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Entanglement Entropy
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Density Matrix Criterion

Reduced density matrix:

ρA ≡ trB(ρAB),

ρB ≡ trA(ρAB),

where ρAB = |ΨAB⟩ ⟨ΨAB | is the density matrix of the whole system.

For a pure system, it is obvious that

! For separable states: tr(ρ2A) = tr(ρ2B) = tr(ρ2AB) = 1.

! For entangled states: tr(ρ2A) = tr(ρ2B) < tr(ρ2AB) = 1.

For a mixed system, the following inequity still holds true for ”entangled

state”1:

max{tr(ρ2A), tr(ρ2B)} < tr(ρ2AB) < 1.

1R. Horodecki and M. Horodecki, “Information-theoretic aspects of inseparability

of mixed states”, Physical Review A 54, 1838–1843 (1996).

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Density Matrix Criterion

Reduced density matrix:

ρA ≡ trB(ρAB),

ρB ≡ trA(ρAB),

where ρAB = |ΨAB⟩ ⟨ΨAB | is the density matrix of the whole system.

For a pure system, it is obvious that

! For separable states: tr(ρ2A) = tr(ρ2B) = tr(ρ2AB) = 1.

! For entangled states: tr(ρ2A) = tr(ρ2B) < tr(ρ2AB) = 1.

For a mixed system, the following inequity still holds true for ”entangled

state”1:

max{tr(ρ2A), tr(ρ2B)} < tr(ρ2AB) < 1.

1R. Horodecki and M. Horodecki, “Information-theoretic aspects of inseparability

of mixed states”, Physical Review A 54, 1838–1843 (1996).

nth Renyi Entropy
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Relation with Entanglement Entropy

max{tr(ρ2A), tr(ρ2B)} < tr(ρ2AB) < 1.

In fact, this is somewhat a definition of the entangled state in a mixed

system. (Notice that the mixing of entangled states can also be seen as

the mixing of separable states. )

So let us try to understand this relation in the language of entropy.

n-th Rényi (entangled) entropy:

Sn(A) ≡
1

1− n
log tr (ρnA).

Returns to the von Neumann entropy as n → 1 (L’Hôpital’s rule):

lim
n→1

Sn(A) = −tr(ρA log ρA) ≡ S(A).
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Relation with Entanglement Entropy

2nd Rényi (entangled) entropy:

S2(A) = − log tr (ρ2A).

max{tr(ρ2A), tr(ρ2B)} < tr(ρ2AB)

⇔

min{S2(A), S2(B)} > S2(AB).

It means that for an entangled state, the entanglement Rényi entropy

contains more information than the entropy of the entire system, which is

unclassical.

2nd
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Relation with Entanglement Entropy

max{tr(ρ2A), tr(ρ2B)} < tr(ρ2AB) < 1.

In fact, this is somewhat a definition of the entangled state in a mixed

system. (Notice that the mixing of entangled states can also be seen as

the mixing of separable states. )

So let us try to understand this relation in the language of entropy.

n-th Rényi (entangled) entropy:

Sn(A) ≡
1

1− n
log tr (ρnA).

Returns to the von Neumann entropy as n → 1 (L’Hôpital’s rule):

lim
n→1

Sn(A) = −tr(ρA log ρA) ≡ S(A).



Measurement of Second Renyi Entropy
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Measuring tr(ρ2)
Thus to determine entanglement, we need to measure tr(ρ2).

How to do it?

An important observation:

tr(V2ρ1 ⊗ ρ2) = tr(ρ1ρ2),

where V2(|ψ1⟩ ⊗ |ψ2⟩) = |ψ2⟩ ⊗ |ψ1⟩.
Proof:

tr(V2ρ1 ⊗ ρ2) =tr

⎛

⎝V2

∑

ijkl

ρ(1)ij ρ
(2)
kl |i⟩ ⟨j |⊗ |k⟩ ⟨l |

⎞

⎠

=tr

⎛

⎝
∑

ijkl

ρ(1)ij ρ
(2)
kl |k⟩ ⟨j |⊗ |i⟩ ⟨l |

⎞

⎠

=
∑

ijkl

ρ(1)ij ρ
(2)
kl δkjδil

=
∑

ij

ρ(1)ij ρ
(2)
ji = tr(ρ1ρ2).

Theorem:

Exchanging 1 an 2

X Y1 = f(W1X +B1)

f(x) = 0; x < 0 f(x) = x; x > 0 Y2 = f(W2Y1 +B2) Y = W3Y2 +B3

Y = W3f(W2f(W1X +B1) + B2) + B3 {Xn, Yn}
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@ĥ

@ky

!
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†
1 � â
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†
2)

n
(â
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Hong-Ou-Mandel Interference
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Equation (1) can be framed in terms of entropic quantities1,33.  
A particularly useful and well studied quantity is the nth-order Rényi 
entropy:

ρ( )=
−

( ) ( )S
n

A 1
1

log Tr 2n
n

A

From equation (2), we see that the second-order (n =  2) Rényi entropy 
and purity are related by ρ( )=− ( )S A log Tr2 A

2 . S2(A) provides a lower 
bound15 for the von Neumann entanglement entropy SVN(A) =  S1(A) 
=  − Tr(ρAlogρA), which has been extensively studied theoretically. The 
Rényi entropies are rapidly gaining importance in theoretical con-
densed matter physics because they can be used to extract information 
about the “entanglement spectrum”35, thus providing more complete 
knowledge about the quantum state than just the von Neuman entropy. 
In terms of the second-order Rényi entropy, the conditions sufficient 
to demonstrate entanglement1,33 become S2(A) >  S2(AB), and 
S2(B) >  S2(AB), that is, the subsystems have more entropy than the full 
system. These entropic inequalities are more powerful in detecting 
certain entangled states than other inequalities such as the  
Clauser–Horne–Shimony–Holt (CHSH) inequality30,33.

Measurement of quantum purity
The quantum purity and hence the second-order Rényi entropy can be 
directly measured by interfering two identical and independent copies 
of the quantum state on a 50%–50% beam splitter15,26,27,30. For two 
identical copies of a bosonic Fock state, the output ports always have 
even particle numbers, as illustrated in Fig. 2a. This is due to the 
destructive interference of all odd outcomes. If the system is composed 
of multiple modes, such as internal spin states or various lattice sites 
the expectation value of the total number parity =∏ ( )P pi k i

k  is equal to 
unity in the output ports i =  1, 2. Here the parity for mode k is = ±( )p 1i

k  
for even or odd numbers of particles, respectively.

The well known Hong–Ou–Mandel (HOM) interference of two 
identical single photons36 is a special case of this scenario. Here a pair 
of indistinguishable photons incident upon different input ports of a 
50%–50% beam splitter interfere such that both photons always exit 
from the same output port. In general, the average parity measured 
in the many-body bosonic interference on a beam splitter probes the 
quantum state overlap (Supplementary Information) between the two 
copies, 〈 Pi〉  =  Tr(ρ1ρ2), where ρ1 and ρ2 are the density matrices of 
the two copies respectively and 〈 ...〉  denotes averaging over repeated 
experimental realizations, as shown in Fig. 2b. Hence, for two identical 

systems, that is, for ρ1 =  ρ2 =  ρ, the average parity for both output ports 
(i =  1, 2) equals the quantum purity of the many-body state15,26,27:

ρ〈 〉= ( ) ( )P Tr 3i
2

Equation (3) represents the most important theoretical foundation 
behind this work—it connects a quantity depending on quantum 
coherences in the system to a simple observable in the number of par-
ticles. It holds even without fixed particle number, as long as there 
is no definite phase relationship between the copies (Supplementary 
Information). From equations (1) and (3), detecting entanglement 
in an experiment is thus reduced to simply measuring the average 
particle number parity in the output ports of the multi-mode beam  
splitter.

We probe entanglement formation in a system of interacting 87Rb 
atoms on a one-dimensional optical lattice with a lattice constant 
of 680 nm. The dynamics of atoms in the lattice is described by the  
Bose–Hubbard Hamiltonian:

†∑ ∑=− + ( − )
( )〈 〉

H J a a U n n
2

1
4i j

i j
i

i i
,

where †a a,i i  and †=n a ai i i  are the bosonic creation, annihilation,  
and the number operators at site i, respectively. The atoms tunnel 
between neighbouring lattice sites (indicated by 〈 i, j〉 ) with a rate J and 
experience an onsite repulsive interaction energy U. Planck’s constant 
h is set to 1 and hence both J and U are expressed in hertz. The dimen-
sionless parameter U/J is controlled by the depth of the optical lattice. 
Additionally, we can superimpose an arbitrary optical potential with 
the resolution of a single lattice site by using a spatial light modulator 
as an amplitude hologram through a high-resolution microscope 
(Supplementary Information). This microscope also allows us to image 
the number parity of each lattice site independently28.

Figure 1 | Bipartite entanglement and partial measurements.  
A generic pure quantum many-body state has quantum correlations 
(shown as arrows) between different parts. If the system is divided into  
two subsystems A and B, the subsystems will be bipartite entangled  
with each other when there are quantum correlations between them 
(right column). Only when there is no bipartite entanglement present, 
the partitioned system | ψAB〉  can be described as a product of subsystem 
states | ψA〉  and | ψB〉  (left column). A path for measuring the bipartite 
entanglement emerges from the concept of partial measurements: 
ignoring all information about subsystem B (indicated as ‘Trace’) will put 
subsystem A into a statistical mixture, to a degree given by the amount of 
bipartite entanglement present. Finding ways of measuring the many-body 
quantum state purity of the system and comparing that of its subsystems 
would then enable measurements of entanglement. For an entangled state, 
the subsystems will have less purity than the full system.

Entangled stateProduct state

\ \ \ \\ \

A B A B

TracePure TraceMixed

|����³�= |����³A ⊗ | ���³B |����³�≠ |����³A ⊗ | ���³B

Figure 2 | Measurement of quantum purity with many-body bosonic 
interference of quantum twins. a, When two N-particle bosonic systems 
that are in identical pure quantum states are interfered on a 50%–50% 
beam splitter, they always produce output states with an even number 
of particles in each copy. This is due to the destructive interference of 
odd outcomes and represents a generalized HOM interference, in which 
two identical photons always appear in pairs after interfering on a beam 
splitter. b, If the input states ρ1 and ρ2 are not perfectly identical or not 
perfectly pure, the interference contrast is reduced. In this case the 
expectation value of the parity of particle number 〈 Pi〉  in either output 
(i =  1, 2) measures the quantum state overlap between the two input states. 
For two identical input states ρ1 =  ρ2, the average parity 〈 Pi〉  therefore 
directly measures the quantum purity of the states. We assume only that 
the input states have no relative macroscopic phase relationship.

a

b
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Even particle number
in Output 1
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Odd particle number

Two identical N-particle
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|����N³ 

|����N³ 
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U2
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=
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∏
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© 2015 Macmillan Publishers Limited. All rights reserved



Hong-Ou-Mandel Interference for BHM
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Measuring Entanglement in Bose-Hubbard Model6

The preparation of two identical systems and the beam-splitter visualized

by in-situ florescence imaging:

50/50 BS

0 1/8 1/4 3/8 1/2
0

0.2

0.4

0.6

0.8

1

Jy t

x

y

odd even

Mott

Jx

680 nm

Jy

Jy

6R. Islam et al., “Measuring entanglement entropy through the interference of

quantum many-body twins”, (2015).

Harvard Group, Nature 2016
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Measuring Entanglement in Bose-Hubbard Model
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It is instructive to investigate the scaling of Rényi entropy and mutual 
information with subsystem size7,44, since in larger systems they can 
characterize quantum phases, for example by measuring the central 
charge of the underlying quantum field theory5. Figure 5b shows these 
quantities versus the subsystem size for various partitioning schemes 
with a single boundary. For the atomic Mott insulator the Rényi entropy 
increases linearly with the subsystem size and the mutual information 
is zero, consistent with both a product state and classical entropy being 
uncorrelated between various sites. In the superfluid state the measured 
Rényi entropy curves are asymmetric and first increase with the system 
size, then fall again as the subsystem size approaches that of the full 
system. This represents the combination of entanglement entropy and 
the linear classical entropy. The non-monotonicity is a signature of 
the entanglement entropy, as the entropy for a pure state must vanish 
when the subsystem size is zero or the full system. The asymmetry due 
to classical entropy is absent in the mutual information.

The mutual information between two subsystems comes from the 
correlations across their separating boundary. For a 4-site system, 
the boundary size ranges from one to three for various partitioning 
schemes. Among those schemes with a single boundary, maximum 
mutual information in the superfluid is obtained when the boundary 
divides the system symmetrically (Fig. 5a). Increasing the boundary 
size increases the mutual information, as more correlations are inter-
rupted by the partitioning (Fig. 5c).

Mutual information also elucidates the onset of correlations between 
various sites as the few-body system crosses over from a Mott insula-
tor to a superfluid phase. In the Mott insulator phase (U/Jx ≫ 1) the 
mutual information between all sites vanish (Fig. 5c, bottom). As the 
particles start to tunnel, only the nearest-neighbour correlations start 
to build up (U/Jx ≈  12) and the long-range correlations remain negligi-
ble. Further into the superfluid phase, the correlations extend beyond 
the nearest neighbour and become long range for smaller U/Jx. These 
results suggest disparate spatial behaviour of the mutual information 

in the ground state of an uncorrelated (Mott insulator) and a strongly 
correlated phase (superfluid). For larger systems this can be exploited 
to identify quantum phases and the onset of quantum phase transitions.

Non-equilibrium entanglement dynamics
Away from the ground state, the non-equilibrium dynamics of a quan-
tum many-body system is often theoretically intractable. This is due to 
the growth of entanglement beyond the access of numerical techniques, 
such as the time-dependent density matrix renormalization group the-
ory46,47. Experimental investigation of entanglement may shed valuable 
light onto non-equilibrium quantum dynamics. Towards this goal, we 
study a simple system: two particles oscillating in a double well37,48. The 
non-equilibrium dynamics are described by the Bose–Hubbard model. 
The quantum state of the system oscillates between unentangled (parti-
cles localized in separate wells) states and entangled states in the Hilbert 
space spanned by | 1, 1〉 , | 2, 0〉  and | 0, 2〉 . Here, | m, n〉  denotes a state 
with m and n atoms in the two subsystems (wells), respectively. Starting 
from the product state | 1, 1〉  the system evolves through the maximally 
entangled states | 2, 0〉  +  | 0, 2〉  ±   | 1, 1〉  and the symmetric, HOM-like 
state | 2, 0〉  +  | 0, 2〉 . In the maximally entangled states the subsystems 
are completely mixed, with a probability of 1/3 of having zero, one or 
two particles. The system then returns to the initial product state | 1, 1〉  
before re-entangling. In our experiment, we start with a Mott insulating 
state (U/Jx ≫ 1), and suddenly quench the interaction parameter to a 
low value, U/Jx ≈  0.3. The non-equilibrium dynamics is demonstrated 
(Fig. 6) by the oscillation in the second-order Rényi entropy of the sub-
system, while the full system assumes a constant value originating from 
classical entropy. This experiment also demonstrates entanglement in 
HOM-like interference of two massive particles.

Summary and outlook
In this work, we perform a direct measurement of quantum purity, the 
second-order Rényi entanglement entropy, and mutual information 
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Figure 5 | Rényi mutual information in the ground state. Any 
contribution from the extensive classical entropy in our measured Rènyi 
entropy can be factored out by constructing the mutual information 
IAB =  S2(A) +  S2(B) −  S2(AB). a, We plot the summed entropy 
S2(A) +  S2(B) (in blue, green and light blue corresponding to the partitions 
shown) and the entropy of the full system S2(AB) (in red) separately. 
Mutual information is the difference between the two, as shown by the 
arrow for a partitioning scheme. In the Mott insulator phase (U/Jx ≫ 1) 
the sites are not correlated, and IAB ≈  0. Correlations start to build up 
for smaller U/Jx, resulting in a non-zero mutual information. The theory 
curves are from exact diagonalization, with added offsets consistent with 
the extensive entropy in the Mott insulator phase (about 0.5 for the full 
system). b, Classical and entanglement entropies follow qualitatively 
different scaling laws in a many-body system. The top panel in b shows 
that in the Mott insulator phase classical entropy dominates and S2(A) 

and S2(B) follow a volume law: entropy increases with the size of the 
subsystem. The mutual information IAB ≈  0. The bottom panel in b shows 
the non-monotonic behaviour of S2(A) and S2(B) in the superfluid regime, 
due to the dominance of entanglement over classical entropy, which 
makes the curves asymmetric. IAB restores the symmetry by removing the 
classical uncorrelated noise. The solid lines are linear (top) and quadratic 
(bottom) fits included as a guide to the eye. The top panel in c shows that 
more correlations are affected (red arrow) with increasing boundary area, 
leading to a growth of mutual information between subsystems. The data 
points are for various partitioning schemes shown in Fig. 4b. The bottom 
panel in c plots IAB as a function of the distance d between the subsystems 
to show the onset and spread of correlations in space, as the Mott insulator 
adiabatically melts into a superfluid. In these plots some overlapping data 
points are offset from each other horizontally for clarity.
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Equilibrium 

system allows us to conclude that the dynamical
increase in entropy in the subsystems originates
in the propagation of entanglement between
the system’s constituents. The approximately
linear rise at early times (Fig. 3, inset) is related

to the spreading of entanglement in the system
within an effective light cone (2, 31, 32). Further-
more, in analogy to the growth of thermody-
namic entropy in an equilibrating classical
mechanical system, such as a gas in a closed

container, we observed the growth of local en-
tropy in a closed quantum mechanical system.
In the quantum mechanical case, however, the
mechanism responsible for the entropy is entan-
glement, which is absent from a system modeled
by classical mechanics.
When a system thermalizes, we expect that

the saturated values of local observables should
correspond to the predictions of a statistical en-
semble. By analogy, if the entanglement entropy
plays the role of thermal entropy, then in a ther-
malized pure state, we expect extensive growth
in the entanglement entropy with subsystem vol-
ume. When the entanglement entropy in a quan-
tum state grows linearly with the size of the
subsystem considered, it is known as a volume
law. Theoretical work using conformal field the-
ory has shown that indeed, at long times, a
volume law is expected for a quenched, infinite,
continuous system, whereas only an area law
with a logarithmic correction is expected for the
ground state (2, 33, 34). Characterizing the large
amount of entanglement associated with a volume
law is particularly challenging because it results
in nearly every entry of the density matrix having
a small but, importantly, nonzero magnitude.
Using the techniques outlined here, we ob-

tained measurements showing a near-volume
law in the entanglement entropy (Fig. 4A). A
linear growth with volume in the entanglement
entropy occurs when each subsystem incoherently
populates a number of states that scales with
the size of the subsystem Hilbert space. This is
because, for the Bose-Hubbard model, the Hilbert
space is approximately exponential in the lattice
size, which results in a linear growth in SA ¼
−log½Trðr2AÞ%. The exact slope of the entangle-
ment entropy versus subsystem volume depends
on the average energy of the thermalized pure
state (35). In contrast, we can prepare the ground
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Fig. 3. Dynamics of entanglement entropy. Starting from a low-entanglement ground state, a global
quantum quench leads to the development of large-scale entanglement between all subsystems. We
quenched a six-site system from the Mott insulating product state (J/U ≪ 1) with one atom per site to the
weakly interacting regime of J/U=0.64 [J/(2p) = 66Hz] andmeasured the dynamics of the entanglement
entropy. Shown are the dynamics for (A) one-, (B) two-, and (C) three-site subsystems and (D) the full
system. As it equilibrates, a subsystem acquires local entropy, whereas the entropy of the full system
remains constant and at a value given by measurement imperfections (D). The measured dynamics are
consistent with exact numerical simulations (24) with no free parameters (solid lines). Error bars are SEM.
For the largest entropies encountered in the three-site subsystem shown in (C), the large number of
populated microstates leads to a significant statistical uncertainty in the entropy, which is reflected in the
upper error bar extending to large entropies or being unbounded (24).The inset in (A) shows the slope of
the early time dynamics, extracted from (A) to (C) with a piecewise linear fit (24). The dashed line is the
mean of these measurements.
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SB exceeds SAB. (C) Mutual information IAB versus the volume of AB for the
ground state and the thermalized quenched state. For small system sizes, the
quenched state exhibits smaller correlations than the adiabatically prepared
ground state, and themutual information is nearly vanishing (red arrow).When
probed on a scale near the system size, the highly entangled quenched state
exhibits much stronger correlations than the ground state. Throughout this
figure, the entanglement entropies from the last time point in Fig. 3 are
averaged over all relevant partitionings with the same subsystem volume; we
have also corrected for the extensive entropy unrelated to entanglement (24).
All solid lines represent numerical calculations with no free parameters (24).
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Theorem. For a system constituted by subparts A and B at T = 1, after quenching

by an arbitrary operator O, the second entanglement Renyi entropy S
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†(t)Ŵ (t)V̂ †(0)V̂ (0)i�

2

Normal correlation you can find in any textbook:

Kitaev

OTOC

Since 2014…

MaldacenaShenkerSachdev Witten
…….…….

Condensed Matter/
Quantum Information High Energy/Gravity



Out-of-Time-Ordered Correlator

hŴ †
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(0)Ŵ (t)V̂ (0)i�
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2
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Ŵ (t) = eiĤtŴe�iĤt
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OTOC diagnoses chaotic behavior  

This correlation function is useful in diagnosing chaos for quantum mechanical mod-

els.

• We will then focus on a quantum mechanical model, now known as Sachdev-Ye-

Kitaev model, that is claimed to be maximally chaotic. The model itself has some

interesting features and those features are shared by a gravity model, therefore this

model is believed to be important in understanding quantum holography. We will

only talk about the SYK model side and leave the holographic part to audience.

• References:

– “Black holes and the butterfly e↵ect” Shenker-Stanford arXiv:1306.0622;

– “A bound on chaos” Maldacena-Shenker-Stanford arXiv:1503.01409;

– Sachdev-Ye-Kitaev model:

1. Sachdev-Ye model, arXiv: cond-mat/9212030

2. Kitaev’s talks at KITP, 2015

3. Sachdev arXiv:1506.05111; Polchinski-Rosenhaus arXiv:1601.06768; Fu-Sachdev

arXiv:1603.05246;

4. Maldacena-Stanford arXiv:1604.07818;

– Gravity side:

1. Almheiri-Polchiski: arXiv:1402.6334;

2. Maldacena-Stanford-Yang: arXiv:1606.01857

3. Engelsöy-Mertens-Verlinde: arXiv:1606.03438

2 Quantum butterfly e↵ect

Outline for the introduction to quantum butterfly e↵ect:

• Classical chaos: Poisson bracket {q(t), p(0)} = @q(t)
@q(0) ⇠ e

�Lt, �L: Lyapunov exponent.

• Semi-classical treatment: {q(t), p(0)}PB ! i

~
[bq(t), bp(0)] (Larkin, Ovchinnikov 1969).

• Semiclassical to quantum: commutator square C(t) = h|[W (t), V (0)]|2i
�
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• C(t) contains four terms.
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Figure 1: Accessible correlators and out-of-time-ordered correlators

– Accessible correlators: appear in (non-linear) response functions.

– Out-of-time-ordered correlators: hard to measure. (Cold atom experiment pro-

posal: arXiv:1602.06271, 1606.02454)

• Focus on out-of-time-ordered-correlator

f(t) := hW †(t)V †(0)W (t)V (0)i� (3)

• |�i pure state that mimics the thermal equilibrium at T = 1/�.

|�i = 1p
Z

X

n

e
��En

2 |ni|ni, |ni 2 H, |ni 2 H : thermal bath (4)

• Wave-function inner product interpretation: quantum butterfly e↵ect:

f(t) = hy|xi; |xi = W (t)V (0)|�i, |yi = V (0)W (t)|�i (5)

– If no perturbation W , |xi = |yi = V |�i;

– Perturbation W destroys the delicated cancellation

– OTOC f(t) = hy|xi measures the di↵erence: quantify the butterfly e↵ect;

4

This correlation function is useful in diagnosing chaos for quantum mechanical mod-

els.

• We will then focus on a quantum mechanical model, now known as Sachdev-Ye-

Kitaev model, that is claimed to be maximally chaotic. The model itself has some

interesting features and those features are shared by a gravity model, therefore this

model is believed to be important in understanding quantum holography. We will

only talk about the SYK model side and leave the holographic part to audience.

• References:

– “Black holes and the butterfly e↵ect” Shenker-Stanford arXiv:1306.0622;

– “A bound on chaos” Maldacena-Shenker-Stanford arXiv:1503.01409;

– Sachdev-Ye-Kitaev model:

1. Sachdev-Ye model, arXiv: cond-mat/9212030

2. Kitaev’s talks at KITP, 2015

3. Sachdev arXiv:1506.05111; Polchinski-Rosenhaus arXiv:1601.06768; Fu-Sachdev

arXiv:1603.05246;

4. Maldacena-Stanford arXiv:1604.07818;

– Gravity side:

1. Almheiri-Polchiski: arXiv:1402.6334;

2. Maldacena-Stanford-Yang: arXiv:1606.01857

3. Engelsöy-Mertens-Verlinde: arXiv:1606.03438

2 Quantum butterfly e↵ect

Outline for the introduction to quantum butterfly e↵ect:

• Classical chaos: Poisson bracket {q(t), p(0)} = @q(t)
@q(0) ⇠ e

�Lt, �L: Lyapunov exponent.

• Semi-classical treatment: {q(t), p(0)}PB ! i

~
[bq(t), bp(0)] (Larkin, Ovchinnikov 1969).

• Semiclassical to quantum: commutator square C(t) = h|[W (t), V (0)]|2i
�
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(0)Ŵ (t)V̂ (0)i�
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OTOC = hy|xi
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hŴ †(t)V̂ †(0)Ŵ (t)V̂ (0)i�
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hŴ †(t)V̂ †(0)Ŵ (t)V̂ (0)i�
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VIEWPOINT

Seeing Scrambled Spins
Two experimental groups have taken a step towards observing the ‘‘scrambling’’ of
information that occurs as a many-body quantum system thermalizes.

by Brian Swingle⇤ and Norman Y. Yao†

Physicists have long wondered whether and how iso-
lated quantum systems thermalize—questions that
are relevant to systems as diverse as ultracold atomic
gases and black holes. Recent theoretical and ex-

perimental advances are bringing fresh insight into this line
of inquiry. At one extreme, researchers have shown that
disorder can fully arrest thermalization in certain isolated
many-body quantum systems [1]. At the other extreme,
surprising results from the field of quantum gravity have
established that black holes are, in some sense, the fastest
thermalizers in nature [2–4]. A common thread running
through these developments is an emerging focus on the dy-
namics of quantum information, in which thermalization is
associated with “scrambling,” or the loss of accessible infor-
mation. Two groups, one in China [5] and one in the US [6],
have taken a step towards tracking this scrambling of infor-
mation in systems of quantum spins.

The lore of thermalization goes as follows. Suppose you
initialize a collection of quantum spins into one of two dis-
tinct configurations. Now couple the system to a large heat
bath. After equilibrium is reached, the final state of the spins
will be independent of the spins’ initial configuration. In
other words, information about the initial state of the spins
has been irrevocably lost to the bath.

But thermalization does not require a bath to proceed. In
a complex many-body quantum system, information about
the initial state may instead be “hidden” in elaborate corre-
lations among the system’s constituents. The information in
such a scrambled state is not lost, because the final state can
be related to the initial state by a unitary transformation. But
it may be inaccessible to any reasonable local measurement.

The concept of information scrambling first arose in at-
tempts to understand the black hole information paradox,
which asks: How can information about what fell into a
black hole be both trapped inside the event horizon and lib-
erated as the black hole “evaporates” by emitting Hawking

⇤Department of Physics, University of Maryland, College Park, MD
20740, USA
†Department of Physics, University of California, Berkeley, CA
94720, USA

Figure 1: A classical chaotic system can be diagnosed by the
presence of the butterfly effect, in which a small perturbation like
the tiny flap of a butterfly’s wing has a huge effect on the system at
some later point in time. (Left) Another version of the classical
butterfly effect compares the situations of running time forward
(blue line) with running it backward after the butterfly is still (white)
or after the butterfly flaps its wings (red). Without the butterfly flap,
the system returns to its initial state; with it, the state of the system
eventually differs drastically from its initial state. (Right) Li et al. [5]
and Gärttner et al. [6] performed an analogous experiment with
quantum spin systems, here described by a wave function Y. Both
groups used quantum-control techniques to evolve their systems
forward in time (blue line), to apply a perturbation W, and to evolve
the systems backward in time (red line). They then performed a
measurement of V to diagnose the effect of the perturbation.
(APS/Alan Stonebraker)

radiation? Since a black hole is fundamentally a thermal ob-
ject, this paradox is intimately related to how information
dynamics leads to thermalization. Specifically, one could
imagine that when something falls into a black hole, the in-
formation about it is encoded—albeit in scrambled form—in
the radiation emitted during evaporation.

Experiments that can probe the quantum dynamics of
black holes are currently out of reach. But scrambling is also
relevant to isolated collections of strongly interacting atoms,
ions, molecules, and photons—all systems that physicists
can prepare in the lab. As a bonus, it may be possible to
engineer Hamiltonians in these systems that scramble infor-
mation as fast as black holes. The most direct way to detect
scrambling would be to measure a system’s entropy over
time, though this is typically too hard to do. Instead, re-
searchers have figured out that they can partially diagnose
scrambling using unusual correlation functions called out-
of-time-order correlators (OTOCs) [2, 3, 7]. These correlators
effectively involve a many-body “time machine.” Given two
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Delocalization of information is closely related to 
the decay of the OTOC,  and the butterfly effect in 
quantum system implies the information-theoretic 
definition of scrambling.

Hosur, Qi, Roberts and Yoshida, 2015

as shown in Fig. 1, C(t) will grow exponentially, which is reminiscent of the
classical butterfly e↵ect defined in Eq. 2.

Hence, we should make a remark that, in order for the OTOC to describe
the chaotic behavior, it requires

1. The separation of the time scales, i.e. ts � td

2. V̂ and Ŵ are both local operators.

Why the “separation of the time scales” is a natural assumption ? Let us
consider Ŵ and V̂ as two local operators far separated, thus, at t = 0 they
commute with each other and C(t) = 1. As time t increases

Ŵ (t) =
1X

j=0

(it)j

j!
[Ĥ, . . . , [Ĥ, Ŵ ], . . . , ] (10)

if Ĥ is local, only very high order commutates in Eq. 10 generate terms that
do not commute with V̂ , that is to say, only after long time Ŵ (t) becomes
not commuting with V̂ and the OTOC starts to deviate from unity. On the
other hand, thermalization is a local phenomenon and only involves the local
degree of freedom nearby V̂ . Thus, it is natural to assume td ⌧ ts.

1.2.2 Viewpoint B

Considering an eigenstate | i operated by an operator V̂ at t = 0, it is quite
obvious that

e�iĤteiĤtV̂ | i = V̂ | i, (11)

which means nothing but evolving a quantum state forward by Ĥ and then
backward by �Ĥ yields the same initial state. Now, let us ask, there is
another operation Ŵ inserted after the forward evolution and before the
backward evolution, i.e.

e�iĤtŴeiĤtV̂ | i, (12)

the question is after the time evolution, whether the quantum state can still
return to V̂ | i. To quantify this, one can naturally look at the wave function
overlap between

h |V̂ †e�iĤtŴeiĤtV̂ | i. (13)

If this overlap is nearly unity, that means insetting a perturbation Ŵ during
the evolution has little e↵ect in the final state; while if this overlap rapidly
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only talk about the SYK model side and leave the holographic part to audience.
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2. Kitaev’s talks at KITP, 2015
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3. Engelsöy-Mertens-Verlinde: arXiv:1606.03438

2 Quantum butterfly e↵ect

Outline for the introduction to quantum butterfly e↵ect:
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• Normalized OTOC:

ef(t) := hy|xip
hy|yihx|xi

, 0 6 | ef(t)| 6 1

• Speed of deviation:

ef(t) = 1� 1

N
e
�Lt + . . . (6)

– �L strength of chaos;

– MSS bound: �L 6 2⇡
�
;

– Einstein gravity: saturates the bound;

• Is there a quantum mechanical model, saturates the bound?

– Yes: SYK model.
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OTOC has also emerged in studying gravity models.  
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Kitaev, KITP, 2015; Maldacena, Shenker and Stanford, 2015



Holographic Duality 

Holographic duality:  
A quantum many body system (strongly interacting, emergent 
conformal field symmetry) in D-dimension  
can be mapped to  
a gravity theory (hopefully, classical) in D+1-dimension 
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Condensed Matter /Cold Atom Physicists: 

A way to solve strongly interacting 
quantum many-body problem 

High-Energy/Gravity  Physicists: 

A way to quantize gravity
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Viscosity in Strongly Interacting Quantum Field Theories from Black Hole Physics
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The ratio of shear viscosity to volume density of entropy can be used to characterize how close a given
fluid is to being perfect. Using string theory methods, we show that this ratio is equal to a universal value
of !h=4!kB for a large class of strongly interacting quantum field theories whose dual description involves
black holes in anti–de Sitter space. We provide evidence that this value may serve as a lower bound for a
wide class of systems, thus suggesting that black hole horizons are dual to the most ideal fluids.
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Introduction.—It has been known since the discovery of
Hawking radiation [1] that black holes are endowed with
thermodynamic properties such as entropy and tempera-
ture, as first suggested by Bekenstein [2] based on the
analogy between black hole physics and equilibrium ther-
modynamics. In higher-dimensional gravity theories there
exist solutions called black branes, which are black holes
with translationally invariant horizons [3]. For these solu-
tions, thermodynamics can be extended to hydrodynam-
ics—the theory that describes long-wavelength deviations
from thermal equilibrium [4]. In addition to thermody-
namic properties such as temperature and entropy, black
branes possess hydrodynamic characteristics of continuous
fluids: viscosity, diffusion constants, etc. From the perspec-
tive of the holographic principle [5,6], a black brane cor-
responds to a certain finite-temperature quantum field
theory in fewer number of spacetime dimensions, and the
hydrodynamic behavior of a black-brane horizon is iden-
tified with the hydrodynamic behavior of the dual theory.
For these field theories, in this Letter we show that the ratio
of the shear viscosity to the volume density of entropy has a
universal value

"
s

! !h
4!kB

" 6:08# 10$13K s: (1)

Furthermore, we shall argue that this is the lowest bound on
the ratio "=s for a wide class of thermal quantum field
theories.

Viscosity and graviton absorption.—Consider a thermal
field theory whose dual holographic description involves a
D-dimensional black-brane metric of the form

ds2 ! g%0&MNdx
MdxN

! f%#&%dx2 ' dy2& ' g$%%#&d#$d#%:
(2)

[The O%2& symmetry of the background is required for the
existence of the shear hydrodynamic mode in the dual
theory, thus making the notion of shear viscosity mean-
ingful.] One can have in mind, as an example, the near-
extremal D3-brane in type IIB supergravity, dual to finite-

temperature N ! 4 supersymmetric SU%Nc& Yang-Mills
theory in the limit of large Nc, and large ’t Hooft coupling
[7–10],

ds2 ! r2

R2

!

$
"

1$ r40
r4

#

dt2 ' dx2 ' dy2 ' dz2
$

' R2

r2%1$ r40=r
4& dr

2; (3)

but our discussion will be quite general. All black branes
have an event horizon [r ! r0 for the metric (3)], which is
extended along several spatial dimensions [x, y, z in the
case of (3)]. The dual field theory is at a finite temperature,
equal to the Hawking temperature of the black brane.

The entropy of the dual field theory is equal to the
entropy of the black brane, which is proportional to the
area of its event horizon,

S! A
4G

; (4)

where G is Newton’s constant (we set !h ! c ! kB ! 1).
For black branes A contains a trivial infinite factor V equal
to the spatial volume along directions parallel to the hori-
zon. The entropy density s is equal to a=%4G&, where a !
A=V.

The shear viscosity of the dual theory can be computed
from gravity in a number of equivalent approaches [11–
13]. Here we use Kubo’s formula, which relates viscosity
to equilibrium correlation functions. In a rotationally in-
variant field theory,

" ! lim
!!0

1

2!

Z

dtdxei!th(Txy%t;x&; Txy%0; 0&)i: (5)

Here Txy is the xy component of the stress-energy tensor
(one can replace Txy by any component of the traceless part
of the stress tensor). We shall now relate the right-hand side
of (5) to the absorption cross section of low-energy
gravitons.

According to the gauge-gravity duality [10], the stress-
energy tensor T$% couples to metric perturbations at the
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to the formation of spicular features in He II
304 Å(~0.1MK). These TR spicules appear with
a time delay of around 10 to 20 s, reach much
larger heights (~10 to 20 Mm), and typically fall
back to the surface within a matter of several
minutes, following a parabolic path (Fig. 3 and
fig. S5). Despite the enormous line-of-sight su-
perposition at the limb, we often also observe a
coronal counterpart of chromospheric/TR spic-
ules (Fig. 3 and fig. S5) in the Fe IX 171 Å
images. At the bottom, this takes the form of a
dark feature that corresponds to the bright Ca II H
feature (movie S8), likely from continuum ab-
sorption from neutral hydrogen and helium (21).
During the later stages, the dark feature disap-
pears (likely because heating reduces the amount
of neutral hydrogen and helium), and bright cor-
onal counterparts propagate upward into the cor-
onal hole with similar velocities as the apparent
motions of the chromospheric spicules (fig. S5).
These coronal counterparts appear to be related to
the propagating disturbances in coronal holes that
have previously been interpreted as waves (22)
and more recently linked to upflows (23, 24).

Our observations support a scenario in which
chromospheric plasma is propelled upward with
speeds of ~50 to 100 km/s, with the bulk of the
mass rapidly heated to TR temperatures (~0.02 to
0.1 MK), after which it returns to the surface
(invisible to chromospheric passbands). Directly
associated with these jets, plasma is heated to
coronal temperatures of at least 1 to 2 MK, at the
bottom during the initial stages, and both along
and toward the top of the chromospheric feature
later on. The coronal counterparts of the jets are
seen to rapidly propagate upward, likely as a
result of strong upflows and/or thermal conduc-
tion or waves. Based on the ubiquity of these
events and the observed coronal intensities, we
estimate that these events carry a mass flux den-
sity of 1.5 × 10−9 g/cm2/s and an energy flux
density of ~2 × 106 erg/cm2/s into the corona
(25). This is of the order that is required to sustain

the energy lost from the active-region corona (26).
Given the conservative nature of our estimate,
these events are likely to play a substantial role in
the coronal energy balance.

Although early models have implicated the
heating of chromospheric spicules in the coronal
heating problem (6), the detailed thermal and
spatiotemporal evolution we observed is not com-
patible with any of the well-established models
for coronal heating: None of those predict such
strong upflows (driven from below) at chromo-
spheric temperatures (2, 27). These models typ-
ically assume energy deposition in the corona,
which leads to heating and evaporation of plasma
from the chromospheric mass reservoir, driven
by thermal conduction from above. Recent ad-
vanced numerical models do predict heating rates
per particle that reach their maximum in the up-
per chromosphere (28, 29), which is compatible
with our observations. Some analytical models
also suggest that dissipation of current sheets
resulting from the shuffling of ubiquitous mixed-
polarity fields on small scales can provide cor-
onal heating at low heights (30). However, there
are currently no models for what drives and heats
the observed jets (31). These first detailed obser-
vations of individual coronal heating events high-
light the importance of the chromosphere and
magnetohydrodynamic/plasma physics approaches
for a better understanding of heating in the solar
atmosphere.
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Universal Quantum Viscosity in a
Unitary Fermi Gas
C. Cao,1 E. Elliott,1 J. Joseph,1 H. Wu,1 J. Petricka,2 T. Schäfer,3 J. E. Thomas1*

A Fermi gas of atoms with resonant interactions is predicted to obey universal hydrodynamics,
in which the shear viscosity and other transport coefficients are universal functions of the density and
temperature. At low temperatures, the viscosity has a universal quantum scale ħ n, where n is the
density and ħ is Planck’s constant h divided by 2p, whereas at high temperatures the natural scale is
pT3/ħ2, where pT is the thermal momentum. We used breathing mode damping to measure the
shear viscosity at low temperature. At high temperature T, we used anisotropic expansion of the cloud to
find the viscosity, which exhibits precise T3/2 scaling. In both experiments, universal hydrodynamic
equations including friction and heating were used to extract the viscosity. We estimate the ratio of the
shear viscosity to the entropy density and compare it with that of a perfect fluid.

Ultracold, strongly interacting Fermi gases
are of broad interest because they pro-
vide a tunable tabletop paradigm for

strongly interacting systems, ranging from high-
temperature superconductors to nuclear matter.
First observed in 2002, quantum degenerate, strong-

ly interacting Fermi gases are being widely
studied (1–4). To obtain strong interactions (char-
acterized by a divergent s-wave scattering length),
a bias magnetic field is used to tune the gas to a
broad collisional (Feshbach) resonance, for which
the range of the collision potential is small com-
pared with the interparticle spacing. In this so-
called unitary regime, the properties of the gas are
universal functions of the density n and temper-
ature T. The universal behavior of the equilibrium
thermodynamic properties has been studied in de-
tail (5–11), whereas the measurement of universal
transport coefficients presents new challenges.

1Department of Physics, Duke University, Durham, NC 27708,
USA. 2Department of Physics, Gustavus Adolphus College, Saint
Peter, MN 56082, USA. 3Department of Physics, North Carolina
State University, Raleigh, NC 27695, USA.

*To whom correspondence should be addressed. E-mail:
jet@phy.duke.edu

7 JANUARY 2011 VOL 331 SCIENCE www.sciencemag.org58

REPORTS

on July 25, 2017
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 

Science, 2011

Viscosity in Strongly Interacting Quantum Field Theories from Black Hole Physics
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The ratio of shear viscosity to volume density of entropy can be used to characterize how close a given
fluid is to being perfect. Using string theory methods, we show that this ratio is equal to a universal value
of !h=4!kB for a large class of strongly interacting quantum field theories whose dual description involves
black holes in anti–de Sitter space. We provide evidence that this value may serve as a lower bound for a
wide class of systems, thus suggesting that black hole horizons are dual to the most ideal fluids.
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Introduction.—It has been known since the discovery of
Hawking radiation [1] that black holes are endowed with
thermodynamic properties such as entropy and tempera-
ture, as first suggested by Bekenstein [2] based on the
analogy between black hole physics and equilibrium ther-
modynamics. In higher-dimensional gravity theories there
exist solutions called black branes, which are black holes
with translationally invariant horizons [3]. For these solu-
tions, thermodynamics can be extended to hydrodynam-
ics—the theory that describes long-wavelength deviations
from thermal equilibrium [4]. In addition to thermody-
namic properties such as temperature and entropy, black
branes possess hydrodynamic characteristics of continuous
fluids: viscosity, diffusion constants, etc. From the perspec-
tive of the holographic principle [5,6], a black brane cor-
responds to a certain finite-temperature quantum field
theory in fewer number of spacetime dimensions, and the
hydrodynamic behavior of a black-brane horizon is iden-
tified with the hydrodynamic behavior of the dual theory.
For these field theories, in this Letter we show that the ratio
of the shear viscosity to the volume density of entropy has a
universal value

"
s

! !h
4!kB

" 6:08# 10$13K s: (1)

Furthermore, we shall argue that this is the lowest bound on
the ratio "=s for a wide class of thermal quantum field
theories.

Viscosity and graviton absorption.—Consider a thermal
field theory whose dual holographic description involves a
D-dimensional black-brane metric of the form

ds2 ! g%0&MNdx
MdxN

! f%#&%dx2 ' dy2& ' g$%%#&d#$d#%:
(2)

[The O%2& symmetry of the background is required for the
existence of the shear hydrodynamic mode in the dual
theory, thus making the notion of shear viscosity mean-
ingful.] One can have in mind, as an example, the near-
extremal D3-brane in type IIB supergravity, dual to finite-

temperature N ! 4 supersymmetric SU%Nc& Yang-Mills
theory in the limit of large Nc, and large ’t Hooft coupling
[7–10],

ds2 ! r2

R2

!

$
"

1$ r40
r4

#

dt2 ' dx2 ' dy2 ' dz2
$

' R2

r2%1$ r40=r
4& dr

2; (3)

but our discussion will be quite general. All black branes
have an event horizon [r ! r0 for the metric (3)], which is
extended along several spatial dimensions [x, y, z in the
case of (3)]. The dual field theory is at a finite temperature,
equal to the Hawking temperature of the black brane.

The entropy of the dual field theory is equal to the
entropy of the black brane, which is proportional to the
area of its event horizon,

S! A
4G

; (4)

where G is Newton’s constant (we set !h ! c ! kB ! 1).
For black branes A contains a trivial infinite factor V equal
to the spatial volume along directions parallel to the hori-
zon. The entropy density s is equal to a=%4G&, where a !
A=V.

The shear viscosity of the dual theory can be computed
from gravity in a number of equivalent approaches [11–
13]. Here we use Kubo’s formula, which relates viscosity
to equilibrium correlation functions. In a rotationally in-
variant field theory,

" ! lim
!!0

1

2!

Z

dtdxei!th(Txy%t;x&; Txy%0; 0&)i: (5)

Here Txy is the xy component of the stress-energy tensor
(one can replace Txy by any component of the traceless part
of the stress tensor). We shall now relate the right-hand side
of (5) to the absorption cross section of low-energy
gravitons.

According to the gauge-gravity duality [10], the stress-
energy tensor T$% couples to metric perturbations at the
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tional to the density of quasiparticles, s! kBn. Therefore,
!=s! k"1

B "mft#=n. Now #=n is the average energy per
particle. According to the uncertainty principle, the prod-
uct of the energy of a quasiparticle #=n and its mean free
time "mft cannot be smaller than !h, otherwise the quasi-
particle concept does not make sense. Therefore we obtain,
from the uncertainty principle alone, that !=s * !h=kB,
which is (15) without the numerical coefficient of
1=#4$$. We also conclude that !=s is much larger than
!h=kB in weakly coupled theories (where the mean free time
is large).

Another piece of evidence supporting the bound (15)
comes from a recent calculation [21] of !=s in the N % 4
supersymmetric SU#Nc$ Yang-Mills theories in the regime
of infinite Nc and large, but finite, ’t Hooft coupling g2Nc.
The first correction in inverse powers of g2Nc corresponds
to the first string theory correction to Einstein’s gravity.
The result reads

!
s

% !h
4$kB

!

1& 135%#3$
8#2g2Nc$3=2

& ' ' '
"

; (16)

where %#3$ ( 1:2020 569 . . . is Apéry’s constant. The cor-
rection is positive, in accordance with (15). It is natural to
assume that !=s is larger than the bound for all values of
the ’t Hooft coupling (Fig. 1).

The bound (15), in contrast to the entropy bound [22]
and Bekenstein’s bound [23], does not involve the speed
of light c and hence is nontrivial when applied to non-
relativistic systems. However, the range of applicability of
(15) to nonrelativistic systems is less certain. On the one
hand, by subdividing the molecules of a gas to an ever-
increasing number of nonidentical species one can increase
the entropy density (by adding the Gibbs mixing entropy)
without substantially affecting the viscosity. On the other

hand, the conjectured bound is far below the ratio of !=s
in any laboratory liquid. For water under normal condi-
tions, !=s is 380 times larger than !h=#4$kB$. Using stan-
dard tables [24,25] one can find !=s for many liquids and
gases at different temperatures and pressures. Figure 2
shows temperature dependence of !=s, normalized by
!h=#4$kB$, for a few substances at different pressures. It
is clear that the viscosity bound is well satisfied for these
substances. Liquid helium reaches the smallest value of
!=s, but this value still exceeds the bound by a factor of
about 9. We speculate that the bound (15) is valid at least
for a single-component nonrelativistic gas of particles with
spin 0 or 1=2.

Discussion.—It is important to avoid some common
misconceptions which at first sight seem to invalidate the
viscosity bound. Somewhat counterintuitively, a near-ideal
gas has a very large viscosity due to the large mean free
path. Likewise, superfluids have finite and measurable
shear viscosity associated with the normal component,
according to Landau’s two-component theory.

The bound (15) is most useful for strongly interacting
systems where reliable theoretical estimates of the viscos-
ity are not available. One of such systems is the quark-
gluon plasma (QGP) created in heavy ion collisions which
behaves in many respects as a droplet of a liquid. There are
experimental hints that the viscosity of the QGP at tem-
peratures achieved by the Relativistic Heavy Ion Collider
is surprisingly small, possibly close to saturating the vis-
cosity bound [26]. Another possible application of the
viscosity bound is trapped atomic gases. By using the
Feshbach resonance, strongly interacting Fermi gases of
atoms have been created recently. These gases have been
observed to behave hydrodynamically [27] and should
have finite shear viscosity at nonzero temperature. It would

0

h̄

4πkB

η

s

g2Nc

FIG. 1 (color online). The dependence of the ratio !=s on the
’t Hooft coupling g2Nc in N % 4 supersymmetric Yang-Mills
theory. The ratio diverges in the limit g2Nc ! 0 and approaches
!h=4$kB from above as g2Nc ! 1. The ratio is unknown in the
regime of intermediate ’t Hooft coupling.
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FIG. 2 (color online). The viscosity-entropy ratio for some
common substances: helium, nitrogen and water. The ratio is
always substantially larger than its value in theories with gravity
duals, represented by the horizontal line marked ‘‘viscosity
bound.’’
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ity, where sij = ∂vi/∂xj + ∂vj/∂xi − 2dij∇ · v/3 is
symmetric and traceless.

For a unitary gas, the evolution equation for
the pressure takes a simple form because P = 2E/3
(23, 24), where E is the local energy density (sum
of the kinetic and interaction energy). Then, en-
ergy conservation and Eq. 1 implies (∂t + v · ∇ +
5∇ · v/3)P= 2 ·q̇/3. Here, the heating rate per unit
volume times q̇ = hsij

2/2 arises from friction from
the relative motion of neighboring volume ele-
ments. To express this in terms of the force per
particle ( fi ), we differentiated this equation for P
with respect to xi and used the continuity equa-
tion for the density to obtain

∂t þ v ˙ ∇þ 2
3
∇ ˙ v

! "
fi þ

∑
j
ð∂ivjÞfj −

5
3
ð∂i∇⋅vÞ

P
n

¼ −
2
3
∂iq̇
n

ð2Þ

Force balance in the trapping potential Utrap(x),
just before release of the cloud, determines the
initial condition fi(0) = ∂iUtrap(x).

These hydrodynamic equations include both
the force and the heating arising from viscosity.
The solution is greatly simplified when the cloud
is released from a deep, nearly harmonic trapping
potential Utrap because fi(0) is then linear in the
spatial coordinate. If we neglect viscosity, the force
per particle and hence the velocity field remain
linear functions of the spatial coordinates as the
cloud expands. Thus, ∂i(∇ · v) = 0, and the pres-
sure P does not appear in Eq. 2. Through nu-
merical integration (25), we found that nonlinearities
in the velocity field are very small, even if the
viscosity is not zero, because dissipative forces
tend to restore a linear flow profile. Hence, the
evolution Eqs. 1 and 2 are only weakly de-
pendent on the precise initial spatial profile of P
and independent of the detailed thermodynamic
properties.

We therefore assumed that the velocity field is
exactly linear in the spatial coordinates. We took
fi = ai(t)xi and si(t) = bi(t)si(0); the density

changes by a scale transformation (26), where cur-
rent conservation then requires vi = xibi(t)/bi(t).

In general, the viscosity takes the universal
form h = a(q)ħn, where q is the local reduced
temperature and h→ 0 in the low-density region
of the cloud (20, 27). Using the measured trap
frequencies, and Eqs. 1 and 2, the aspect ratio
data are fit to determine the trap-averaged vis-
cosity parameter, ā = (1/Nħ)∫d3x h(x,t), which
arises naturally independent of the spatial profile
of and is equivalent to assuming h. Because q has
a zero convective derivative everywhere (in the
zeroth-order adiabatic approximation) and the
number of atoms in a volume element is con-
served along a stream tube, ā is a constant that
can be compared with predictions for the trapped
cloud before release.

As shown in Fig. 1, the expansion data are
very well fit over the range of energies studied,
using ā as the only free parameter. We found that
the friction force produces a curvature that
matches the aspect ratio–versus-time data, where-
as the indirect effect of heating is important in
increasing the outward force, which increases the
fitted ā by a factor of ≅2, as compared with that
obtained when heating is omitted (20).

Formeasurements at low temperatures, where
the viscosity is small, we determined ā from the
damping rate of the radial breathing mode (19).
For the breathing mode, the cloud radii change by
a scale transformation of the formbi = 1 + ėi, with
ei << 1, and the heating rate in Eq. 2 isºėi

2, which
is negligible. Hence, the force per particle evolves
adiabatically. Adding the trapping force to Eq. 1,
one obtains the damping rate 1/t = ħ ā/(3m〈x2〉)
(20, 28).

The fitted viscosity coefficients ā for the
entire energy range are shown in Fig. 2, which
can be used to test predictions (29–31). Despite
the large values of ā at the higher energies, the
viscosity causes only a moderate perturbation to
the adiabatic expansion, as shown by the ex-
pansion data and the fits in Fig. 1. The breathing
mode data and expansion data smoothly join,
provided that the heating rate is included in the

analysis. In contrast, omitting the heating rate
produces a discontinuity between the high- and
low-temperature viscosity data (20). The agree-
ment between these very different measurements
when heating is included shows that hydrody-
namics in the universal regime is well described
by Eqs. 1 and 2.

To test the prediction of the T 3/2 temperature
scaling in the high-temperature regime, we as-
sumed that h relaxes to the equilibrium value in
the center of the trap but vanishes in the low-
density region so that ā is well defined. This
behavior is predicted by kinetic theory (27). We
expect that ā ≅ a0, where h0 = a0 ħ n0 is the
viscosity at the trap center before release. At high
temperatures (15),

a0 ¼ a3=2 q
3=2
0 ð3Þ

where a3/2 is a universal coefficient. Because q
has a zero convective derivative everywhere (in
the zeroth-order adiabatic approximation), q0 at
the trap center has a zero time derivative, and a0
is therefore constant, as is ā.

The inset in Fig. 2 shows the high-temperature
(expansion) data for ā versus the initial reduced
temperature at the trap center, q0. Here, q0 =
T0/TF(n0) = (T0/TFI)(nI/n0)

2/3. The local Fermi
temperature TF(n0) = ħ2(3p2n0)2/3/(2mkB), and
TFI = EF /kB = TF (nI) is the ideal gas Fermi
temperature at the trap center. nI is the ideal gas
central density for a zero-temperature Thomas-Fermi
distribution. We used (nI/n0)

2/3 = 4(s2z/s
2
Fz)/p

1/3

and obtained the initial T0/TFI from the cloud
profile (20).

The excellent fit of Eq. 3 to the data (Fig. 2,
inset) demonstrates that at high temperature, the
viscosity coefficient very well obeys the q0

3/2

scaling, which is in agreement with predictions
(15). Eq. 3 predicts that a0 scales nearly as E3

because q0 º T0/n0
2/3 º E2. This explains

the factor of ≅10 increase in the viscosity co-
efficients as the initial energy is increased from
E = 2.3EF to E = 4.6EF.

A precise comparison between the viscosity
data and theory requires calculation of the trap-
average ā from the local shear viscosity, where
the relation is tightly constrained by the observed
T 3/2 scaling. Our simple approximation ā ≅ a0
yields a3/2 = 3.4(0.03), where 0.03 is the sta-
tistical error from the fit. A better estimate based
on a relaxation model (29) shows that ā = 1.3 a0
at high T, yielding a3/2 = 2.6. At sufficiently high
temperature, the mean free path becomes longer
than the interparticle spacing because the unitary
collision cross section decreases with increasing
energy. In this limit, a two-body Boltzmann equa-
tion description of the viscosity is valid. For a
Fermi gas in a 50-50 mixture of two spin states, a
variational calculation (15) yields a3/2 = 45p3/2/
(64

ffiffiffi
2

p
) = 2.77, which is in reasonable agreement

with the fitted values.
Lastly, Fig. 3 shows an estimate of the ratio of

h/s = aħn/s = (ħ/kB)a/(s/nkB) ≅ (ħ/kB) ā/S, where
S is the average entropy per particle of the
trapped gas in units of kB.We obtain Sin the low-

Fig. 3. Estimated ratio of the
shear viscosity to the entropy den-
sity. Blue circles indicate breathing-
mode measurements; red squares
indicate anisotropic expansion mea-
surements. (Inset) The red dashed
line denotes the string theory limit.
Bars denote statistical error arising
from the uncertainty in E, a, and
S (20).
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Out-of-Time-Ordered Correlator

OTOC has also emerged in studying gravity models.  
The calculation with a black hole shows that 
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OTOC has a upper bound 
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An example is the SYK model

A quantum system is 
holographically dual to 
a black hole

The Lyapunov exponent 
of the system saturates 
the bound

The Lyapunov exponent 
of the system saturates 
the bound

A quantum system is 
holographically dual to 
a black hole

?



Out-of-Time-Ordered Correlator

Out-of-Time-Ordered Correlator
hW †

(t)V †
(0)W (t)V (0)i

2

Condensed Matter: 
Chaotic Behavior

Quantum Information: 
Information Scrambling

Gravity Physics: 
Black Hole 



Quench Experiment

A B
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†(t)V̂ †(0)Ŵ (t)V̂ (0)i�
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Theorem. For a system constituted by subparts A and B at T = 1, after quenching

by an arbitrary operator O, the second entanglement Renyi entropy S
2
A

defined as

S
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= log TrA⇢
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A
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X
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where

V̂ = ÔÔ
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and the summation is taken over a complete set of operators M̂ in the subpart B.
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OTOC v.s. Renyi Entropy
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†(t)V̂ †(0)Ŵ (t)V̂ (0)i�
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Ŵe
�iĤt
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Ŵ (t) = e
iĤt
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Quantum Thermalization 

Quantum Mechanics: 
The whole system evolves as a 

unitary quantum evolution

Statistical Mechanics: 
Local observation is 

consistent with a 
thermal ensemble of 
statistical mechanics 



Eigen-State Thermolization Hypothesis 
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Eigenstate Thermalization Hypothesis (ETH)

The ETH ⟨α|Ô|α⟩ = ⟨Ô⟩microcan(Eα) does not make sense if we do not

specify what is the few-body operator3 Ô.

A strong version of the ETH:

Partition the system into two parts A and B . Suppose VA/VB → 0 in the

thermodynamics limit VA,VB → ∞. If the ETH holds true for every

local operator in A, then

ρA ≡ TrB(|α⟩ ⟨α|) = e−ĤA/kBTα .

! HA can be taken a little bit arbitrarily in this case because the boundary is

not important in the thermodynamics limit.

! In this limit, one can say that the rest of the system B serves as the heat

bath/environment of A.

3J. R. Garrison and T. Grover, “Does a single eigenstate encode the full

Hamiltonian?”, (2015).

A

B
Implication: 

Entanglement entropy 
obeys volume law 



Many-Body Localization

ETH MBL

Exactly Integrable:

Non-Interacting System: 
Free fermions, bosons 
Anderson localization 
Bethe-Ansatz Integrable 
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Many-Body Localization and Cold Atom Physics

RESEARCH ARTICLE
◥

QUANTUM GASES

Observation of many-body
localization of interacting fermions
in a quasirandom optical lattice
Michael Schreiber,1,2 Sean S. Hodgman,1,2 Pranjal Bordia,1,2 Henrik P. Lüschen,1,2

Mark H. Fischer,3 Ronen Vosk,3 Ehud Altman,3

Ulrich Schneider,1,2,4 Immanuel Bloch1,2*

Many-body localization (MBL), the disorder-induced localization of interacting particles,
signals a breakdown of conventional thermodynamics because MBL systems do not
thermalize and show nonergodic time evolution. We experimentally observed this
nonergodic evolution for interacting fermions in a one-dimensional quasirandom optical
lattice and identified the MBL transition through the relaxation dynamics of an initially
prepared charge density wave. For sufficiently weak disorder, the time evolution appears
ergodic and thermalizing, erasing all initial ordering, whereas above a critical disorder
strength, a substantial portion of the initial ordering persists. The critical disorder value
shows a distinctive dependence on the interaction strength, which is in agreement with
numerical simulations. Our experiment paves the way to further detailed studies of MBL,
such as in noncorrelated disorder or higher dimensions.

T
he ergodic hypothesis is one of the central
principles of statistical physics. In ergodic
time evolution of a quantum many-body
system, local degrees of freedom become
fully entangled with the rest of the system,

leading to an effectively classical hydrodynamic
evolution of the remaining slow observables (1).
Hence, ergodicity is responsible for the demise
of observable quantum correlations in the dynam-
ics of large many-body systems and forms the
basis for the emergence of local thermodynamic
equilibrium in isolated quantum systems (2–4).
It is therefore of fundamental interest to investi-
gate how ergodicity breaks down and to under-
stand the long-time stationary states that ensue
in the absence of ergodicity.
One path to breaking ergodicity is provided

by the study of integrable models, in which
thermalization is prevented owing to the con-
straints imposed on the dynamics by an infinite
set of conservation rules. Such models have been
realized and studied in a number of experiments
with ultracold atomic gases (5–7). However, in-
tegrable models represent very special and fine-
tuned situations, making it difficult to extract
general underlying principles.
Theoretical studies over the past decade point

to many-body localization (MBL) in a disordered

isolated quantum system as a more generic al-
ternative to thermalization dynamics. In his orig-
inal paper on single-particle localization, Anderson
already speculated that interacting many-body
systems subject to sufficiently strong disorder
would also fail to thermalize (8). Only recently,
however, have convincing theoretical arguments
been put forward that Anderson localization re-
mains stable under the addition of moderate in-
teractions, even in highly excited many-body
states (9–11). Further theoretical studies have
established the many-body localized state as a
distinct dynamical phase of matter that exhibits
previously unknown universal behavior (12–22).
In particular, the relaxation of local observables
does not follow the conventional paradigm of
thermalization and is expected to show explicit
breaking of ergodicity (23).
Although Anderson localization of noninter-

acting particles has been experimentally observed
in a variety of systems, including light scattering
fromsemiconductorpowders in three-dimensional
(3D) (24), photonic lattices in 1D (25) and 2D
(26), and cold atoms in 1D and 3D random
(27–29) and quasirandom (30) disorder, the in-
teracting case has proven more elusive. Initial
experiments with interacting systems have fo-
cused on the superfluid- (31–33) or metal-to-
insulator (34) transition in the ground state.
Evidence for inhibitedmacroscopicmass transport
was reported even at elevated temperatures (34)
but is hard to distinguish from the exponentially
slow motion expected from conventional acti-
vated transport or effects stemming from the
inhomogeneity of the cloud. Possible precursors
of MBL have also been reported in a transport

experiment by using conventional thin-film elec-
tronic insulators (35).
Here, we report the experimental observation

of ergodicity breaking because of MBL away
from the ground state. Our experiments are
performed in a 1D system of ultracold fermions
in a bichromatic, quasirandomly disordered lat-
tice potential. We identified the many-body local-
ized phase by monitoring the time evolution of
local observables following a quench of system
parameters. Specifically, we prepared a high-
energy initial state with a strong, artificially pre-
pared charge density wave (CDW) order (Fig. 1A)
and measured the relaxation of this CDW in the
ensuing unitary evolution. Our main observable
is the imbalance I between the respective atom
numbers on even (Ne) and odd (No) sites

I ¼ N e " No

N e þ No
ð1Þ

which directly measures the CDW order. Al-
though the initial CDW (I & 0:9) will quickly re-
lax to zero in the thermalizing case, this is not true
in a localized system, in which ergodicity is broken
and the system cannot act as its own heat bath
(Fig. 1B) (36). Intuitively, if the system is strong-
ly localized, all particles will stay close to their
original positions during time evolution, thus
only smearing out the CDW a little. A longer
localization length x corresponds to more ex-
tended states andwill lead to a lower steady-state
value of the imbalance. The long-time stationary
value of the imbalance thus effectively serves as
an order parameter of theMBL phase and allows
us to map the phase boundary between the er-
godic and nonergodic phases in the parameter
space of interaction versus disorder strength. In
particular, close to the transition, the imbalance
is expected to vanish asymptotically as a power
lawº1/xawith a > 0 (37). In contrast to previous
experiments, which studied the effect of disorder
on the global expansion and transport dynamics
(27, 30, 31, 33, 34), the CDWorder parameter acts
as a purely local probe, directly capturing the
ergodicity breaking. Although ultimately facing a
similar challenge, namely distinguishing very slow
dynamics from no dynamics, the CDW is expected
to undergo much faster dynamics, facilitating the
detection of MBL.

Theoretical model

Our system can be described by the 1D fermionic
Aubry-André model (38) with interactions (36),
given by the Hamiltonian

ˇ

H ¼ −J∑
i;s
ð

ˇ

c †i;s

ˇ

ciþ1;sþ h:c:Þ þ

D∑
i;s

cosð2pbiþ fÞ

ˇ

c †i;s

ˇ

ci;s þ U∑
i

ˇ

ni;↑

ˇ

ni;↓ ð2Þ

Here, J is the tunneling matrix element between
neighboring lattice sites,

ˇ

c †i;s denotes the creation
operator, and

ˇ

ci;s denotes the annihilation op-
erator for a fermion in spin state s ∈ {↑, ↓} on site
i. The second term describes the quasirandom
disorder—the shift of the on-site energy due to an
additional incommensurate lattice, characterized
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by the ratio of lattice periodicities b, disorder
strength D, and phase offset f. Finally,U represents
the on-site interaction energy, and

ˇ

ni;s ¼

ˇ

c †i;s

ˇ

ci;s
is the local number operator (Fig. 1C).
This quasirandom model is special in that for

almost all irrational b (37), all single-particle
states become localized at the same critical dis-
order strength D/J = 2 (38). For larger disorder
strengths, the localization length decreases mono-
tonically. Such a transition was indeed ob-
served experimentally in a noninteracting bosonic
gas (30). In contrast, truly random disorder will
lead to single-particle localization in one dimen-
sion already for arbitrarily small disorder strengths.
Previous numerical work indicatesMBL in quasi-
random systems to be similar to that obtained for
a truly random potential (36).

Experiment

We experimentally realized the Aubry-André
model by superimposing on the primary, short
lattice (ls = 532 nm) a second, incommensu-
rate disorder lattice with ld = 738 nm (thus, b =
ls/ld ≈ 0.721) and control J, D, and f via lattice
depths and relative phase between the two lat-
tices (37). The interactions (U) between atoms
in the two different spin states j↑i and j↓i are
tuned via a magnetic Feshbach resonance (37).
In total, this provides independent control of
U, J, and D and enables us to continuously tune
the system from an Anderson insulator in the
noninteracting case to the MBL regime for inter-
acting particles.
An additional long lattice (ll = 1064 nm = 2ls)

forms a period-two superlattice (39, 40) together
with the short lattice and is used during the prep-
aration of the initial CDW state and during de-
tection (37). Deep lattices along the orthogonal
directions [l⊥= 738nmandV⊥=36(1)ER] create an
array of decoupled 1D tubes. Here, ER ¼ h2=
ð2ml2latÞ denotes the recoil energy, with h being
Planck’s constant, m the mass of the atoms, and
llat the respective wavelength of the lattice lasers.
We used a two-component degenerate Fermi

gas of 40K atoms, consisting of an equal mixture

of 90 × 103 to 110 × 103 atoms in each of the two
lowest hyperfine states jF ;mFi ¼ j 92 ;−

9
2i ≡ j↓i

and j 92 ;−
7
2i ≡ j↑i, at an initial temperature of

0.20(2) TF, where TF is the Fermi temperature.
The atoms were initially prepared in a finite
temperature band insulating state (41), with
up to 100 atoms per tube in the long and or-
thogonal lattices.We then split each lattice site by
ramping up the short lattice in a tilted con-
figuration (37) and subsequently ramped down
the long lattice. This creates a CDW, in which
there are no atoms on odd lattice sites but zero,
one, or two atoms on each even site (40, 42). This
initial CDW is then allowed to evolve for a given
time in the 8.0(2)ER deep short lattice at a
specific interaction strength U in the presence of
disorder D. In a final step, we detected the num-
ber of atoms on even and odd lattice sites by
using a band-mapping technique that maps them
to different bands of the superlattice (37, 42).
This allows us to directly measure the imbalance
I , as defined in Eq. 1, in much larger systems
than what is numerically feasible.

Results

We tracked the time evolution of the imbal-
ance I for various interactions U and disorder
strengths D (Fig. 2). At short times, the imbal-
ance exhibits some dynamics consisting of a fast
decay followed by a few damped oscillations.
After a few tunneling times t = h/(2pJ), the im-
balance approaches a stationary value. In a clean
system (D/J = 0), and for weak disorder, the sta-
tionary value of the imbalance approaches zero.
For stronger disorder, however, this behavior
changes dramatically, and the imbalance attains
a nonvanishing stationary value that persists for
all observation times. Because the imbalancemust
decay to zero on approaching thermal equilib-
rium at these high energies, the nonvanishing
stationary value of I directly indicates non-
ergodic dynamics. Deep in the localized phase,
in which unbiased numerical density-matrix re-
normalization group (DMRG) calculations are
feasible because of the slowentanglement growth,

we found the stationary value obtained in the
simulations to be in very good agreement with
the experimental result. These simulations were
performed for a single homogeneous tube with-
out any trapping potentials (37). The stronger
damping of oscillations observed in the exper-
iment can be attributed to a dephasing caused
by variations in J between different 1D tubes
(37, 42).
We experimentally observed an additional

very slow decay of I on a time scale of several
hundred tunneling times for all interaction
strengths, which we attribute to the fact that
our system is not perfectly closed owing to small
background gas losses, technical heating, pho-
ton scattering, and coupling to neighboring

SCIENCE sciencemag.org 21 AUGUST 2015 • VOL 349 ISSUE 6250 843

Fig. 1. Schematics of the many-
body system, initial state, and
phase diagram. (A) Initial state of
our system consisting of a CDW, in
which all atoms occupy even sites
(e) only. For an interacting many-body
system, the evolution of this state over
time depends on whether the system is
ergodic or not. (B) Schematic phase
diagram for the system. In the ergodic,
delocalized phase (white), the initial
CDWquickly decays,whereas it persists
for long times in the nonergodic, local-
ized phase (yellow).The striped area
indicates the dependence of the
transition on the doublon fraction, with
the black solid line indicating the case of no doublons.The black dash-dotted line represents the experimentally observed transition for a finite doublon fraction,
extracted from the data in Fig. 4.The gray arrows depict the postulated pattern of renormalization group flows controlling the localization transition. For U = 0, as
well as in the limit of infinite U with no doublons present (37), the transition is controlled by the noninteracting Aubry-André critical point, represented by the
unstable gray fixed points. Generically, however, it is governed by the MBL critical point (48), shown in red. The U = 0 and U = ∞ as well as the D/J = 0 limits
represent special integrable cases that are not ergodic (51, 52). (C) A schematic representation of the three terms in the Aubry-André Hamiltonian (Eq. 2).

Fig. 2. Time evolution of an initial CDW. A CDW,
consisting of fermionic atoms occupying only even
sites, is allowed to evolve in a lattice with an ad-
ditional quasirandom disorder potential. After var-
iable times, the imbalance I between atoms on
odd and even sites is measured. Experimental
time traces (circles) and DMRG calculations for
a single homogeneous tube (lines) (37) are shown
for various disorder strengths D. Each experi-
mental data point denotes the average of six dif-
ferent realizations of the disorder potential, and
the error bars show the SD of the mean. The
shaded region indicates the time window used
to characterize the stationary imbalance in the
rest of the analysis.

RESEARCH | RESEARCH ARTICLE

on July 25, 2017
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 

tubes (37, 43). Another potential mechanism
for delocalization at long times is related to
the intrinsic SU(2) spin symmetry in our sys-
tem (44). However, for the relevant observa-
tion times our numerical simulations do not
indicate the presence of such a thermalization
process.
To characterize the dependence of the local-

ization transition on U and D, we focused on the
stationary value of I , plotted in Fig. 3 for non-
interacting atoms and in Fig. 4 for interacting
atoms. For noninteracting atoms (Fig. 3), the
measured imbalance is compatible with extended
stateswithin the finite, trapped system forD/J≲ 2.
Above the critical point of the homogeneous
Aubry-André model at D/J = 2 (38), however,
the measured imbalance strongly increases as
the single-particle eigenstates become more and
more localized. The observed transition agrees
well with our theoreticalmodeling, including the
harmonic trap (37).
The addition of moderate interactions slightly

reduces the degree of localization comparedwith
that of the noninteracting case; they decrease
the imbalance I and hence increase the critical
value of D necessary to cross the delocalization-
localization transition (Fig. 4, A and B). We
found that localization persists for all interac-
tion strengths. For a given disorder, the imbal-
ance I decreases up to a value of U ~ 2D before
increasing again. For large |U|, the system even
becomes more localized than in the noninter-
acting case. This can be understood qualita-
tively by considering an initial state consisting
purely of empty sites and sites with two atoms
(doublons): For sufficiently strong interactions,
isolated doublons represent stable quasiparti-
cles because the two atoms cannot separate and

hence only tunnel with an effective second-order
tunneling rate of JD ¼ 2J2

jU j ≪J (45,46). This strongly
increases the effective disorder ºD/JD ≫D/J
and promotes localization. In the experiment,
the initial doublon fraction is well below one
(37), and the density is finite, so that we ob-
served a weaker effect. We found the localiza-
tion dynamics and the resulting stationary values
to be symmetric around U = 0, highlighting the
dynamical U ↔ –U symmetry of the Hubbard
Hamiltonian for initially localized atoms (47).
The effect of interactions can be seen in the con-
tour lines (Fig. 4A, dotted white lines) as well as
directly in the characteristic “W” shape of the
imbalance at constant disorder (Fig. 4B), dem-
onstrating the re-entrant behavior of the system
(22). This behavior extends to our best estimate
of the localization transition, which is shown in
Fig. 4A as the solid white line.
We can gain additional insight into how local-

ization changes with interaction strength by com-
puting the growth of the entanglement entropy
(37) between the two halves of the system during
the dynamics (Fig. 5A). For long times, we ob-
served a logarithmic growth of the entanglement
entropy with time as S(t) = Soffset + s*ln(t/t),
which is characteristic of the MBL phase (12, 13).
The slope s* is proportional to the bare localiza-
tion length x*, which in a weakly interacting sys-
tem in the localized phase corresponds to the
single-particle localization length. In general,
x* is the characteristic length over which the ef-
fective interactions between the conserved local
densities decay (17, 18) and connects to themany-
body localization length x deep in the localized
phase. In contrast to x, however, x* is expected to
remain finite at the transition (48).We found s* to
exhibit a broad maximum for intermediate inter-
action strengths (Fig. 5B), corresponding to a
maximum in the thus inferred localization length.

Thismaximum in turn leads to aminimum in the
CDW value. Both the characteristic “W” shape in
the imbalance and the maximum in the entan-
glement entropy slope are consequences of the
maximum in localization length. Equivalent in-
formation on the localization properties as ob-
tained from the entanglement entropy can be
gained in experiments by monitoring the tem-
poral decay of fluctuations around the station-
ary value of the CDW (37). Although we do not
have sufficient sensitivity to measure these fluc-
tuations in the current experiment, we expect
them to be accessible to experiments with single-
site resolution (49, 50).
To systematically study the effect of the

initial energy density on the MBL phase, we
loaded the lattice using either attractive, van-
ishing, or repulsive interactions (Fig. 6), pre-
dominantly changing the number of doublons
in the initial state (37). Because the initial state
consists of fully localized particles only, the local
energy density is directly given by the product
of interaction strength U and doublon density.
We found that for an interaction strength during
the evolution of |U/J| ≤ 6, the energy density
does not substantially affect the localization pro-
perties, proving that MBL persists over a wide
energy range. For |U/J| > 8, localization pro-
perties depend substantially on the doublon
fraction because of the second emerging ener-
gy scale JD, as discussed above. Thus, the local-
ization transition can be tuned via changing the
doublon fraction at large U. This constitutes a
direct observation of a many-body mobility edge
because the doublon density dominates the en-
ergy density.
For the case of repulsive loading, which re-

sults in a low fraction of doubly occupied sites,
the imbalance for U/J = 0 and strong interactions
match within error. Indeed, a rigorous mapping
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Fig. 3. Stationary values of the imbalance I as
a function of disorder strength D for noninteract-
ing atoms.The Aubry-André transition is at D/J = 2.
Circles show the experimental data, along with
exact diagonalization (ED) calculations with (red
line) and without (gray line) trap effects (37). Each
experimental data point is the average of three
different evolution times (13.7, 17.1, and 20.5 t)
and four different disorder phases f, for a total of
12 individual measurements per point. To avoid
any interaction effects, only a single spin compo-
nent was used.The ED calculations are averaged
over similar evolution times to the experiment and
12different phase realizations. Error bars show the
SD of the mean.

Fig. 4. Stationary imbalance for various interactionanddisorder strengths. (A) Stationary imbalance
I as a function of interactions U and disorder strength D. Moderate interactions reduce the degree of
localization compared with the noninteracting or strongly interacting cases. The white dotted lines
are contours of equal I , and the solid white line is the contour of I matching the Aubry-André transition
(U = 0 and D/J = 2) extended to the interacting case. It indicates the MBL transition. The green dot-
dashed line shows the fitted minima of I for each D (37). Each individual data point (vertices of the
pseudo-color plot) is the average of the same 12 parameters as in Fig. 3.The color of each square represents
the average imbalance of the four points on the corners. All data were taken with a doublon fraction of
34(2)%. (B) Cuts along four different disorder strengths. The effect of interactions on the localization
gives rise to a characteristic “W” shape. Solid lines are the results of DMRG simulations for a single
homogeneous tube. Error bars indicate the SD of the mean.
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folding intermediate, even whenmature? Rather
than being a vestige of kinase evolution with
Hsp90 buffering gain-of-function destabilizing
mutations (31), we argue that being able to safely
populate such an open folding intermediate has
a direct functional and regulatory benefit. Recent
computational efforts have suggested a connec-
tion between folding and kinase activity (32, 33).
The concept is that the most favorable transition
between the inactive and active states is through
a more open, unfolded state rather than through
a more classical rigid-body transition. Although
the opening seen in simulations is far more sub-
tle than what we observed, we suggest that the
concept still applies (Fig. 6A). The generally lower
stability of client kinases would lead to enhanced
sampling of the open state, thereby encourag-
ing chaperone binding (Fig. 6B). Chaperone sta-
bilization of a kinase open state could increase
the overall rates of interconversion and/or pro-
tect a potentially vulnerable state from aggre-
gation or recognition by the ubiquitinylation
machinery. Moreover, the open state could be
the preferred substrate for adding and removing
posttranslational modifications, as well as for
critical stabilizing interactions.

Life cycle of kinase-Hsp90-Cdc37
interactions

Our structure also suggests how the observed
state might arise and mature (Fig. 6C). Hsp90
would first interact with Cdc37-kinase via previ-
ously published crystal structure contacts (Fig. 6C,
state III). Whether assistance fromHsp70 and/or
Hsp40, as with the glucocorticoid receptor, would
be required is still unclear (34), but the inability to
directly form the complex from components and
Chk1 reconstitution experiments (35) is sugges-
tive. During the cycle, Cdc37 would act as a
quality-control checkpoint, where it would dis-
sociate from the kinase only upon proper fold-
ing of theN lobe. The long coiled-coil would allow
Cdc37-kinase to stay attached to Hsp90 during
multiple ATPhydrolysis events. If the kinasewould
fail to dissociate after many hydrolysis events,
the degradation machinery might then be re-
cruited to the complex. Although Fig. 6C cap-
tures the essence of the available data, other
models are possible.
Beyond revealing the kinase open state, our

cryo-EM reconstruction allowed us to build the
first atomic models for human cytosolic Hsp90
and the kinase-interacting N terminus of Cdc37.
The ability to collect a large number of particles,
coupled with the capabilities of single-electron–
counting detectors and 3D classification software,
allowed us to visualize multiple conformations,
providing a qualitative assessment for the dyna-
mic nature of the complex. Overall, our structure
has enabled us to explain a number of often-
contradictory biochemical observations and to
provide bothmechanistic and conceptualmodels
of Hsp90-kinase interactions that can be tested
in future experiments. Our structure also indi-
cates the potential for single-particle cryo-EM to
facilitate exploration of other dynamic, asymme-
tric complexes at near-atomic resolution.
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QUANTUM SIMULATION

Exploring the many-body localization
transition in two dimensions
Jae-yoon Choi,1*† Sebastian Hild,1* Johannes Zeiher,1 Peter Schauß,1‡
Antonio Rubio-Abadal,1 Tarik Yefsah,1§ Vedika Khemani,2 David A. Huse,2,3

Immanuel Bloch,1,4 Christian Gross1

A fundamental assumption in statistical physics is that generic closed quantummany-body
systems thermalize under their own dynamics. Recently, the emergence of many-body localized
systemshasquestioned this concept and challengedour understandingof the connectionbetween
statistical physics and quantummechanics. Here we report on the observation of a many-body
localization transition between thermal and localized phases for bosons in a two-dimensional
disordered optical lattice.With our single-site–resolved measurements, we track the relaxation
dynamics of an initially prepared out-of-equilibrium density pattern and find strong evidence for a
diverging length scale when approaching the localization transition. Our experiments represent a
demonstration and in-depth characterization of many-body localization in a regime not accessible
with state-of-the-art simulations on classical computers.

I
n his seminal work on localization in quan-
tummechanical systems, Philip Anderson em-
phasized the implications of localization on
the thermodynamics of closed quantum sys-
tems (1). Recently, perturbative arguments

suggested the existence of nonthermalizing, many-

body localized systems at low energy (2, 3). Soon
thereafter, these arguments were extended to all
interaction strengths and energy densities for
systems with a bounded spectrum (4, 5). The
implication—nothing less than a breakdown of
equilibrium statistical mechanics for certain generic
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FIG. 1. (a) Schematic phase diagram of the Bose-Hubbard model.
The dotted line illustrates the parameter regime that is considered in
this work. (b) Schematic OTOC and the fitting scheme to obtain the
Lyapunov exponent. See Sec. III for more details.

BHM up to seven sites. Indeed, this is not an ideal model89

to demonstrate our conjecture. Our results suffer from the90

finite-size effect, and the original proposal of the holographic91

duality is for a (2 + 1)-dimensional BHM. Nevertheless, as we92

will see, the results support our conjecture.93

The paper is organized as follows. In Sec. II we first94

demonstrate that the Lyapunov exponent is well defined in95

one-dimensional BHM through both numerical and conformal96

field theory analysis with the help of the OTOC–Rényi-entropy97

(OTOC-RE) theorem [38]. In Sec. III, we then extract the98

Lyapunov exponents at various parameter regimes to support99

our conjecture. Since one-dimensional BHM has spatial100

dimension, we also extract the butterfly velocity in Sec. IV.101

Finally in Sec. V, we propose experimental protocols to102

measure the OTOC, making it feasible to test our conjecture103

in the laboratory.104

II. EXPONENTIAL DEVIATION OF THE OTOC105

We first argue that although it is not a fully chaotic model,106

the OTOC of BHM should deviate exponentially in time. The107

argument is based on the OTOC-RE theorem in Ref. [38],108

which relates the OTOC at equilibrium and the second Rényi109

entropy (RE) growth after a local quench. By both numerical110

calculation and the conformal field theory (CFT) analysis, we111

show that the second Rényi entropy in BHM grows linearly112

in time after a local quench at finite temperature, implying an113

exponential deviation of the OTOC.114

The OTOC-RE theorem is stated as follows: Consider an115

equilibrium system at temperature T described by the density116

matrix ρ̂ = e−βĤ . When it is quenched by an operator Ô at117

time t = 0, the density matrix becomes proportional to Ôρ̂Ô†
118

and begins to evolve. We then divide the system into two119

subsystems as A and B. The second Rényi entropy on A120

is defined as S
(2)
A = − log(tr[ρ̂2

A]), where ρ̂A = trB[ρ̂] is the121

reduced density matrix of A. In Ref. [38], we showed that this122

Rényi entropy is related to the summation of modified OTOCs123

at temperature T/2:124

exp(−S
(2)
A ) =

∑

W∈B

tr[Ŵ †(t)Ôe−βĤ Ô†Ŵ (t)Ôe−βĤ Ô†]

=
∑

W∈B

tr
[
e−2βH Ŵ †(t − 2iβ)Ô(−2iβ)

Ô†(−iβ)Ŵ (t − iβ)Ô(−iβ)Ô†(0)
]
, (4)
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FIG. 2. The growth of the second Rényi entropy S
(2)
A and the

normalized OTOC |F̃ (t)| as functions of time tJ for U/J = 10 at
βJ = 0.9 and N = L = 6 with a periodic boundary condition. The
linear growth regime of S

(2)
A is indicated by a fitted dashed black line.

See the main text for more details on the operator choice.

The summation over Ŵ is taken over the complete set of 125

operators in system B, and V̂ is fixed to be ÔÔ†. 126

Using this theorem, the dynamics of S
(2)
A after a quench 127

is related to the behavior of OTOC under the following two 128

conditions, which are assumed to be true: (i) For long time 129

t ≫ β each term in the right-hand side of Eq. (4) approaches 130

the OTOC tr[e−2βĤ Ŵ †(t)ÔÔ†Ŵ (t)ÔÔ†] [9,23]; (ii) Different 131

terms in the summation of the right-hand side of Eq. (4) have 132

similar behaviors. In the rest of this section we will show 133

that during a certain time interval after a local quench, S
(2)
A 134

will increase linearly with time t , which further indicates an 135

exponential deviation of OTOC because of Eq. (4). 136

To study the entropy growth after a local quench for the one- 137

dimensional BHM, we first numerically calculate the second 138

Rényi entropy for a six-site chain using exact diagonalization 139

method. Here we consider a quench that removes a boson at 140

the third site, which corresponds to a quench operator b̂3. Then 141

we divide the system into two equal halves in order to calculate 142

the second Rényi entropy. The result is shown in Fig. 2, where 143

S
(2)
A clearly exhibits a linear growth within a time interval. For 144

comparison, we also plot an OTOC with a similar setup by 145

taking Ŵ = b̂3 and V̂ = b̂4. Clearly, it is during the same time 146

interval that the OTOC starts to deviate from unity. In this 147

sense, the linear growth of the second Rényi entropy implies 148

an exponential behavior of the OTOC. 149

In fact, specifically for the critical one-dimensional model, 150

it is possible to obtain the linear growth of the entropy after 151

a local quench by a CFT analysis. Consider two half-infinite 152

subsystems A and B at equilibrium of temperature T . We 153

mimic a local quench by joining the two subsystems into 154

a whole system at t = 0. The reduced density matrix for 155

subsystem A at time t is now 156

ρ̂A = trB[exp(−iĤ t) exp(−βĤ ′) exp(iĤ t)], (5)

where Ĥ ′ is the Hamiltonian for separated A and B, and Ĥ is 157

the Hamiltonian for the whole system. Following the treatment 158

in Ref. [39], by introducing n replicas and the twist field, one 159

can reduce the problem of computing nth Rényi entropy to the 160
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Motivated by the recent studies of out-of-time-order correlation functions and the holographic duality, we
propose the quantum critical point conjecture, which is stated as: For a many-body quantum system with a1
quantum phase transition, the Lyapunov exponent extracted from the out-of-time-order correlators will exhibit a
maximum around the quantum critical region. We first demonstrate that the Lyapunov exponent is well defined
in the one-dimensional Bose-Hubbard model with the help of the out-of-time-order correlation–Rényi-entropy2
theorem. We then support the conjecture by numerically computing the out-of-time-order correlators. We also
compute the butterfly velocity, and propose an experiment protocol of measuring this correlator without inverting
the Hamiltonian.
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I. INTRODUCTION17

Recently there is an increasing interest in the out-of-time-18

order correlation (OTOC) functions [1–23] defined as19

F (t) = ⟨Ŵ †(t)V̂ †(0)Ŵ (t)V̂ (0)⟩β , (1)

where Ŵ and V̂ are normally chosen as local operators. Ŵ (t) ≡20

eiĤ t Ŵ e− iĤ t , and ⟨. . .⟩β ≡ tr[e− βH . . .] denotes the thermal21

average at temperature 1/β = kBT . Intuitively, this correlation22

function can be considered as the overlap of two states23

⟨y |x ⟩, where |x ⟩ = Ŵ (t)V̂ (0)|β⟩ and |y ⟩ = V̂ (0)Ŵ (t)|β⟩.24

|β⟩ ≡
∑

n e− βEn/2/
√

Z|n⟩|ñ⟩ is the thermofield double state25

[24]. Z = tr e− βH is the partition function, |n⟩ and |ñ⟩ are the26

corresponding energy eigenstates of the Hamiltonian, but in27

different Hilbert spaces. In this sense, the inner product ⟨y |x ⟩28

measures the difference in the outcome when the order of29

two operations V̂ (0) and Ŵ (t) is exchanged. The exponential30

deviation of the normalized OTOC31

F̃ (t) = ⟨y |x ⟩√
⟨x |x ⟩⟨y |y ⟩

, (2)

from unity diagnoses the chaos and the so-called butterfly32

effect in a quantum many-body system [2–12]. This deviation33

can be explicitly written as F̃ (t) = α0 − α1e
λL(t− t0) (α0 ≈ 1).34

Here the deviation starts from t0, and λL defines the Lyapunov35

exponent for this quantum system.36

It turns out that the same correlator has emerged in the37

gravity physics, in the context of which it describes a bulk38

scattering near the horizon and characterizes the information39

scrambling [2–6]. More interestingly, it was shown recently40

that for quantum systems, the Lyapunov exponent is always41

bounded by 2π/β [9]. If a quantum many-body system42

has an exact holographic duality to a black hole at finite43

temperature [25–27], the Lyapunov exponent will saturate44

the bound λL = 2π/β. While a more nontrivial speculation45

is that if the Lyapunov exponent of a quantum system saturates46

this bound, this system displays a holographic duality to a47

black hole [9]. In this sense, the previously defined Lyapunov48

exponent measures how close a quantum many-body system49

is to having a holographic duality to a black hole. A quantum50

mechanical model, which is known as the Sachdev-Ye-Kitaev51

model [13,28], has been shown to have the emergent conformal 52

symmetry [13,14,28,29] and the holographic duality [15–18]. 53

The OTOC in this model can be calculated explicitly and the 54

Lyapunov exponent is found to saturate the bound [13,14,19]. 55

In this paper we are interested in studying the OTOC for 56

more realistic models. We will mainly focus on the Bose- 57

Hubbard model (BHM). This model has been well studied as a 58

textbook example for quantum phase transitions [30,31]. Since 59

its first realization in the optical lattice in 2011, the BHM has 60

become one of the most well-studied models experimentally 61

in cold atom physics [32–34]. The Hamiltonian of the BHM is 62

Ĥ = − J
∑

⟨ij⟩
(b̂†i b̂j + H.c.) + U

2

∑

i

n̂i(n̂i − 1), (3)

where b̂i is the spinless boson operator at ith site and n̂i = b̂
†
i b̂i 63

is the boson number operator. At integer filling, as U/J 64

increases, this model exhibits a quantum phase transition from 65

the superfluid phase to the Mott insulator phase. Figure 1(a) 66

is the schematic phase diagram for the BHM [31,35]. Since 67

there is also an emergent conformal symmetry near the critical 68

point, and the quantum critical region is so strongly interacting 69

that there are no well-defined single-particle excitations, it is 70

believed that a (2 + 1)-dimensional BHM at the quantum crit- 71

ical regime is dual to a gravity model in the four-dimensional 72

anti-de Sitter space [36,37]. Motivated by this argument, along 73

with the aforementioned insight from the recent studies of the 74

OTOC, we propose a quantum critical point (QCP) conjecture 75

for the Lyapunov exponent, which is stated as: the Lyapunov 76

exponent will display a maximum around the quantum critical 77

region. In the BHM, we will consider increasing U/J across 78

the quantum critical region with a temperature higher than the 79

superfluid transition temperature, as shown by the dotted line 80

in Fig. 1(a). 81

Hereafter we present several calculations to support this 82

conjecture. Due to the lack of a general effective scheme 83

to calculate the OTOC in strongly interacting systems, we 84

perform an exact diagonalization calculation, in which we 85

first obtain all eigenstates for this many-body system and 86

then compute the time-evolution under the basis of these 87

eigenstates. The calculation is limited to a one-dimensional 88
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builds up a rigorous connection between these two. We should
emphasize that, although the insight comes from the explicit calcu-
lation in the MBL phase, the theorem holds for any quantum sys-
tem. Various implications of this theorem are also discussed.

2. Phenomenological model

A one-dimensional model with local two-state degrees of free-
dom was proposed as a phenomenological model for an MBL phase
[24,23,25]

Ĥ ¼
X

i

hiŝ z
i þ

X

ij

Jijŝ z
i ŝ z

j þ . . . ; ð2Þ

where ŝi are local Pauli operators for the ‘‘l-bit” and denote the local
integrals of motion within a localization length n. hi are random
Zeeman field uniformly distributed between ½&h;h'. Jij ¼
eJ ij expð&ji& jj=nÞ describes interaction between different l-bits,

and eJ ij are uniformly distributed between ½&J; J'. Each eigenstate of
this Hamiltonian can be written as jni ¼ js z

1s z
2 . . .i, where s z

i ¼" or
#. Since this model has effectively considered the physics within a
localization length by a local integral of motion and the detailed
process within a localization length has been ignored, for our
analysis below, the initial time t ¼ 0 should be interpreted in a real
model as some finite time when the initial process within a localiza-
tion length is completed.

Let us consider the infinite temperature case where we can sim-
ply sum over all the states with equal weight in calculating FðtÞ.
Here we choose Ŵ ¼ ŝ x

i ; V̂ ¼ ŝ x
j so the OTOC is given by

FðtÞ ¼ 1
2D

X

n

hnjÛyŝ x
i Ûŝ x

j Û
yŝ x

i Ûŝ x
j jni; ð3Þ

where Û ¼ e&iĤt and D is the number of sites. It is straightforward to
show that hnjÛyŝ x

i Ûŝ x
j Û

yŝ x
i Ûŝ x

j jni ¼ e( i4Jijt , where þ (&) is taken
when the spins on i- and j-sites are parallel (anti-parallel). Averag-
ing over jni leads to

FðtÞ ¼ cos 4Jijt
! "

: ð4Þ

Further averaging over all random configurations results in

FðtÞ ¼
sinð4J expð&ji& jj=nÞtÞ

4J expð&ji& jj=nÞt : ð5Þ

Before proceeding, we would like to make a few comments on
the result Eq. (5). (1) Eq. (5) can be expanded as 1þ at2 for the
early-time behavior. The absence of linear t term means that at
early time the OTOC deviates from unity in power law instead of
exponentially. This shows the difference in the OTOC between an
MBL state and a thermalized state. When the distribution function
of eJ ij changes or higher order terms in the Hamiltonian Eq. (2) are
included, this power law behavior is quite robust while a is a non-
universal value and will change correspondingly. (2) J ¼ 0
describes the AL limit where FðtÞ becomes a constant. This shows
that the OTOC can also distinguish the MBL phase from the AL
phase. (3) The typical time scale of the decay time is given by

t0 ¼ p
4J

eji&jj=n; ð6Þ

which increases exponentially as the distance between i- and j-sites
increases.

3. Random-field XXZ model

We now come to a more microscopic model for MBL, that is the
one-dimensional XXZ model in a random magnetic field [26,27,34]

Ĥ ¼
X

i

J? ðŝ xi ŝ
x
iþ1 þ ŝ yi ŝ

y
iþ1Þ þ Jzŝ

z
i ŝ

z
iþ1 þ hiŝ zi : ð7Þ

Here ŝx;y;zi are three spin operators at site-i; J? and Jz are both
constants, and hi are random fields uniformly distributed among
½&h;h'. Using a Jordan-Wigner transformation to map this model
into a spinless fermion model, ŝ zi ŝ

z
iþ1 gives a nearest neighbor inter-

action between fermions. Thus in this model, Jz represents the
interaction effect.

In Fig. 1, we show the von Neumann entropy, the second Rényi
entropy (RE) and the OTOC for both the MBL case and the AL case.
For the entropy calculation, the system is divided into two parts A

Fig. 1. (Color online) The calculation of the von Neumann entropy, the second Rényi entropy and the OTOC for the MBL and the AL cases in random-field XXZ model Eq. (7).
The OTOC has been rescaled to drop from unity. The horizontal axis is tJ? in the logarithmic scale. The calculation is done for on an 8-site model with open boundary
condition, and is averaged over 103 disorder configurations. Here J? > 0; hi=J? is uniformly distributed between ½&5;5'. For the MBL case Jz=J? ¼ 0:2 where the system is
known to be fully localized [34]. For the AL case Jz ¼ 0.

708 R. Fan et al. / Science Bulletin 62 (2017) 707–711

builds up a rigorous connection between these two. We should
emphasize that, although the insight comes from the explicit calcu-
lation in the MBL phase, the theorem holds for any quantum sys-
tem. Various implications of this theorem are also discussed.

2. Phenomenological model

A one-dimensional model with local two-state degrees of free-
dom was proposed as a phenomenological model for an MBL phase
[24,23,25]
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Here we propose an alternative way to measure OTOC,301

which does not require inverting the Hamiltonian. Instead, it302

demands preparing two identical copies of the system. The303

spirit is similar to the recent measurements of the second304

Rényi entropy in the BHM using a Hong-Ou-Mandel-type305

interference [47– 49]. The modified OTOC [9] to be measured306

is307

FM (t) = tr[Ŵ †(t)Ôe−βĤ /2Ô†Ŵ (t)Ôe−βĤ /2Ô†]. (11)

Similar to the discussion in Sec. II, here V̂ = ÔÔ†. Since308

Ŵ (t) = eiĤ t Ŵ e−iĤ t ,309

FM (t)

= tr[eiĤ t Ŵ †e−iĤ t Ôe−βĤ /2Ô†eiĤ t Ŵ e−iĤ t Ôe−βĤ /2Ô†]

= tr[ρ̂1ρ̂2] = tr[Ŝ12ρ̂1 ⊗ ρ̂2], (12)

where310

ρ̂1 = Ŵ †e−iĤ t Ôe−βĤ /2Ô†eiĤ t Ŵ , (13)

ρ̂2 = e−iĤ t Ôe−βĤ /2Ô†eiĤ t . (14)

The normalization is tr[ρ̂i] = 1. Ŝ12 is the swap operator that311

exchanges states in the two copies of the system Ŝ12|ψi⟩ ⊗312

|ψj ⟩ = |ψj ⟩ ⊗ |ψi⟩. In this way, the modified OTOC is refor-313

mulated into the interference of two density matrices tr[ρ̂1ρ̂2],314

and can be measured using the same protocol described in315

Refs. [48,49].316

In summary, the experiment protocol for measuring the317

modified OTOC between Ŵ and V̂ = ÔÔ† at temperature T318

is as follows:319

(i) Prepare two identical copies of the systems at tempera-320

ture 2T ;321

(ii) Suddenly quench both systems by applying operator322

Ô on both copies;323

(iii) Let both copies evolve under the Hamiltonian Ĥ for a324

duration of time t ;325

(iv) Apply the operator Ŵ to only one of the copies;326

(v) Perform a Hong-Ou-Mendel-type interference of the327

two systems.328

We note that this scheme is closely related to the Loschmidt329

echo experiment, which has recently been found to be closely330

related to the OTOC [50]. Having been performed in many331

quantum systems, the Loschmidt echo experiments may shed332

light on future studies of the OTOC.333

VI. REMARKS AND OUTLOOK334

Despite the holographic duality argument given in Sec. I,335

there is also an intuitive argument to understand the peak336

in the Lyapunov exponent. For U = 0, the Hamiltonian337

describes noninteracting bosons in a lattice. As U increases,338

the interaction effect gradually raises λL. On the other hand, in339

the large-U limit, the Hamiltonian and all commutators can be340

expanded perturbatively in terms of J/U . At the zeroth order341

J/U = 0, each site becomes independent, and the OTOC does342

not change with time. The Lyapunov exponent should increase343

as J/U decreases. Thus we would expect that λL has a peak344

in between.345

In fact, the underlying insight from the condensed matter346

physics is that there are no well-defined quasiparticles in the347

strongly interacting quantum critical region. Therefore, the 348

system is more chaotic than that in the noncritical region. As a 349

result, the Lyapunov exponent should be larger in the quantum 350

critical region. For example, we have also studied the quantum 351

phase transition in the XXZ model and the transverse field 352

Ising model, where similar phenomena are found. For the XXZ 353

model Ĥ = −J⊥
∑

i(ŝ
x
i ŝx

i+1 + ŝ
y
i ŝ

y
i+1) − Jz

∑
i ŝ

z
i ŝ

z
i+1, where 354

ŝα
i , α = x,y,z are spin operators at the ith site, we choose 355

Ŵ and V̂ as ŝ+
i − ŝ+

i+1 at different sites, whose bosonization 356

representation is the same as that of b̂
†
i in BHM. For the 357

transverse field Ising model Ĥ = −J
∑

i ŝ
z
i ŝ

z
i+1 − g

∑
i ŝ

x
i , 358

we use the open boundary condition and choose boundary 359

operators ŝ+
1 and ŝ+

L to characterize the phase transition. In 360

both cases, we find a broad peak of the Lyapunov exponent 361

around the quantum critical region. 362

Therefore, we believe that our QCP conjecture for the 363

Lyapunov exponent is very general. This conjecture could be 364

tested by more theoretical and experimental studies in the 365

future. 366
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APPENDIX: CFT CALCULATION OF THE RÉNYI 372

ENTROPY GROWTH AFTER A LOCAL QUENCH 373

In this Appendix, we derive Eq. (6) in detail. The technique 374

used here is similar to that in Ref. [39]. The main difference 375

is that our CFT is defined on a stripe because our system is at 376

finite temperature, while theirs is defined on the full plane due 377

to the zero temperature. 378

The system is put on a stripe with a periodic boundary 379

along the imaginary time direction as shown in Fig. 6(a), and 380

is divided as part A and B for x > 0 and x < 0, respectively. 381

The evolution of each part is governed by Ĥ ′, and there is 382

no interaction between them. The local quench is achieved by 383

connecting A and B in a small time window ϵ near iτ0. We put 384

a cut along +x space direction at time τ0 because there is no 385

trace over subsystem A, after which the evolution of the whole 386

xx
z

2
β

-
2
β

z

2
β

-
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β

iτiτ

w
iτ iτ

FIG. 6. The procedure of the conformal field theory calculation.
(a) The original geometry on the stripe. There is a physical boundary
along the imaginary axis and a cut along +x direction from z =
iτ0. For tr[ρn] we need n copies and sew them together. (b) The
complicated Riemann surface is identified with a twist field at z = iτ0

with n copies of field on a single stripe. (c) After the conformal
mapping, the problem becomes a standard geometry for a half infinite
plane.
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1 and ŝ+
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= tr[ρ̂1ρ̂2] = tr[Ŝ12ρ̂1 ⊗ ρ̂2], (12)
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exchanges states in the two copies of the system Ŝ12|ψi⟩ ⊗312

|ψj ⟩ = |ψj ⟩ ⊗ |ψi⟩. In this way, the modified OTOC is refor-313

mulated into the interference of two density matrices tr[ρ̂1ρ̂2],314

and can be measured using the same protocol described in315

Refs. [48,49].316

In summary, the experiment protocol for measuring the317

modified OTOC between Ŵ and V̂ = ÔÔ† at temperature T318

is as follows:319

(i) Prepare two identical copies of the systems at tempera-320

ture 2T ;321

(ii) Suddenly quench both systems by applying operator322

Ô on both copies;323

(iii) Let both copies evolve under the Hamiltonian Ĥ for a324

duration of time t ;325

(iv) Apply the operator Ŵ to only one of the copies;326

(v) Perform a Hong-Ou-Mendel-type interference of the327

two systems.328

We note that this scheme is closely related to the Loschmidt329

echo experiment, which has recently been found to be closely330

related to the OTOC [50]. Having been performed in many331

quantum systems, the Loschmidt echo experiments may shed332

light on future studies of the OTOC.333

VI. REMARKS AND OUTLOOK334

Despite the holographic duality argument given in Sec. I,335

there is also an intuitive argument to understand the peak336

in the Lyapunov exponent. For U = 0, the Hamiltonian337

describes noninteracting bosons in a lattice. As U increases,338

the interaction effect gradually raises λL. On the other hand, in339

the large-U limit, the Hamiltonian and all commutators can be340

expanded perturbatively in terms of J/U . At the zeroth order341

J/U = 0, each site becomes independent, and the OTOC does342

not change with time. The Lyapunov exponent should increase343

as J/U decreases. Thus we would expect that λL has a peak344

in between.345

In fact, the underlying insight from the condensed matter346

physics is that there are no well-defined quasiparticles in the347

strongly interacting quantum critical region. Therefore, the 348

system is more chaotic than that in the noncritical region. As a 349

result, the Lyapunov exponent should be larger in the quantum 350

critical region. For example, we have also studied the quantum 351

phase transition in the XXZ model and the transverse field 352
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Therefore, we believe that our QCP conjecture for the 363

Lyapunov exponent is very general. This conjecture could be 364

tested by more theoretical and experimental studies in the 365

future. 366
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ŝα
i , α = x,y,z are spin operators at the ith site, we choose 355
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∑

i ŝ
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z
i+1 − g

∑
i ŝ
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= tr[ρ̂1ρ̂2] = tr[Ŝ12ρ̂1 ⊗ ρ̂2], (12)
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y
i+1) − Jz

∑
i ŝ
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ŝα
i , α = x,y,z are spin operators at the ith site, we choose 355
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duration of time t ;325
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y
i+1) − Jz

∑
i ŝ
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Here we propose an alternative way to measure OTOC,301

which does not require inverting the Hamiltonian. Instead, it302

demands preparing two identical copies of the system. The303

spirit is similar to the recent measurements of the second304

Rényi entropy in the BHM using a Hong-Ou-Mandel-type305

interference [47– 49]. The modified OTOC [9] to be measured306

is307

FM (t) = tr[Ŵ †(t)Ôe−βĤ /2Ô†Ŵ (t)Ôe−βĤ /2Ô†]. (11)

Similar to the discussion in Sec. II, here V̂ = ÔÔ†. Since308

Ŵ (t) = eiĤ t Ŵ e−iĤ t ,309

FM (t)

= tr[eiĤ t Ŵ †e−iĤ t Ôe−βĤ /2Ô†eiĤ t Ŵ e−iĤ t Ôe−βĤ /2Ô†]

= tr[ρ̂1ρ̂2] = tr[Ŝ12ρ̂1 ⊗ ρ̂2], (12)

where310

ρ̂1 = Ŵ †e−iĤ t Ôe−βĤ /2Ô†eiĤ t Ŵ , (13)

ρ̂2 = e−iĤ t Ôe−βĤ /2Ô†eiĤ t . (14)

The normalization is tr[ρ̂i] = 1. Ŝ12 is the swap operator that311

exchanges states in the two copies of the system Ŝ12|ψi⟩ ⊗312

|ψj ⟩ = |ψj ⟩ ⊗ |ψi⟩. In this way, the modified OTOC is refor-313

mulated into the interference of two density matrices tr[ρ̂1ρ̂2],314

and can be measured using the same protocol described in315

Refs. [48,49].316

In summary, the experiment protocol for measuring the317

modified OTOC between Ŵ and V̂ = ÔÔ† at temperature T318

is as follows:319

(i) Prepare two identical copies of the systems at tempera-320

ture 2T ;321

(ii) Suddenly quench both systems by applying operator322

Ô on both copies;323

(iii) Let both copies evolve under the Hamiltonian Ĥ for a324

duration of time t ;325

(iv) Apply the operator Ŵ to only one of the copies;326

(v) Perform a Hong-Ou-Mendel-type interference of the327

two systems.328

We note that this scheme is closely related to the Loschmidt329

echo experiment, which has recently been found to be closely330

related to the OTOC [50]. Having been performed in many331

quantum systems, the Loschmidt echo experiments may shed332

light on future studies of the OTOC.333

VI. REMARKS AND OUTLOOK334

Despite the holographic duality argument given in Sec. I,335

there is also an intuitive argument to understand the peak336

in the Lyapunov exponent. For U = 0, the Hamiltonian337

describes noninteracting bosons in a lattice. As U increases,338

the interaction effect gradually raises λL. On the other hand, in339

the large-U limit, the Hamiltonian and all commutators can be340

expanded perturbatively in terms of J/U . At the zeroth order341

J/U = 0, each site becomes independent, and the OTOC does342

not change with time. The Lyapunov exponent should increase343

as J/U decreases. Thus we would expect that λL has a peak344

in between.345

In fact, the underlying insight from the condensed matter346

physics is that there are no well-defined quasiparticles in the347

strongly interacting quantum critical region. Therefore, the 348

system is more chaotic than that in the noncritical region. As a 349

result, the Lyapunov exponent should be larger in the quantum 350

critical region. For example, we have also studied the quantum 351

phase transition in the XXZ model and the transverse field 352

Ising model, where similar phenomena are found. For the XXZ 353

model Ĥ = −J⊥
∑

i(ŝ
x
i ŝx

i+1 + ŝ
y
i ŝ

y
i+1) − Jz

∑
i ŝ

z
i ŝ

z
i+1, where 354

ŝα
i , α = x,y,z are spin operators at the ith site, we choose 355

Ŵ and V̂ as ŝ+
i − ŝ+

i+1 at different sites, whose bosonization 356

representation is the same as that of b̂
†
i in BHM. For the 357

transverse field Ising model Ĥ = −J
∑

i ŝ
z
i ŝ

z
i+1 − g

∑
i ŝ

x
i , 358

we use the open boundary condition and choose boundary 359

operators ŝ+
1 and ŝ+

L to characterize the phase transition. In 360

both cases, we find a broad peak of the Lyapunov exponent 361

around the quantum critical region. 362

Therefore, we believe that our QCP conjecture for the 363

Lyapunov exponent is very general. This conjecture could be 364

tested by more theoretical and experimental studies in the 365

future. 366

ACKNOWLEDGMENTS 367

We would like to thank Yingfei Gu and Chao-Ming Jian for 368

helpful discussions. This work is supported by MOST under 369

Grant No. 2016YFA0301600, NSFC Grant No. 11325418, and 370

Tsinghua University Initiative Scientific Research Program. FQ371

APPENDIX: CFT CALCULATION OF THE RÉNYI 372

ENTROPY GROWTH AFTER A LOCAL QUENCH 373

In this Appendix, we derive Eq. (6) in detail. The technique 374

used here is similar to that in Ref. [39]. The main difference 375

is that our CFT is defined on a stripe because our system is at 376

finite temperature, while theirs is defined on the full plane due 377

to the zero temperature. 378

The system is put on a stripe with a periodic boundary 379

along the imaginary time direction as shown in Fig. 6(a), and 380
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Similar to the discussion in Sec. II, here V̂ = ÔÔ†. Since308
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|ψj ⟩ = |ψj ⟩ ⊗ |ψi⟩. In this way, the modified OTOC is refor-313

mulated into the interference of two density matrices tr[ρ̂1ρ̂2],314

and can be measured using the same protocol described in315

Refs. [48,49].316

In summary, the experiment protocol for measuring the317
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x
i , 358

we use the open boundary condition and choose boundary 359

operators ŝ+
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i+1 at different sites, whose bosonization 356

representation is the same as that of b̂
†
i in BHM. For the 357

transverse field Ising model Ĥ = −J
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z
i ŝ
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x
i , 358

we use the open boundary condition and choose boundary 359

operators ŝ+
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Here we propose an alternative way to measure OTOC,301

which does not require inverting the Hamiltonian. Instead, it302

demands preparing two identical copies of the system. The303

spirit is similar to the recent measurements of the second304

Rényi entropy in the BHM using a Hong-Ou-Mandel-type305

interference [47– 49]. The modified OTOC [9] to be measured306

is307

FM (t) = tr[Ŵ †(t)Ôe−βĤ /2Ô†Ŵ (t)Ôe−βĤ /2Ô†]. (11)

Similar to the discussion in Sec. II, here V̂ = ÔÔ†. Since308

Ŵ (t) = eiĤ t Ŵ e−iĤ t ,309

FM (t)

= tr[eiĤ t Ŵ †e−iĤ t Ôe−βĤ /2Ô†eiĤ t Ŵ e−iĤ t Ôe−βĤ /2Ô†]
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where310
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The normalization is tr[ρ̂i] = 1. Ŝ12 is the swap operator that311

exchanges states in the two copies of the system Ŝ12|ψi⟩ ⊗312

|ψj ⟩ = |ψj ⟩ ⊗ |ψi⟩. In this way, the modified OTOC is refor-313

mulated into the interference of two density matrices tr[ρ̂1ρ̂2],314

and can be measured using the same protocol described in315

Refs. [48,49].316

In summary, the experiment protocol for measuring the317

modified OTOC between Ŵ and V̂ = ÔÔ† at temperature T318

is as follows:319

(i) Prepare two identical copies of the systems at tempera-320

ture 2T ;321

(ii) Suddenly quench both systems by applying operator322

Ô on both copies;323

(iii) Let both copies evolve under the Hamiltonian Ĥ for a324

duration of time t ;325

(iv) Apply the operator Ŵ to only one of the copies;326

(v) Perform a Hong-Ou-Mendel-type interference of the327

two systems.328

We note that this scheme is closely related to the Loschmidt329

echo experiment, which has recently been found to be closely330

related to the OTOC [50]. Having been performed in many331

quantum systems, the Loschmidt echo experiments may shed332

light on future studies of the OTOC.333

VI. REMARKS AND OUTLOOK334

Despite the holographic duality argument given in Sec. I,335

there is also an intuitive argument to understand the peak336

in the Lyapunov exponent. For U = 0, the Hamiltonian337

describes noninteracting bosons in a lattice. As U increases,338

the interaction effect gradually raises λL. On the other hand, in339

the large-U limit, the Hamiltonian and all commutators can be340

expanded perturbatively in terms of J/U . At the zeroth order341

J/U = 0, each site becomes independent, and the OTOC does342

not change with time. The Lyapunov exponent should increase343

as J/U decreases. Thus we would expect that λL has a peak344

in between.345

In fact, the underlying insight from the condensed matter346

physics is that there are no well-defined quasiparticles in the347

strongly interacting quantum critical region. Therefore, the 348

system is more chaotic than that in the noncritical region. As a 349

result, the Lyapunov exponent should be larger in the quantum 350

critical region. For example, we have also studied the quantum 351

phase transition in the XXZ model and the transverse field 352

Ising model, where similar phenomena are found. For the XXZ 353
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z
i ŝ
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we use the open boundary condition and choose boundary 359

operators ŝ+
1 and ŝ+

L to characterize the phase transition. In 360

both cases, we find a broad peak of the Lyapunov exponent 361

around the quantum critical region. 362

Therefore, we believe that our QCP conjecture for the 363

Lyapunov exponent is very general. This conjecture could be 364

tested by more theoretical and experimental studies in the 365

future. 366
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= tr[ρ̂1ρ̂2] = tr[Ŝ12ρ̂1 ⊗ ρ̂2], (12)

where310
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@ĥ

@kx
⇥
@ĥ
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m
|0i

hV2i = (�1)
n
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which does not require inverting the Hamiltonian. Instead, it302

demands preparing two identical copies of the system. The303

spirit is similar to the recent measurements of the second304

Rényi entropy in the BHM using a Hong-Ou-Mandel-type305

interference [47– 49]. The modified OTOC [9] to be measured306

is307

FM (t) = tr[Ŵ †(t)Ôe−βĤ /2Ô†Ŵ (t)Ôe−βĤ /2Ô†]. (11)

Similar to the discussion in Sec. II, here V̂ = ÔÔ†. Since308
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= tr[ρ̂1ρ̂2] = tr[Ŝ12ρ̂1 ⊗ ρ̂2], (12)
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mulated into the interference of two density matrices tr[ρ̂1ρ̂2],314

and can be measured using the same protocol described in315

Refs. [48,49].316

In summary, the experiment protocol for measuring the317

modified OTOC between Ŵ and V̂ = ÔÔ† at temperature T318

is as follows:319
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duration of time t ;325
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(v) Perform a Hong-Ou-Mendel-type interference of the327

two systems.328

We note that this scheme is closely related to the Loschmidt329

echo experiment, which has recently been found to be closely330

related to the OTOC [50]. Having been performed in many331

quantum systems, the Loschmidt echo experiments may shed332

light on future studies of the OTOC.333
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there is also an intuitive argument to understand the peak336
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∑

i ŝ
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exchanges states in the two copies of the system Ŝ12|ψi⟩ ⊗312
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z
i+1, where 354

ŝα
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Figure 1: Illustration of the physical system, the Ising model and the experimental scheme. (a)
The structure of the C2F3I molecule used for the NMR simulation. (b) The four sites Ising spin
chain, A and B label dividing the entire system into two subsystems in the later discussion of
entanglement entropy. (c) Quantum circuit for measuring the OTOC for general N -site Ising
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chaotic behavior of many-body quantum systems and characterizes the infor-

mation scrambling (1–6). Based on OTOCs, three different concepts – quan-

tum chaos, holographic duality, and information scrambling – are found to be

intimately related to each other. Here we report the measurement of OTOCs

of an Ising spin chain on a nuclear magnetic resonance (NMR) quantum sim-

ulator. We observe that the OTOC behaves differently in the integrable and

chaotic cases (6). Based on the recent discovered relationship between OTOCs

and the growth of entanglement entropy in the many-body system (7), we

extract the entanglement entropy from the measured OTOCs, which clearly

shows that the information entropy oscillates in time for integrable models

and scrambles for chaotic models (6). With OTOCs, we also obtain the but-

terfly velocity in this system, which measures the speed of correlation prop-

agation (5, 6, 8–10). Our experiment paves a way for experimental studying

quantum chaos, holographic duality, and information scrambling in many-

body quantum systems with quantum simulators.

The out-of-time-order correlator (OTOC), given by

F (t) = hB̂†(t)Â†(0)B̂(t)Â(0)i�, (1)

is a quantum generalization of a classical measure of chaos (1,2). Here Ĥ is the system Hamil-

tonian and B̂(t) = eiĤtB̂e�iĤt, and h...i� denotes averaging over a thermal ensemble at tem-

perature 1/� = kBT . For a many-body system with local operators Â and B̂, the exponen-

tial deviation from unity of a normalized OTOC gives rise to the Lyapunov exponent �L, i.e.

F (t) ⇠ 1 � #e�Lt for small t. In the recent years, the interests on the OTOCs increase sig-

nificantly. It is found that OTOC emerges in describing a bulk scattering nearby the horizon

and information scrambling of a black hole (3–5). Furthermore, the Lyapunov exponent �L of a

2

quantum system holographic dual to a black hole saturate an upper bound 2⇡/� (11–15). This

establishes a profound connection between the existence of holographic duality and the chaotic

behavior in many-body quantum systems. In the high temperature limit (i.e. � = 0), intimate

connection between the OTOC and the growth of entanglement entropy in quantum many-body

systems are also established (6, 7).

Despite of the significance of the OTOC revealed by recent theories, experimental measure-

ment of the OTOC remains challenging. Unlike the normal correlators, the OTOC cannot be re-

lated to conventional spectroscopy measurements through linear response theory. Recently, sev-

eral theory proposals have been put forward to measure OTOC, using echo- and interferometric-

approaches (16–19). Since the OTOC involves system dynamics and its time reversal, quantum

computers provide an ideal platform to simulate these systems and their dynamics. Histori-

cally, one of the key motivations to develop quantum computers is to simulate the dynamics of

many-body quantum systems (20), and quantum simulation of many-body dynamics has been

theoretically shown to be efficient with practical algorithms proposed (21).

In this work, we report measurements of OTOCs on a NMR quantum simulator. The system

to simulate is an Ising spin chain model, whose Hamiltonian is written as

Ĥ =
X

i

�
��̂z

i
�̂z

i+1 + g�̂x

i
+ h�̂z

i

�
, (2)

where �̂x,y,z

i
are Pauli matrices on the i-site. The parameter values g = 1, h = 0 correspond

to the traverse field Ising model, where the system is integrable. The system is non-integrable
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iĤt

Ŵe
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n
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4

III. Rotate the system by  ⇢0 = V̂ Ĥ R̂(�)
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Figure 1 | Illustration of the many-body echo scheme. a, Experimental sequence. The global �⇡/2 rotation R̂y about the y-axis prepares an initial state with
all spins pointing along the x-axis, and enables a measurement in this same basis. The generalized Bloch spheres illustrate the evolution of the state
(Husimi distribution). In the case of �=0 (blue) the spins return to the initial state, while for �=⇡/2 (green) the overlap of the final state ⇢̂f with the
initial state is small. b, Fidelity signal for an idealized case with N=6 spins and di�erent evolution times ⌧ given in c. c, The Fourier transforms of the fidelity
signals of b. The Fourier amplitudes are identical to the MQCs Im, which quantify the coherence of the state ⇢̂(⌧ ). The small squares on the right show the
absolute values of the density matrix elements of ⇢̂(⌧ ) in the basis of symmetric Dicke states. Thus, Im is the sum of the squares of all matrix elements at a
distance m from the diagonal. The times are given in units of the time to reach the Schrödinger cat state tcat =⇡h̄N/(4J). d, Simulated dynamics of the
Fourier amplitudes of fidelity, Im, and magnetization, Am, for purely coherent evolution of 48 ions, illustrating complementary probes of the flow of quantum
information. The vanishing odd Fourier components are not shown.

particular decoupling times ⌧n =2⇡n/� for an integer n (Fig. 2c and
Supplementary Information). Here we always choose |�|= 2⇡n/⌧ ,
ensuring spins and phonons decouple. This guarantees that the
dynamics matches that of the Ising Hamiltonian in equation (2)
with uniform couplings J (�)/h̄= ⌦2

0/(2�), and leads to di�erent
values of the coupling constant J at di�erent interaction times
⌧ . The detuning-dependent coupling enables us to implement a
many-body echo of the spin dynamics by inverting the sign of �.

For measuring magnetization and fidelity, we collect the global
ion fluorescence scattered from the Doppler cooling laser on the
cycling transition for ions in |"i, after applying a ⇡/2 rotation
of the spins. We count the total number of photons collected
on a photomultiplier tube (PMT) in a detection period, typically
tc =5ms. From the independently calibrated photons collected per
ion, we can infer the state populations, N" and N#. After averaging
over many experimental trials, between 500 and 800, we calculate
the expectation values hŜzi= hN̂"i�N/2. To measure the fidelity,
we distinguish the single state with all ions in |#i, which does
not scatter from the cooling laser, from all other states. Any ion
fluorescence indicates the system is no longer in the initial state. The
fidelity is the fraction of experimental trials that result in measuring
the state |# ...#i (see Supplementary Information).

Figure 3 shows the measured fidelity F as a function of the
angle � for di�erent evolution times ⌧ in an array of 48 ions.
The measurements at � = 0 and 2⇡ give the state purity, while
the ⇡-periodic oscillations encode information on the buildup of
MQCs. The pulse sequence in Fig. 3a follows Fig. 1, whereas in
Fig. 3b, an additional ⇡-rotation has been inserted in the middle
of each evolution period ⌧ to suppress some forms of decoherence.
We extract the coherences Im, shown in Fig. 3c, as the Fourier
components of the fidelity in Fig. 3b. We see a clear buildup of the
two-body (I2), and then four-body (I4) coherences with increasing

interaction time. Odd components are zero within statistical error,
consistent with the fact that the coherences are generated by the
Ising interaction, which can be viewed as only flipping pairs of spins.

All the measurements are in good agreement with theory
calculations (solid lines) that account for independently calibrated
sources of decoherence. O�-resonant light scattering is the
dominant decoherence mechanism in the system. Because the
fidelity measures a projection onto a single many-body state, it
decays with a rate approximatelyN� , where � is the single-particle
decoherence rate. This causes a fast decay of I0 as exp(�N� ⌧ ).
However, Fig. 3c shows that I0 decays as exp(�N� ⌧ )I (pure)0 , where
the algebraic decay I (pure)0 ⇡ 1/(1 + J 2⌧ 2) (see Supplementary
Section 3) signals the buildup of higher-order coherences seen also
in the fully coherent case.Other sources of decoherence include slow
drifts in themagnetic field36 andCOMmode frequency fluctuations,
which the MQC can distinguish. Figure 3a reveals the degree to
which the COM axial mode phonons cannot be decoupled from
the spins due to uncertainty in the COM mode frequency !z . The
impact of residual spin–phonon coupling, arising from fluctuations
in !z , is more pronounced at � = ⇡ than � = 0. In contrast,
slow magnetic field noise causes a reduction of the fidelity around
� = 0(2⇡), but has no e�ect at � = ⇡, allowing us to benchmark
these two imperfections independently. For the data in Fig. 3b,
where the sequence includes an additional ⇡ rotation to suppress
errors from slow drifts in the magnetic field and COM mode
frequency, the full theory collapses to a solution that includes only
o�-resonant light scattering as the sole decoherence mechanism
(dashed line).

Single-body observables, like the collective magnetization, are
much less sensitive to decoherence, and provide an alternative way
to experimentally measure the sequential buildup of higher-order
correlations induced by spin–spin interactions. In Fig. 4, we show
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Ŵ = b̂†j

F (�, t) = Tr(V̂ eiĤtR̂(�)e�iĤtV̂ eiĤtR̂†
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Figure 2 | Phonon-mediated, reversible spin–spin coupling in a
Penning trap. a, (Left) Illustration of Penning trap cross-section. Ions (blue
circles) are confined axially to a single 2D plane (shown in b) with static
electric fields from potentials on the electrodes (gold). Rotation of the ions
in the axial magnetic field B produces radial confinement from the Lorentz
force. A pair of detuned ODF beams (green) interfere and form a travelling
wave optical lattice, producing spin-dependent COM mode excitations that
couple the spins to the axial phonon mode. Shown here are two of (2N+ 1)
excitations: all ions in |"i (purple) and all in |#i (orange). (Right) The
phonon wave packets experience equal and opposite displacement in the
axial potential Vz. Spin-dependent motion, along with the Coulomb
interaction, generates the spin–spin coupling. b, Rotating frame image of 2D
array of 9Be+ ions, integration time 2.1 s. c, Residual spin–phonon coupling
for drive frequencies away from the decoupling points ±� appears as a
decrease in the magnetization measured after the experimental sequence
from Fig. 1, with �=⇡, and without inverting Ĥzz. Here ⌧ =200µs. Note
that decoupling points appear at ±� with +� giving an anti-ferromagnetic
interaction, and �� giving a ferromagnetic interaction used for the time
reversal of the Ĥzz dynamics.

the results of the magnetization OTOC measurement sequence,
which shows a buildup of Fourier amplitudes, Am, up to m= 8,
observable even for N = 111. These measurements also allow us
to benchmark the quality of our quantum simulator by comparing
to theory predictions with no adjusted parameters. Here, the
dashed lines are obtained by solving the pure spin model including
only spontaneous emission decoherence (see Supplementary
Information), showing agreement in both the �-dependent signal
(Fig. 4a) and its Fourier transform (Fig. 4b). Accounting for static
magnetic field noise largely explains the remaining discrepancy
at small angles (solid lines in Fig. 4a). Comparison of the data to
theory predictions with no decoherence (Fig. 4c) confirms that the
decay of the Fourier amplitudes at long times is not a decoherence
e�ect but a consequence of many-body interactions which induce
a decrease of low-m components with a corresponding buildup of
high-m components. Since the observed dynamics is dominated
by the coherent evolution under the Ising interaction, these results
suggest that the observed features can be explained only by the
formation of quantum correlations.

In summary, we have shown that many-body Loschmidt echo
sequences are powerful tools to measure OTOCs and quantify
the degree of coherence in quantum simulators, with an explicit
demonstration for ions in a Penning trap. In particular, we
studied OTOCs involving variable angle spin rotations. The Fourier
components with respect to the rotation angle (Im and Am) show
a buildup of many-body coherence and correlations, indicating
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Figure 3 | Measured fidelity and coherence spectrum of N= 48 ions.
a,b, Dependence of the fidelity F�(⌧ ) on the rotation angle �. The
experimental sequence in b includes an additional ⇡ pulse in the middle of
each evolution period ⌧ . The dashed lines are simulations including
o�-resonant light scattering as the only source of decoherence, with
� =62 s�1. The solid lines include e�ects of COM mode and magnetic field
fluctuations, with COM mode frequency fluctuations 1COM/!z =

8.0⇥ 10�5 r.m.s., and magnetic field noise 1B/B=0.32⇥ 10�9 r.m.s.
(Methods). Note that for each interaction time ⌧ the detuning is chosen
so that �=2⇡/⌧ (a) or �=4⇡/⌧ (b). In each case, the spin–spin coupling
also varies as J/h̄=⌦2

0/(2�) where ⌦0 =7,850 s�1. c, Fourier amplitudes
of fidelity (b) as a function of time. Solid lines are simulations including all
known decoherence processes. I2 and I4 clearly show the buildup of
higher-order MQCs. Odd coherences and coherences m�6 are zero
within the statistical error. For I0, decoherence induced decay (dashed)
and approximate analytic curve (dotted, see text) are shown. The data
points at ⌧ =0.3 and 0.9 (not shown in b) have been added. The longest
measured evolution time of ⌧ = 1 ms corresponds to 6.5% of tcat
(see Fig. 1d). All error bars denote the statistical error of 1 standard
deviation (s.d.) of the mean.

scrambling of quantum information. Our experimental results are
described well by a theory model which accounts for all known
sources of decoherence (photon scattering,magnetic field noise, and
spin–phonon coupling), allowing us to benchmark the performance
of our trapped-ion quantum simulator.

784

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NATURE PHYSICS | VOL 13 | AUGUST 2017 | www.nature.com/naturephysics

Phonon-mediated, reversible spin-spin interaction

NIST, Boulder group, Nat. Phys. 2017



Summary 

Out-of-Time-
Order 

Correlation

Entropy
Detected by  

Hong-Ou-Mandel 
Dynamics between 

Two Identical Systems

Detected by 
 Time-Reversible 

Many-Body Dynamics

Related by  
Quench Dynamics



Thank You Very Much for Attention !


