Fundamental Aspects of Quantum Dynamics:

I: Symmetry

Hui Zhai

Institute for Advanced Study Tsinghua University Beijing, China

Quantum Few- and Many-Body Physics in Ultracold Atoms Wuhan April 2018

Symmetry and Dynamics

Ref. Shijin Deng, Zhe-Yu Shi, Pengpeng Diao, Qianli Yu, HZ, Ran Qi and Haibin Wu, Science, 371, 353, 2016

Detection Symmetry via Dynamics

Application for detecting Str. Phase in BTC

Predicted: Chunji Wang, Chao Gao, Chao-Ming Jian and HZ, PRL, 105, 160403 (2010)

Scale Invariant Quantum Systems

No other energy scale except for the kinetic energy

Zoo of Scale Invariant Quantum Gases

Non-interacting bosons/	No other length scale
fermions at any dimension	except for density
Unitary Fermi gas at three dimension	Density and a_s $a_s = \infty$
Tonks gas of bosons/	Density and g_{1D}
fermions at one dimension	$g_{1D} = \infty$

Universal behavior:

$$\langle V \rangle = \alpha \langle T \rangle$$

How to detect the scaling symmetry ?

The First BEC Experiments

Expansion dynamics has been used to probe BEC

JILA Group

MIT Group

Efimovian Expansion

Efimovian Expansion

Scaling Symmetry in a Harmonic Trap

This scaling symmetry exists only if

Expansion Dynamics

t*

*

 t_*

t

 $\rightarrow t$

k

t

$$i\frac{d}{dt}R^{2} = \sum_{i} \langle [r_{i}^{2}, H] \rangle = 2i \langle \hat{D} \rangle$$

$$\frac{d}{\hat{D}} \langle \hat{D} \rangle = \langle [\hat{D}, H] \rangle = 2i \langle (H) \rangle \langle 2D^{2} \rangle$$

$$i\frac{a}{dt}\langle\hat{D}\rangle = \langle [\hat{D}, H]\rangle = 2i\left(\langle H\rangle - \omega^2 R^2\right)$$

$$\frac{d}{dt}\langle H\rangle = \langle \frac{\partial}{\partial t}H\rangle = \omega\dot{\omega}R^2$$

$$\frac{d^3}{dt^3}R^2 + 4\omega^2\frac{d}{dt}R^2 + 4\omega\dot{\omega}R^2 = 0$$

Why the equation-of-motion closes ? An incident ?

Conformal Symmetry

The Schrodinger Group Symmetry

temporal translation: $H = -i\partial_t$ spatial translation: $P^i = -i\partial_i$ spatial rotation: $M^{ij} = ix_i\partial_j - ix_j\partial_i$,Galilean boost: $K^i = -it\partial_i - mx_i$ dilation: $D = -2it\partial_t - ix_i\partial_i - i\frac{d}{2}$ special Schrodinger transformation: $C = -it^2\partial_t - itx_i\partial_i - \frac{1}{2}m\vec{x}^2 - i\frac{d}{2}t$.

Ref: D. T. Son

Generalization to relativistic case to probe conformal symmetry

Expansion Dynamics

Why plateaus ?

 $\frac{d^n}{dt^n} \langle \hat{R}^2 \rangle |_{t=t_0} = 0$

Efimov Physics with Three Bosons

Efimov Physics with Three Bosons

Problem: Three bosons interacting through a short-range interaction 1970 Energy a < 0a > 0 $\bullet \circ \circ \circ$ 1/a000 0

Universal Discrete Scaling Symmetry

Renormalization Group View: Limit Circle Solution

First Experimental Evidence of Efimov Effect

Three bosons of Cs atoms

Grimm's group @ Innsbruck, Nature 2006

Experimental Evidences of Efimov Effect

ΑΑΑ	ABB	ABC
¹³³ Cs(Innsbruck, 2006)	⁴¹ K- ⁸⁷ Rb (Florence 2009? Osaka City 2017)	⁶ Li(Heidelberg 2008, Penn State 2009, Tokyo 2010)
³⁹ K(Florence, 2009)	⁴⁰ K- ⁸⁷ Rb (JILA, 2013)	
⁷ Li(Rice, Bar Ilan, 2009)	⁶ Li- ¹³³ Cs (Heidelberg and Chicago, 2014)	
⁸⁵ Rb(JILA, 2012)	⁷ Li- ⁸⁷ Rb (Tubingen, 2015)	

Efimov States v.s. Efimovian Expansion

The Efimov Effect	The Efimovian Expansion
$-\frac{\hbar^2 d^2}{2md^2\rho}\psi - \frac{\lambda}{\rho^2}\psi = E\psi$	$\frac{d^3}{dt^3}\langle \hat{R}^2 \rangle + \frac{4}{\lambda t^2}\frac{d}{dt}\langle \hat{R}^2 \rangle - \frac{4}{\lambda t^3}\langle \hat{R}^2 \rangle = 0.$
Spatial continuous	Temporal continuous
scaling symmetry	scaling symmetry
Short-range boundary condition	Initial time
$\psi = \sqrt{\rho} \cos[s_0 \log(\rho/\rho_0)]$	$\frac{\langle \hat{R}^2 \rangle(t)}{R_0^2} = \frac{t}{t_0} \frac{1}{\sin^2 \varphi} \left[1 - \cos \varphi \cdot \cos \left(s_0 \ln \frac{t}{t_0} + \varphi \right) \right]$
Spatial discrete scaling	Temporal discrete scaling

Experimental Observation

by Haibin Wu in East China Normal University

Non-interacting

σ- (μm

 $\sigma_{-}(\mu m)$

Unitary Fermions

$$\frac{\langle \hat{R}^2 \rangle(t)}{R_0^2} = \frac{t}{t_0} \frac{1}{\sin^2 \varphi} \left[1 - \cos \varphi \cdot \cos \left(s_0 \ln \frac{t}{t_0} + \varphi \right) \right]$$

Experimental Observation

by Haibin Wu in East China Normal University

Independent of Temperature

Independent of State of Matter

Symmetry and Dynamics

Question to Address

Starting from an initial state $|\Psi_0\rangle$

Wave function evolves as $e^{-i(\hat{H}_0 + \hat{V})t} |\Psi_0\rangle$

$$\hat{V} = U \sum_{i} n_i (n_i - 1)$$
 for bosons
 $\hat{V} = U \sum_{i} n_{i\uparrow} n_{i\downarrow}$ for fermions

Measure an operator with repulsive and attractive models

$$\langle O(t) \rangle_{+U} = \pm \langle O(t) \rangle_{-U}$$

Example 1: Hubbard Model

Square Lattice

Triangular Lattice

Example 1: Hubbard Model

Munich Group, U. Schneider, et.al. Nat. Phys. 2012

Example 2: Hofstader-Hubbard Model

$$\hat{H}_{0} = -J_{x} \sum_{i,\sigma} \left[e^{i(i_{y}-1/2)\phi} \hat{c}_{i_{x},i_{y},\sigma}^{\dagger} \hat{c}_{i_{x}-1,i_{y},\sigma} + \text{h.c.} \right] - J_{y} \sum_{i,\sigma} \left[\hat{c}_{i_{x},i_{y},\sigma}^{\dagger} \hat{c}_{i_{x},i_{y}-1,\sigma} + \text{h.c.} \right]$$

Chirality of twoparticle motion

$$\Delta y_{\text{COM}}(t) = \frac{\langle \hat{O}_{-}^{R}(t) \rangle}{\langle \hat{O}_{+}^{R}(t) \rangle} - \frac{\langle \hat{O}_{-}^{L}(t) \rangle}{\langle \hat{O}_{+}^{L}(t) \rangle}$$

$$\hat{O}_{\pm}^{R} = \sum_{i_{x}>0} (\hat{n}_{i_{x},i_{y}=1} \pm \hat{n}_{i_{x},i_{y}=0}),$$
$$\hat{O}_{\pm}^{L} = \sum_{i_{x}<0} (\hat{n}_{i_{x},i_{y}=1} \pm \hat{n}_{i_{x},i_{y}=0}).$$

Harvard Group, M. E. Tai, et.al. Nature 2017

Example 2: Hofstader-Hubbard Model

 $\hat{H}_{0} = -J_{x} \sum_{i,\sigma} \left[e^{i(i_{y}-1/2)\phi} \hat{c}_{i_{x},i_{y},\sigma}^{\dagger} \hat{c}_{i_{x}-1,i_{y},\sigma} + \text{h.c.} \right] - J_{y} \sum_{i,\sigma} \left[\hat{c}_{i_{x},i_{y},\sigma}^{\dagger} \hat{c}_{i_{x},i_{y},\sigma} + \text{h.c.} \right]$

Example 2: Hofstader-Hubbard Model

$$\hat{H}_{0} = -J_{x} \sum_{i,\sigma} \left[e^{i(i_{y}-1/2)\phi} \hat{c}_{i_{x},i_{y},\sigma}^{\dagger} \hat{c}_{i_{x}-1,i_{y},\sigma} + \text{h.c.} \right] - J_{y} \sum_{i,\sigma} \left[\hat{c}_{i_{x},i_{y},\sigma}^{\dagger} \hat{c}_{i_{x},i_{y}-1,\sigma} + \text{h.c.} \right]$$

One particle

Two particles

Interaction induced chirality

Harvard Group, M. E. Tai, et.al. Nature 2017

Example 3: Aubry-Andre-Hubbard Model

Summary of Three Examples

$$\langle O(t) \rangle_{+U} = \pm \langle O(t) \rangle_{-U}$$
 ?

Example I (Munich 2012)

Different Lattice Geometry

Example II (Harvard 2017)

Different Initial State

Example III (Munich 2015)

Different Onsite Potential

Single-Particle/ Initial State Properties

Interaction Effect on Dynamics

Theorem: Symmetry Protected Dynamical Symmetry

For the Hamiltonian $\hat{H} = \hat{H}_0 + \hat{V}$ if we can find an antiunitary operator $\hat{S} = \hat{R}\hat{W}$

(i)
$$\hat{S}^{-1}\hat{H}_0\hat{S} = -\hat{H}_0$$
 $[\hat{S}, \hat{V}] = 0$

(ii)
$$\hat{S}^{-1} |\Psi_0\rangle = e^{i\chi} |\Psi_0\rangle$$

(iii)
$$\hat{S}^{-1}\hat{O}\hat{S} = \pm\hat{O}$$

$$\langle O(t) \rangle_{+U} = \pm \langle O(t) \rangle_{-U}$$

Example 1: Revisit

$$H_0 = -J \sum_{\langle ij \rangle, \sigma} c^{\dagger}_{i\sigma} c_{j\sigma}$$

Bipartite Lattice Symmetry

Square Lattice

Triangular Lattice

Example 2: Revisit

 $\hat{H}_{0} = -J_{x} \sum_{i,\sigma} \left[e^{i(i_{y}-1/2)\phi} \hat{c}_{i_{x},i_{y},\sigma}^{\dagger} \hat{c}_{i_{x}-1,i_{y},\sigma} + \text{h.c.} \right] - J_{y} \sum_{i,\sigma} \left[\hat{c}_{i_{x},i_{y},\sigma}^{\dagger} \hat{c}_{i_{x},i_{y}-1,\sigma} + \text{h.c.} \right]$

 $\hat{W}^{-1}\hat{c}_{i_x,i_y,\sigma}\hat{W} = (-1)^{i_x+i_y}\hat{c}_{i_x,1-i_y,\sigma}$

Example 3: Revisit

$$\hat{H}_{0} = \sum_{i,\sigma} \left[-J(\hat{c}_{i,\sigma}^{\dagger} \hat{c}_{i+1,\sigma} + \text{h.c.}) + \Delta \cos(2\pi\beta i + \theta) \hat{n}_{i,\sigma} \right]$$

$$(\hat{c}_{i,\sigma} \hat{c}_{i+1,\sigma} + \text{h.c.}) + \Delta \cos(2\pi\beta i + \theta) \hat{n}_{i,\sigma} = p/q$$

$$\hat{W}^{-1}\hat{c}_{i,\sigma}\hat{W} = (-1)^{i}\hat{c}_{i+q/2,\sigma}$$

	Uniform Initial State	CDW Initial State
q is even q/2 is even		
q is even q/2 is odd		X
q is odd	×	×

Application of Theorem

Summary

I. Logarithmical periodic expansion dynamics can detect the scaling symmetry of the bulk system.

II. The symmetry of bulk system can put constraint on dynamics with positive and negative interactions.

Thank You Very Much for Attention !