Fundamental Aspects of Quantum Dynamics:

III: Entropy

Hui Zhai

Institute for Advanced Study Tsinghua University Beijing, China

Quantum Few- and Many-Body Physics in Ultracold Atoms Wuhan April 2018

Entropy and Dynamics

Entanglement Entropy

A

 $\rho_B \equiv \operatorname{tr}_A(\rho_{AB})$ For separable states: $\operatorname{tr}(\rho_A^2) = \operatorname{tr}(\rho_B^2) = \operatorname{tr}(\rho_{AB}^2) = 1$. For entangled states: $\operatorname{tr}(\rho_A^2) = \operatorname{tr}(\rho_B^2) < \operatorname{tr}(\rho_{AB}^2) = 1$

B

nth Renyi Entropy

$$S_n(A) \equiv \frac{1}{1-n} \log \operatorname{tr}\left(\rho_A^n\right)$$

$$S_2(A) = -\log \operatorname{tr}\left(\rho_A^2\right)$$

1st

 $\lim_{n\to 1} S_n(A) = -\mathrm{tr}(\rho_A \log \rho_A) \equiv S(A)$

 $\rho_A \equiv \operatorname{tr}_B(\rho_{AB})$

Measurement of Second Renyi Entropy

Hong-Ou-Mandel Interference

$$\hat{a}_1 \rightarrow \frac{1}{\sqrt{2}} (\hat{a}_1 + \hat{a}_2)$$

 $\hat{a}_2 \rightarrow \frac{1}{\sqrt{2}} (-\hat{a}_1 + \hat{a}_2)$

 $|\psi\rangle = (\hat{a}_1^{\dagger} - \hat{a}_2^{\dagger})^n (\hat{a}_1^{\dagger} + \hat{a}_2^{\dagger})^m |0\rangle \to \hat{a}_2^{\dagger,n} \hat{a}_1^{\dagger,m} |0\rangle$

$$\langle V_2 \rangle = tr(\rho^2)$$

=

Tr $(\rho_1 \rho_2)$ Quantum state overlap

 $\rho_1 = \rho_2$

Tr (ρ^2) Purity

 $P_i = \prod p_i^{(k)}$

Hong-Ou-Mandel Interference for BHM

Dynamical realization of Hong-**Ou-Mandel**

→

A and B Entangled

Harvard Group, Nature 2016

Entanglement Entropy for BHM

Equilibrium

After Quench

Harvard Group, Nature 2016

Science 2016

Out-of-Time-Ordered Correlation (OTOC)

Normal correlation you can find in any textbook: $\langle \hat{W}^{\dagger}(t)\hat{W}(t)\hat{V}^{\dagger}(0)\hat{V}(0)\rangle_{\beta}$ **OTOC** $\langle \hat{W}^{\dagger}(t)\hat{V}^{\dagger}(0)\hat{W}(t)\hat{V}(0)\rangle_{\beta}$

Since 2014...

Condensed Matter/ Quantum Information

High Energy/Gravity

Kitaev

Sachdev

Shenker

Maldacena

Witten

$$\langle \hat{W}^{\dagger}(t)\hat{V}^{\dagger}(0)\hat{W}(t)\hat{V}(0)\rangle_{\beta} \hat{W}(t) = e^{i\hat{H}t}\hat{W}e^{-i\hat{H}t}$$

q(0)

OTOC diagnoses chaotic behavior

$$\frac{\partial q(t)}{\partial q(0)} \sim e^{\lambda_L t} = \{q(t), p(0)\}$$

$$\lambda_L$$
 Lyapunov exponent

$$C(t) = \langle |[W(t), V(0)]|^2 \rangle_{\beta}$$

 $C(t) = \langle V^{\dagger}(0)W^{\dagger}(t)W(t)V(0) + W^{\dagger}(t)V^{\dagger}(0)V(0)W(t) \rangle$

"Accessible correlators"

 $-W^{\dagger}(t)V^{\dagger}(0)W(t)V(0) - V^{\dagger}(0)W^{\dagger}(t)V(0)W(t)\rangle_{\beta}$

"Out-of-time-ordered correlators"

Larkin, Ovchinnikov 1969

q(t)

$$\langle \hat{W}^{\dagger}(t)\hat{V}^{\dagger}(0)\hat{W}(t)\hat{V}(0)\rangle_{\beta} \hat{W}(t) = e^{i\hat{H}t}\hat{W}e^{-i\hat{H}t}$$

OTOC diagnoses the butterfly effect

 $OTOC = \langle y | x \rangle$ $\begin{aligned} |x\rangle &= \hat{W}(t)\hat{V}(0)|\rangle \\ &\stackrel{}{\textstyle \times} \hat{W} \end{aligned}$ $\begin{aligned} |y\rangle &= \hat{V}(0)\hat{W}(t)|\rangle \\ & \bigstar \hat{W} \end{aligned}$ $e^{i\hat{H}t}$ $e^{-i\hat{H}t}$ $e^{i\hat{H}t}$ $e^{-i\hat{H}t}$

$$\langle \hat{W}^{\dagger}(t) \hat{V}^{\dagger}(0) \hat{W}(t) \hat{V}(0) \rangle_{\beta}$$
$$\hat{W}(t) = e^{i\hat{H}t} \hat{W} e^{-i\hat{H}t}$$

• OTOC diagnoses the butterfly effect

 $OTOC = \langle y | x \rangle$

by Brian Swingle* and Norman Y. Yao†

$$\langle \hat{W}^{\dagger}(t)\hat{V}^{\dagger}(0)\hat{W}(t)\hat{V}(0)\rangle_{\beta} \hat{W}(t) = e^{i\hat{H}t}\hat{W}e^{-i\hat{H}t}$$

Delocalization of information is closely related to the decay of the OTOC, and the butterfly effect in quantum system implies the information-theoretic definition of scrambling.

$$C(t) = \langle |[W(t), V(0)]|^2 \rangle_{\beta}$$

$$\hat{W}(t) = \sum_{j=0}^{\infty} \frac{(it)^j}{j!} [\hat{H}, \dots, [\hat{H}, \hat{W}], \dots,]$$

Hosur, Qi, Roberts and Yoshida, 2015

Holographic Duality

Holographic duality: A quantum many body system (strongly interacting, emergent conformal field symmetry) in D-dimension can be mapped to a gravity theory (hopefully, classical) in D+1-dimension

$$\langle \hat{A}_i \hat{A}_j \rangle_{QFT} = \langle \hat{B}_i \hat{B}_j \rangle_G$$

Condensed Matter /Cold Atom Physicists:

A way to solve strongly interacting quantum many-body problem

High-Energy/Gravity Physicists:

A way to quantize gravity

Holographic Duality and Cold Atom Physics

1000

PRL 94, 111601 (2005)

PHYSICAL REVIEW LETTERS

week ending 25 MARCH 2005

Viscosity in Strongly Interacting Quantum Field Theories from Black Hole Physics

P. K. Kovtun,¹ D. T. Son,² and A. O. Starinets³

Viscosity bound

Т, К

100

10

Universal Quantum Viscosity in a Unitary Fermi Gas

C. Cao,¹ E. Elliott,¹ J. Joseph,¹ H. Wu,¹ J. Petricka,² T. Schäfer,³ J. E. Thomas¹*

Science, 2011

D. T. Son

Quantum Information oformation Scramblin

Out-of-Time-Ordered Correlator

Quench Experiment

OTOC v.s. Renyi Entropy

R. Fan, P. Zhang, H. Shen and H. Zhai, Science Bulletin, 2017

OTOC v.s. Renyi Entropy

Quantum Thermalization

Statistical Mechanics: Local observation is consistent with a thermal ensemble of statistical mechanics

Quantum Mechanics: The whole system evolves as a unitary quantum evolution

Eigen-State Thermolization Hypothesis

Partition the system into two parts A and B. Suppose $V_A/V_B \rightarrow 0$ in the **thermodynamics limit** $V_A, V_B \rightarrow \infty$. If the ETH holds true for **every local** operator in A, then

$$\rho_{A} \equiv \operatorname{Tr}_{B}(|\alpha\rangle \langle \alpha|) = e^{-\hat{H}_{A}/k_{B}T_{\alpha}}.$$

Implication:

Entanglement entropy obeys volume law

Many-Body Localization

Many-Body Localization and Cold Atom Physics

OUANTUM GASES

RESEARCH ARTICLE

Observation of many-body localization of interacting fermions in a quasirandom optical lattice

Michael Schreiber,^{1,2} Sean S. Hodgman,^{1,2} Pranjal Bordia,^{1,2} Henrik P. Lüschen,^{1,2} Mark H. Fischer,³ Ronen Vosk² Ehud Altman,³ Ulrich Schneider,^{1,2,4} Immanuel Bloch^{1,2*}

Science, 2015

QUANTUM SIMULATION

Exploring the many-body localization transition in two dimensions

Jae-yoon Choi,¹*† Sebastian Hild,¹* Johannes Zeiher,¹ Peter Schauß,¹‡ Antonio Rubio-Abadal,¹ Tarik Yefsah,¹§ Vedika Khemani,² David A. Huse,^{2,3} Immanuel Bloch,^{1,4} Christian Gross¹

Science, 2016

OTOC v.s. Renyi Entropy

$$\exp(-S_A^{(2)}) = \sum_{M \in B} \operatorname{Tr}[\hat{M}(t)\hat{V}(0)\hat{M}(t)\hat{V}(0)]$$

Thermal	Single-Particle	Many-Body
Phase (ETH)	Localized	Localized
Power-law spreading of entanglement	No spreading of entanglement	Logarithmic spreading of entanglement
OTOC exponential	OTOC remains	OTOC power-law
decay	constant	decay
Our Results		

OTOC in the Bose-Hubbard Model

OTOC in the Localization Phase

Single-Particle Localized and MBL

 $\hat{H} = \sum_{i} J_{\perp} (\hat{s}_{i}^{x} \hat{s}_{i+1}^{x} + \hat{s}_{i}^{y} \hat{s}_{i+1}^{y}) + J_{z} \hat{s}_{i}^{z} \hat{s}_{i+1}^{z} + h_{i} \hat{s}_{i}^{z}.$ **XXZ Model**

R. Fan, P. Zhang, H. Shen and H. Zhai, Science Bulletin, 2017

$$F_M(t) = \operatorname{tr}[\hat{W}^{\dagger}(t)\hat{O}e^{-\beta\hat{H}/2}\hat{O}^{\dagger}\hat{W}(t)\hat{O}e^{-\beta\hat{H}/2}\hat{O}^{\dagger}]$$
$$= \operatorname{tr}[\hat{\rho}_1\hat{\rho}_2] = \operatorname{tr}[\hat{S}_{12}\hat{\rho}_1\otimes\hat{\rho}_2]$$

 $\hat{\rho}_{1} = \hat{W}^{\dagger} e^{-i\hat{H}t} \hat{O} e^{-\beta\hat{H}/2} \hat{O}^{\dagger} e^{i\hat{H}t} \hat{W}$ $\hat{\rho}_{2} = e^{-i\hat{H}t} \hat{O} e^{-\beta\hat{H}/2} \hat{O}^{\dagger} e^{i\hat{H}t}.$

I. Prepare two copies H. Shen, P. Zhang, R. Fan and H. Zhai, PRB, 2017

$$F_M(t) = \operatorname{tr}[\hat{W}^{\dagger}(t)\hat{O}e^{-\beta\hat{H}/2}\hat{O}^{\dagger}\hat{W}(t)\hat{O}e^{-\beta\hat{H}/2}\hat{O}^{\dagger}]$$
$$= \operatorname{tr}[\hat{\rho}_1\hat{\rho}_2] = \operatorname{tr}[\hat{S}_{12}\hat{\rho}_1\otimes\hat{\rho}_2]$$

 $\hat{\rho}_{1} = \hat{W}^{\dagger} e^{-i\hat{H}t} \hat{O} e^{-\beta\hat{H}/2} \hat{O}^{\dagger} e^{i\hat{H}t} \hat{W}$ $\hat{\rho}_{2} = e^{-i\hat{H}t} \hat{O} e^{-\beta\hat{H}/2} \hat{O}^{\dagger} e^{i\hat{H}t}.$

II. Prepare two copies

H. Shen, P. Zhang, R. Fan and H. Zhai, PRB, 2017

$$F_M(t) = \operatorname{tr}[\hat{W}^{\dagger}(t)\hat{O}e^{-\beta\hat{H}/2}\hat{O}^{\dagger}\hat{W}(t)\hat{O}e^{-\beta\hat{H}/2}\hat{O}^{\dagger}]$$
$$= \operatorname{tr}[\hat{\rho}_1\hat{\rho}_2] = \operatorname{tr}[\hat{S}_{12}\hat{\rho}_1\otimes\hat{\rho}_2]$$

 $\hat{\rho}_{1} = \hat{W}^{\dagger} e^{-i\hat{H}t} \hat{O} e^{-\beta\hat{H}/2} \hat{O}^{\dagger} e^{i\hat{H}t} \hat{W}$ $\hat{\rho}_{2} = e^{-i\hat{H}t} \hat{O} e^{-\beta\hat{H}/2} \hat{O}^{\dagger} e^{i\hat{H}t}.$

Time evolution

III. Evolute time t H. Shen, P. Zhang, R. Fan and H. Zhai, PRB, 2017

$$F_M(t) = \operatorname{tr}[\hat{W}^{\dagger}(t)\hat{O}e^{-\beta\hat{H}/2}\hat{O}^{\dagger}\hat{W}(t)\hat{O}e^{-\beta\hat{H}/2}\hat{O}^{\dagger}]$$
$$= \operatorname{tr}[\hat{\rho}_1\hat{\rho}_2] = \operatorname{tr}[\hat{S}_{12}\hat{\rho}_1\otimes\hat{\rho}_2]$$

 $\hat{\rho}_{1} = \hat{W}^{\dagger} e^{-i\hat{H}t} \hat{O} e^{-\beta\hat{H}/2} \hat{O}^{\dagger} e^{i\hat{H}t} \hat{W}$ $\hat{\rho}_{2} = e^{-i\hat{H}t} \hat{O} e^{-\beta\hat{H}/2} \hat{O}^{\dagger} e^{i\hat{H}t}.$

IV. Apply a quench to one copy H. Shen, P. Zhang, R. Fan and H. Zhai, PRB, 2017

$$F_M(t) = \operatorname{tr}[\hat{W}^{\dagger}(t)\hat{O}e^{-\beta\hat{H}/2}\hat{O}^{\dagger}\hat{W}(t)\hat{O}e^{-\beta\hat{H}/2}\hat{O}^{\dagger}]$$
$$= \operatorname{tr}[\hat{\rho}_1\hat{\rho}_2] = \operatorname{tr}[\hat{S}_{12}\hat{\rho}_1\otimes\hat{\rho}_2]$$

 $\hat{\rho}_{1} = \hat{W}^{\dagger} e^{-i\hat{H}t} \hat{O} e^{-\beta\hat{H}/2} \hat{O}^{\dagger} e^{i\hat{H}t} \hat{W}$ $\hat{\rho}_{2} = e^{-i\hat{H}t} \hat{O} e^{-\beta\hat{H}/2} \hat{O}^{\dagger} e^{i\hat{H}t}.$

V. Use Hong-Ou-Mandel Interference H. Shen, P. Zhang, R. Fan and H. Zhai, PRB, 2017

NMR Quantum Simulation Measuring OTOC

 $F(t) = \langle \hat{B}^{\dagger}(t)\hat{A}^{\dagger}(0)\hat{B}(t)\hat{A}(0)\rangle_{\beta}$

$$\hat{H} = \sum_{i} \left(-\hat{\sigma}_{i}^{z} \hat{\sigma}_{i+1}^{z} + g \hat{\sigma}_{i}^{x} + h \hat{\sigma}_{i}^{z} \right)$$

Zero h: Integrable case

Non-Zero h: Non-Integrable case

Measurements of OTOC for Ising Chain

$$\hat{H} = \sum_{i} \left(-\hat{\sigma}_{i}^{z} \hat{\sigma}_{i+1}^{z} + g \hat{\sigma}_{i}^{x} + h \hat{\sigma}_{i}^{z} \right)$$

Integrable Case

Non-Integrable Cases

Hosur, Qi, Roberts and Yoshida, 2015

J. Li, R. Fan, H. Wang, B. Ye, B. Zeng, H. Zhai, X. Peng, J. Du, PRX (2017)

Measurements of OTOC for Ising Chain

J. Li, R. Fan, H. Wang, B. Ye, B. Zeng, H. Zhai, X. Peng, J. Du, PRX (2017)

Multiple Quantum Coherence

$$F(\phi,t) = Tr(\hat{V}e^{i\hat{H}t}\hat{R}(\phi)e^{-i\hat{H}t}\hat{V}e^{i\hat{H}t}\hat{R}^{\dagger}(\phi)e^{-i\hat{H}t})$$

I. Prepare an initial density matrix $\rho_0 = \hat{V}$ II. Evolute the system with Hamiltonian \hat{H} III. Rotate the system by $\hat{R}(\phi)$ IV. Evolute the system with Hamiltonian $-\hat{H}$ V. Measure observable \hat{V}

Multiple Quantum Coherence

Thank You Very Much for Attention !