥ =� J0

X

ri,j

⇣
â
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three vectors connecting the nearest neighboring sites;
and a1,2 = (�
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the three vectors connecting the next nearest neighboring
sites, with a0 being the lattice spacing. The next nearest
hopping has phase factor that is opposite between A and
B sublattices. In the momentum space, Eq. 4 becomes
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and aside from a term proportional to the identity ma-
trix, H(k) takes the same form as Eq. 1 with
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cos(k · di), (6)

hy(k) = �2J0
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sin(k · di), (7)

hz(k) = 2M + 4J1 sin�
X

i

sin(k · ai). (8)

The phase diagram of this Haldane model at half filling
(with the lower-band filled) is shown in Fig. 1(b), where
two topologically nontrivial regimes have the Chern num-
bers +1 and �1, respectively. Here we consider a sudden
change of M and � starting from the topologically trivial
regime, as indicated by the arrow in Fig. 1(b).

In Fig. 2 we show two sets of examples. In Fig. 2(a-b),
we consider the inverse image of two vectors n and �n
on the equator. One can see that if Hf is in the topolog-
ically trivial regime, as shown in Fig. 2(a), f�1(n) sets
inside the trajectory of f�1(�n), and the linking num-
ber is zero; while if Hf is in the topologically nontrivial
regime, as shown in Fig. 2(b), these two trajectories
link three times. This is because, to avoid the disconti-
nuity of the trajectory across the boundary of the first
Brillouin zone, our plot spans the momentum regime in-
cluding three replicas of the first Brillouin zone. Within
the first Brillouin zone, the linking number is unity that
equals to the Chern number of Hf. Similarly, we consider
the inverse images of the north and the south pole. As
shown in Fig. 2(c-d), the inverse image of the north pole
is a straight line in the K and K

0 points. While the in-
verse image of the south pole does not enclose the K or
K

0 point if Hf is in the topologically trivial regime [Fig.
2(c)], giving rise to linking number zero; and it encloses
three equivalent K or K 0 point when H

f is topologically
nontrivial [Fig. 2(d)], giving rise to linking number unity
within the first Brillouin zone.

Here we should put a remark of how to determine the
sign of the linking number. First of all, we note that
each trajectory actually has a direction, defining as the
direction of J with [22]

J
µ =

1

8⇡
✏
µ⌫�n · (@⌫n⇥ @�n), (9)
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FIG. 3. Mapping out the topological phase diagram using the linking number. (a) Original data of the observed vortices summed over all time
steps (red dot: positive chirality, blue dot: negative chirality; the hue indicates the time step where the vortex was present). The hexagon marks
the first Brillouin zone. The dynamical vortex contours are highlighted by a guide-to-the-eye (grey line). (b) The Chern number is obtained
from the linking number of these dynamical vortex contours (or the absence of a contour) and plotted for various shaking detunings (cut
through the phase diagram corresponding to the grey line in Fig. 1). The region with non-trivial Chern number agrees well with the prediction
from a full numerical calculation (solid line). (c) Calculated Floquet bands for various detunings illustrating the closing of the Dirac points at
the topological phase transitions.

FIG. 4. Sign of the linking number. (a) Vortex data in the non-trivial regime (shaking phase of p/2 and shaking detuning of d/2p =�372 Hz).
The first subfigure shows the time-integrated data, while the other subfigures show successive stroboscopic time steps t1 = 13 · T/4, t2 =
17 ·T/4, t3 = 21 ·T/4 after the quench. The vortex contour has a positive chirality, while the enclosed static vortex has a negative chirality,
revealing the Chern number +1 (see text). (b) Reverse shaking (grey point in Fig. 1) for d/2p = �359 Hz and for time steps t1 = 14 ·T/4,
t2 = 18 ·T/4, t3 = 22 ·T/4 after the quench. The chirality of the enclosed vortex is now inverted and the Chern number is �1.

See also USTC group
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Topology plays an important role in modern solid state physics describing intriguing quantum states such
as topological insulators. It is an intrinsically non-local property and therefore challenging to access, often
studied only via the resulting edge states. Here, we measure the topological index directly from the far-from-
equilibrium dynamics of the bulk. We use the mapping of the Chern number to the linking number of dynamical
vortex trajectories appearing after a quench to the Hamiltonian of interest. We thereby map out the topological
phase diagram of quantum gases in optical lattices via a purely dynamical response. Such relations between
two topological indices in static and dynamical properties could be also an important approach for exploring
topology in the case of interactions.

PACS numbers: 67.85.-d, 67.85.Lm

Topological quantum matter has recently received much at-
tention, because it opens an entirely new class of quantum
phases and has potential applications ranging from precision
measurements to quantum information and spintronics [1]. A
paradigmatic role is played by the Chern number, which char-
acterizes the topology of filled bands in two-dimensional lat-
tice systems and also describes the integer Quantum Hall ef-
fect. Even richer is the interplay between topological band
structures and interactions giving rise to topologically ordered
states of matter, such as fractional quantum Hall states, with
intriguing emergent properties like abelian or nonabelian any-
onic excitations. A widely unexplored field are the fundamen-
tal connections between the dynamical behavior of (highly)
excited states of a system and the underlying ground-state
properties.

Ultracold quantum gases are a promising experimental plat-
form to explore these questions. On the one hand they allow
for the realization of topologically non-trivial band structures
and artificial gauge fields [2–9] and on the other hand typical
time scales for dynamical studies are experimentally well ac-
cessible. Moreover, they offer the perspective of combining
these effects with strong interactions (see, e.g., refs. [10–12]).

Here we establish a new approach by connecting a central
quantity of the ground state topology – the Chern number –
with the dynamical evolution of highly excited states of the
system via the measurement of a linking number. That is we
study in detail the contour of dynamically created vortex pairs
in momentum space following a sudden quench of the system.
We thereby map out the trivial and non-trivial Chern number
areas of the phase diagram. As shown by Wang et al. (ref.
[13]), the Chern number of the post quench Hamiltonian maps
onto the linking number between this contour and the position
of the static vortices [Fig. 1(a)]. We thus demonstrate that the
direct mapping between two topological indices – a static and
a dynamical one – allows for an unambiguous measurement
of the Chern number.

This is a first step in the more general direction of relation-
ships between static non-local topological properties and dy-
namical properties in complex quantum systems. Besides this
it also circumvents difficulties of other measurement schemes
to detect Chern numbers, e.g. drift measurements [5, 6], for
which the signal cannot unambiguously distinguish between
trivial and non-trivial Chern numbers when inversion symme-
try is broken [5]. It also goes far beyond the characterization
of topology, e.g. by the complete measurement of the Berry
curvature [8], as in these studies non-trivial Chern numbers
cannot be reached in an adiabatic preparation in the thermo-
dynamic limit [14].

Our system is described by a Haldane-like Hamiltonian
realized via Floquet engineering of lattices [2–8, 15–21].
We start with a hexagonal optical lattice [22] with nearest-
neighbor (NN) tunneling element JAB and sublattice offset DAB
[see Fig. 1(b)] described by the bare Hamiltonian

Ĥ0 =� Â
hl0li

JABâ†
l0 âl + Â

l2B
DABn̂l (1)

(see supplementary [23] for definitions). By circular lattice
shaking with a near-resonant angular frequency w = DAB/h̄�
d with detuning d and driving strength a , we arrive at a Flo-
quet system described by the effective Hamiltonian

ĤF =� Â
hl0li

Jeff
ABâ†

l0 âl+ Â
hhl0liiA

Jeff
AAâ†

l0 âl+ Â
hhl0liiB

Jeff
BBâ†

l0 âl+Â
l2B

Deffn̂l .

(2)
In the limit of low driving strength, the expressions for the ef-
fective tunnel elements read Jeff

AB ' ±a
2 JABe⌥ifl0l with Peierls

phases fl0l for the NN tunneling and Jeff
AA =�Jeff

BB ' J2
AB/h̄w for

the next-nearest neighbor (NNN) tunneling, which arises as
a super-exchange process. The effective sublattice offset be-
comes Deff = h̄d +3J2

AB/h̄w [see Fig. 1(b)]. Note that in con-
trast to the case without initial sublattice offset [5, 24, 25], we
realize the Hamiltonian in a gauge, where the Peierls phases
appear at the NN tunneling, which gives rise to a shifted band
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Summary

Topological 
Band TheoryDynamics

I. Using periodic driven to realize 2D band 
with non-zero Chern number. 

II. 1st Chern Number

 Near Equilibrium: 

1+1 D Charge Pumping 
2D Transport 

Far from Equilibrium: 

2+1 D Linking Number  
in quench dynamics

Traditional Way Novel Way
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