Fundamental Aspects of Quantum Dynamics:

II: Topology

Hui Zhai

Institute for Advanced Study Tsinghua University Beijing, China

Quantum Few- and Many-Body Physics in Ultracold Atoms Wuhan April 2018

Topology

Global Properties invariant under Continuous Deformation

 $\int \mathbf{Curvature} = 4\pi$ Surface

Topological Phase Transition (Kosterlitz and Thouless, 1970s)

Topological Band Theory (Thouless, et.al 1980, Haldane 1988)

I UNDERSTAND

I UNDERSTAND

I UNDERSTAND

I UNDERSTAND

Topological Field Theory (Haldane 1988)

The Nobel Prize in Physics 2016

Photo: A. Mahmoud David J. Thouless Prize share: 1/2

Photo: A. Mahmoud **F. Duncan M. Haldane** Prize share: 1/4

J. Michael Kosterlitz Prize share: 1/4

Topological Insulator, Topological Superconductor, Topological Quantum Computing.....

Topological Band Theory

Topology and Dynamics

Topology and Dynamics

Ref. Wei Zheng and HZ, PRA, 89, 061603(R), 2014

Optical Lattice

Cubic Lattice

Triangular Lattice

Tunable Geometry (ETH, 2012)

Dirac Point: Gapless

$$\mathbf{H} = \frac{3}{2} \left[\pm q_y \boldsymbol{\sigma}_x + q_x \boldsymbol{\sigma}_y \right]$$

Berry Curvature around Dirac Point Observed Munich Group, Science, 2015

1.00

From Dirac Point to Haldane Model

Photo: A. Mahmoud **F. Duncan M. Haldane Prize share:** 1/4

VOLUME 61, NUMBER 18

PHYSICAL REVIEW LETTERS

31 October 1988

Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the "Parity Anomaly"

F. D. M. Haldane Department of Physics, University of California, San Diego, La Jolla, California 92093 (Received 16 September 1987)

How to realize this nontrivial nextnearest hopping ??

Haldane Model

$$\mathcal{H}(\mathbf{k}) = \frac{1}{2}\mathbf{h}(\mathbf{k}) \cdot \boldsymbol{\sigma}$$

$$h_x = -J_1 \left[\cos k_x + \cos \left(\frac{k_x}{2} + \frac{\sqrt{3}k_y}{2} \right) + \cos \left(\frac{k_x}{2} - \frac{\sqrt{3}k_y}{2} \right) \right]$$
$$h_y = -J_2 \left[\sin \left(\frac{k_x}{2} + \frac{\sqrt{3}k_y}{2} \right) + \sin \left(\frac{k_x}{2} - \frac{\sqrt{3}k_y}{2} \right) \right]$$
$$h_z = M + 2J_2 \sin \phi \left[\sin \left(\sqrt{3}k_y \right) + \sin \left(\frac{3k_x}{2} - \frac{\sqrt{3}k_y}{2} \right) - \sin \left(\frac{3k_x}{2} + \frac{\sqrt{3}k_y}{2} \right) \right]$$

Shaking Optical Lattice

AOM
$$V(x)$$

$$\hat{F} = \hat{U}\left(T_i + T, T_i\right) = \hat{T} \exp\left\{-i \int_{T_i}^{T_i + T} dt \,\hat{H}\left(t\right)\right\}$$

For sufficiently fast modulation, if one only concerns the observation at integer period

 $\hat{F} = e^{-i\hat{H}_{\rm eff}T}$

$$\hat{H}_{\text{eff}} = \hat{H}_0 + \sum_{n=1}^{\infty} \left\{ \frac{[\hat{H}_n, \hat{H}_{-n}]}{n\omega} - \frac{[\hat{H}_n, \hat{H}_0]}{e^{-2\pi n i \alpha} n\omega} + \frac{[\hat{H}_{-n}, \hat{H}_0]}{e^{2\pi n i \alpha} n\omega} \right\}$$

Experimental Realization

100 $Max(\xi+)$ $Max(\xi -)$ $\nu = 0$ 75 50 25 $\nu = +1$ $\nu = -1$ 0 -25 -50 -75 -100 -45° 45° 90° -180° -135° -90° 0° 135° 180° ¢

In the following we outline the theoretical framework used to obtain effective Hamiltonians for time-modulated optical lattices. In particular, we derive the mapping from an elliptically modulated honeycomb lattice to the Haldane Hamiltonian [S1]. We consider a numerical and analytical approach, compare the results for a wide range of parameters and examine the validity of several approximations for the system studied in the experiment. Some elements of the general framework used there can be found in references [S2–S8], and applications to circularly modulated honeycomb lattices can be found in very recent work [S5, S9, S10].

[S10] Zheng, W. & Zhai, H. Floquet topological states in shaking optical lattices. *Phys. Rev. A* 89, 061603 (2014).

ETH, Nature (2014)

Experimental Realization

Scientific Background on the Nobel Prize in Physics 2016

Also in 2014, the group led by Tilman Esslinger made an experiment cold 40 K atoms in an optical lattice to simulate the precise model prop by Haldane in 1988 [29]. This shows that reality sometimes surpasses dre At the end of his paper Haldane wrote: "While the particular model press here, is unlikely to be directly physically realizable, it indicates ...". V he could not imagine was that 25 years later, new experimental techni would make it possible to create an *artificial state of matter* that would in _____ provide that "unlikely" realization.

ETH, 2014; Hamburg 2015; USTC 2015

Rice-Mele Model 0.85 0.85 7.5 8.5 1 -8.5 -7.5 0 -8.5 0 -0.85 w = 0 $J - \delta$ Time t (T) $\hat{\mathcal{H}} = \sum \left(-(J+\delta)\hat{a}_i^{\dagger}\hat{b}_i - (J-\delta)\hat{a}_i^{\dagger}\hat{b}_{i+1} + \text{h.c.} + \Delta(\hat{a}_i^{\dagger}\hat{a}_i - \hat{b}_i^{\dagger}\hat{b}_i) \right)$ $J + \delta$ $=\sum_{k}\left(\hat{a}_{k}^{\dagger}\ \hat{b}_{k}^{\dagger}
ight)H_{k}\left(egin{matrix}\hat{a}_{k}\\hat{b}_{k}
ight)$ $H_k = \mathbf{d}(k) \cdot \boldsymbol{\sigma}$ $\mathbf{d}(k) = (2J_0 \cos\frac{k}{2}, 2\delta \sin\frac{k}{2}, \Delta)$ T **Chern number defined in 1+1 space** © 2016 Macmillan Publishers Emited. All rights reserved $\blacktriangleright k \quad \frac{1}{2\pi} \int_{BZ} dk \int_0^T dt \frac{1}{2} \hat{\mathbf{d}}(k,t) \cdot \left(\partial_k \hat{\mathbf{d}}(k,t) \times \partial_t \hat{\mathbf{d}}(k,t)\right)$ 0 2π

U

8.5

W =

Charge Pumping is quantized to Chern number:

$$\Delta Q = -\frac{1}{2\pi} \int_{BZ} dk \int_0^T dt \frac{1}{2} \hat{\mathbf{d}}(k,t) \cdot \left(\partial_k \hat{\mathbf{d}}(k,t) \times \partial_t \hat{\mathbf{d}}(k,t)\right) = -C$$

Quantized Charge Pumping

Charge Pumping is quantized to Chern number:

Second Chern Number

Physical Consequence of 2D Chern Insulator

Bulk-Edge Correspondence

Quantum Hall Effect

Xue's group Science 2013

Physical Consequence of 2D Chern Insulator

Physical Consequence of Chern Number

Description of Quench Dynamics

k

Description of Quench Dynamics

Description of Quench Dynamics

Theorem: Topology from Dynamics

For a two-band Chern Insulator

$$\mathcal{H}(\mathbf{k}) = \frac{1}{2}\mathbf{h}(\mathbf{k}) \cdot \boldsymbol{\sigma}$$

Considering the quench dynamics described by:

$$\zeta(\mathbf{k},t) = \exp\left\{-\frac{i}{2}\mathbf{h}^{\mathrm{f}}(\mathbf{k})\cdot\boldsymbol{\sigma}t\right\}\zeta^{\mathrm{i}}(\mathbf{k})$$

$$\mathbf{n} = \zeta^{\dagger}(\mathbf{k}, t) \boldsymbol{\sigma} \zeta(\mathbf{k}, t),$$

this defines a Hopf map
$$f: [k_x, k_y, t] \implies \mathbf{n}$$

The linking number of $f^{-1}(\mathbf{n}_1)$ and $f^{-1}(\mathbf{n}_2)$

= The chern number of the final Hamiltonian

$$\Pi_3(S^2) = \Pi_2(S^2) = Z$$

Example of Theorem

Experimental Observations

Haldane Model: Hamburg group

arXiv: 1709.01046

See also USTC group

We thereby map out the trivial and non-trivial Chern number areas of the phase diagram. As shown by Wang et al. (ref. [13]), the Chern number of the post quench Hamiltonian maps onto the linking number between this contour and the position of the static vortices [Fig. 1(a)]. We thus demonstrate that the direct mapping between two topological indices – a static and a dynamical one – allows for an unambiguous measurement of the Chern number.

Thank You Very Much for Attention !