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d Outline

 The standard procedure to establish Feynman rules/diagrams

» Application 1: Polaron problem — the simplest many-body systems
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» Application 2: Nozieres & Schmitt-Rink theory (pairing instability)
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» Application 3: The BCS theory and GPF theory o

» Application 4: Beyond-GPF (e-expansion theory) \- "

* Any unsolved problems/challenges (FFLO)?
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Feynman diagrams

For every physicist: Brain washed by Feynman
diagram and Feynman path-integral techniques:

* Elegant and powerful to understand the physics: a
simple diagram will give the essential picture!

* We may sum up all the diagrams one day...and
hence solve the many-body problem completely!
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Feynman diagrams versus Fermi-gas
Feynman emulator

K. Van Houcke?*, F. Werner'3, E. Kozik*>, N. Prokof'ev'®, B. Svistunov'®, M. J. H. Ku’,
A. T.Sommer’, L. W. Cheuk’, A. Schirotzek® and M. W. Zwierlein’

Precise understanding of strongly interacting fermions, from  with zero-range interactions at infinite scattering length*®. This
electrons in modern materials to nuclear matter, presents system offers the unique possibility to stringently test our theory
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A few per-cent accuracy for the equation of state of a unitary Fermi gas:
Feynman diagrams vs. Fermi gas quantum emulator (Science 2012)
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Kubo linear response at a glance

Add an external perturbation V to the system described by H:

Equilibrium state l Non-equilibrium state
t t
(4) = Ay 6(A)~ —i6(t — t')([A@®), V(E)])
retarded response functions CR(t — t')
where
(4) = = Tr [pod] = — 3 \(n] Aln)e 5
Z Zy

po=e P =% |n)(n|e "
n
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Fluctuation-dissipation theorem

In the frequency domain, the response function
1 ..

— ImC®(w) is directly measurable. Two very

important examples:

 ARPES/momentum-resolved rf (single-particle)
* Neutron/Bragg scattering (collective modes)
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« f(®)A(k,0)
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JILA, Nature Physics 6, 569 (2010): Pseudo-gap!
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Dynamic structure factor S(k, w)

, molecule resonance freq.
Lo nk? K
© = atom resonance freq.
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Swinburne group (Chris Vale), PRL 101, 250403 (2008).
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Response functions

We are interested in the retarded response function:

CR(t,t") = —i0(t — t){[A®), B(t)]4) (*+ bosons

—: fermions
But, let us consider first the response function:
Cap(t,t") = —(A(®)B(t))

from which we find the retarded function as CR = i0(t — t")(C4p F Cg,4). By definition,
we have

Cis(t, t") = —%Tr[e‘ﬁHA(t)B(t')]

Now, let us specify the time-dependence of the operators, if the Hamiltonian is
H = Hy + V, where V is the interaction Hamiltonian.
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5.1 The Schrodinger picture

The Schrodinger picture is useful when dealing with a time-independent Hamiltonian H,
i.e. O,H = 0. Any other operator A may or may not depend on time. The state vectors
[10(t)) does depend on time, and their time evolution is governed by Schrodinger’s equation.
The time-independence of H leads to a simple formal solution:

ino |0(1)) = Hw@) = |ot)) = e 7 jy,). (5.1)

In the following we will measure the energy in units of frequency, such that A drops out
of the time-evolution equations: ¢ /h — ¢ and H/h — H. At the end of the calculations
one can easily convert frequencies back to energies. With this notation we can summarize
the Schrodinger picture with its states [¢)(¢)) and operators A as:

states : [U(t)) = e tH? Uo)

The Schrodinger picture § operators : A, may or may not depend on time.  (9-2)
H. does not depend on time.

To interpret the operator e =" we recall that a function f(B) of any operator B is defined

by the Taylor expansion of f,

B". (5.3)
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5.2 The Heisenberg picture

The central idea behind the Heisenberg picture is to obtain a representation where all the
time dependence is transferred to the operators, A(t), leaving the state vectors |¢,) time
independent. The Hamiltonian A remains time-independent in the Heisenberg picture.
If the matrix elements of any operator between any two states are identical in the two
representations, then the two representations are fully equivalent. By using Eq. (5.2) we
obtain the identity

WOIAR@) = (Wple AT ) = (WolA®)|wy)- (5.4)

Thus we see that the correspondence between the Heisenberg picture with time-independent
state vectors |¢y), but time-dependent operators A(t), and the Schrédinger picture is given
by the unitary transformation operator exp(iHt),

states: [ug) = e p(n),

H does not depend on time.

In (retarded) response functions, we always assume the
Heisenberg picture for the time-dependence of the operators.
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5.3 The interaction picture

The third and last representation, the interaction picture, is introduced to deal with the
situation where a system described by a time-independent Hamiltonian H,, with known
energy eigenstates |ng), is perturbed by some, possibly time-dependent, interaction V' (¢),

H = Hy+ V(t), with H0|n0> = €n0|no>. (5.7)

The key idea behind the interaction picture is to separate the trivial time evolution due
to Hy from the intricate one due to V(¢). This is obtained by using only Hy, not the full
H, in the unitary transformation Eq. (5.5). As a result, in the interaction picture both
the state vectors [ (¢)) and the operators A(t) depend on time. The defining equations
for the interaction picture are

states : [ (t) = et |y(t)),
The interaction picture operators : A(f) —  ilot g o—iHot (5.8)
Hy does not depend on time.

The interaction picture and the Heisenberg picture coincide when V' = 0; i.e., in the non-
perturbed case. If V(t) is a weak perturbation, then one can think of Eq. (5.8) as a way
to pull out the fast, but trivial, time dependence due to Hy, leaving states that vary only
slowly in time due to V (¢).

Note that: from now on the hat above the operator = means “the interaction picture”
9th— 12t April 2018 WIPM, CAS
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The first hint of the usefulness of the interaction picture comes from calculating the
time derivative of [ (t)) using the definition Eq. (5.8):

@) = (0 ™) o) + M (100 () = e (—Ho+ H)p (1), (5.9)
which by Eq. (5.8) is reduced to

i1 (1)) = V(1) [ (2)). (5.10)

The resulting Schrodinger equation for |fg) (¢)) thus contains explicit reference only to the
interaction part V(T) of the full Hamiltonian H. This means that in the interaction picture
the time evolution of a state |fq; (to)) from time o to ¢ must be given in terms of a unitary
operator U (t, t) which also only depends on V(). U(t, ty) is completely determined by

[ (1)) = Uty to) [& (to)).- (5.11)

which leads to,
i, U(t.tg) = V() Ut to),  Ulto,tg) = 1. (5.13)

By integration of this differential equation we get the integral equation

. | .
Ut tg) =1+ —,f dt' V() U(t. t). (5.14)
tJt

0
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which we can solve iteratively for U(t,#) starting from U(#, o) = 1. The solution is

t1

. | R A | I .
U(i,to) =1+ —,/ dtq V(il) + —2/ dtq V(h)/ dto V(tg) 4+ ... (5.15)
t t i

t 0 t 0 0

Note that in the iteration the ordering of all operators is carefully kept. A more compact
form is obtained by the following rewriting. Consider for example the second order term,
paying special attention to the dummy variables ¢ and to:

t ) t1 )
/dt1 V(tl)/ dto V(t2)
t t

0 0

1 i . t1 ) 1 # X to )
"2 / i Vi) f dty V(t2) + 5 / dtz V (t2) / dty V(1)
i t +

0 0 to 0
1 t t ) ) 1 t t ) .
= —/ dtq / dto V(tl)V(tQ)Q(f,l — tg) + —/ dto / dtq V(tQ)V(ﬁl)Q(iQ — tl)
2 to to 2 to to

1 t t R R ) .
- 5/ dt, /dtg VOV ()0t — ta) + V(t2) V(01)6(t — 1))
to to

1 t t R R
= / ity / dts TV (0)V (£2)], (5.16)
to to

where we have introduced the time ordering operator 7;. Time ordering is easily general-

ized to higher order terms.
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Using the time ordering operator, we obtain the final compact form:

— 1 1 no [t t ) ) Lt O
Ut ty) = § :_ _,) /dtl.../ dt, Tt(V(tl)...V(tn)) :Tt(e Jigt ”“). (5.18)
— n!\i to to

A graphical sketch of the contents of the formula is given in Fig. 5.1.

L N I *{ t
A Vits)
A .
. XKV (t2)
Ult,to) = & + + | + o+
) V{t2)
Vi{t1) ) )
’;V(tl) Vit1)
. t[) t[] t[) t[]

Figure 5.1: The time evolution operator U (t,t9) can be viewed as the sum of additional
phase factors due to V on top of the trivial phase factors arising from Hy. The sum
contains contributions from processes with 0,1, 2,3, ... scattering events V which happen
during the evolution from time #y to time t.
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The interaction picture

In a brief summary, we have a unitary operator,

For the states,
[B(D)] = et [p(t)]s = eHote~HE[y(0)],,
For the operators,

|A(0)] 1

= U(t,0)[A)]xU(0, 1)

or, [A(D)]y = U0, 0)|A®)] U(t,0)

9th— 12t April 2018 WIPM, CAS
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Recall that in the Heisenberg picture, the response function is

Cap(t,t') = — %Tr[e‘ﬁHA(t)B(t’)]

In the interaction picture, it takes the form,

Cig(t,t) = — % Tr|e PHU (0, )A()U(t, t)B()U(t',0) ]

In Eq. (5.18) we saw also how a single U operator could be expanded as a time-ordered
exponential. This would in Eq. (10.4) result in three time-ordered exponentials, which
could be collected into a single time-ordered exponential. But the trouble arises for the
density matrix e ?# | which should also be expanded in powers of the interaction. To
make a long story short: this is a mess and a new idea is therefore needed. The solution
to this problem is to use imaginary times instead of real times, but bare in mind that this
is purely a mathematical trick without physical contents.

t > —it

9th— 12t April 2018 WIPM, CAS
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Thus, similar to the interaction picture defined for real times, we can define the
interaction picture for imaginary times as,

[A(T)]I = eloT[A]geHoT
And, the time-evolution operator U in the interaction picture is,
Ulr,7') = eTHoe=(r—m")H g —7'Ho, (10.9)
From this it follows directly that
Ulr,7"\U(r",7") = U(r, ). (10.10)
An explicit expression for U (7, 7’) is found in analogy with the derivation of Eq. (5.18).
First we differentiate Eq. (10.9) with respect to 7 and find
O.U(r,7) = e (Hy — Hye=T—H=m"Ho — _y/ (1)U (1, 7). (10.11)

This is analogous to Eq. (5.13) and the boundary condition, U (r,7) = 1, is of course the
same. Now the same iterative procedure is applied and we end with

o0

07 =3 v [ [an T (V) V)
= T.exp (— [ dﬂ”fﬁﬂ) . (10.12)

The time ordering is again the same as defined in Sec. 5.3, i.e. the operators are ordered

such that T (A(7)B(7')) is equal to A(7)B(7’) for 7 > 7/ and B(7')A(7) when 7/ > 7.
9th— 12t April 2018 WIPM, CAS



Temperature response functions/Green functions

On the other hand, we may write the density matrix operator (check by yourself),
o~ B 15
e BH = o=FHo [J(B,0) = e FPHoT, [e=Jo ar'v(z)]
Let us now define temperature/thermal/Matsubara response function,

1
Cap(7,7) = (T [A@BE)]) = -~ Trle PHTA(1)B(x")]
Thus, we find that,

Cup(z,T') = —%Tr[e‘ﬁHOU(ﬁ, 0)T{U0, DA U(zr,7)BE)NUE',0)}

_ Trle=FHor{0(5,0A@B(")}]
Tr[e-FHoT(B,0)]

(TA{T (B, 0A@DB(EH}),
(UB,0)),

where we have used Z = Tr [e ¥ = Tr {6'8HUU(_B: O)J, and where the averages (---)g

depending on e~ 7Ho appear after normalizing with 1/Zy = 1/Tr [G_SHD].
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Temperature response functions/Green functions

Temperature/thermal/Matsubara Green functions,

Cap(1,7") = (T [A(0)B(7')])
= —0(t =7 ){A(1)B(7")) + 6(z" — T)(B(7")A(7))

What values can the imaginary time T have?

First, CAB(TI T’) — CAB(T - T,) .
Proof: Let us consider the case T > T’

B _71T1" T HTH g TH T H g
N _71T1" e BH (r—)H go—(r—)H p
= Cap(Tr — 1),

and of course, likewise for the case T < T’ (check!). Therefore, we may set " = 0.
9th— 12th April 2018 WIPM, CAS



Temperature response functions/Green functions

Temperature/thermal/Matsubara Green functions,

Cap(1,7") = (T [A(0)B(7')])
= —0(t =7 ){A(1)B(7")) + 6(z" — T)(B(7")A(7))

What values can the imaginary time T have?

Second, Cyp(t) = +C45(T + B) . “+” for bosons and “-” for fermions
Proof: Let us consider the case T < 0 (similar proof for T > 0 (check by yourself)):

Cap(T + 1) = 7T1" :e_-"BH e(TTAH ge—(r+AH p
= _71T1“ :6THA6_FH€_-BHB:
— %ITI :e_-BHBeTHAe_TH:
- —71'[1" M BA()]
=+ Tr [ P7T; (A(7)B)]
= +Cap(7),

9th— 12t April 2018 WIPM, CAS



gl Temperature response functions/Green functions

Let us consider the Fourier transform of Matsubara Green functions,

Recall that, C45(t ) = +C4 (T + B). “+” for bosons and “—” for fermions

Note that the length scale along the imaginary time i1s f = 1/(kzT), we have,

and

p
Cap (i) = ] d(z — e nT) ¢ — ')
0

The periodic/anti-periodic boundary condition for bosons and fermions leads to,

iwn P :{+1 and (). — Znﬂ'kBT for bosons
—1 " (2n+ 1)7TkBT for fermions

9th— 12t April 2018 WIPM, CAS



: Analytic continuation in the frequency domain

Let us consider now the relation between the retarded response functions (real
time) and the temperature response functions (imaginary time), 1.e.,

CR(t,t") = —if(t — t")AW)B(t") ¥+ B(tHA(t))

versus

Cap(T,7") = =08(r — ')(A(D)B(7")) + 6(7" — 1)(B(r")A(7))

First, consider the temperature response functions at 7 > 0,

1 I )
Cap(t) = —="Ir [edHe’HAe HB}

9th— 12t April 2018 WIPM, CAS
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And hence

& 1
Cap(i, :/ dretn™— 3 =P (n|Aln') (' [ B n) e EomE),
AB(iw) i Te 7 e <n| |n><n | ]n)

nn'

5 o A B (b,
] [ - ’éu)n L 1) "
YA Z ¢ Z'wn + En, _ En’ ‘ - |

nn'

1 g, (ALY (W 1BIn) (st
~ e i +E, — B, (:I:e — 1)

L) Gl 1BIn) (g (4ot

’iw‘n -+ En — Enr

For the retarded functions, in the frequency domain, we obtain (check by yourself),

(n|A|n") (0" |Bln) /1 55 _3E
o E (7750 — ()e 7w )
=72 T By i\ (H)e

'RTI

This means once we find C,5(iw,,), we obtain C®(w) by analytic continuation:

CR(w) = Cyp(iw, = w +i07),
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(n|A|ln")y (n"|Bln) 1 _sp 8B
If we define, Cap(2) :ZZ o (e n—(4+)e n)

nn'

Im z

=z

Wy, — w+in
N(iwn) — Gf(w)

- Re 2

Figure 10.1: The analytic continuation procedure in the complex z-plane where the Mat-
subara function defined for z = iw,, goes to the retarded Green’s functions
defined infinitesimally close to real axis.

CR(w) = Cpp(iw,, » w +i07),
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il A brief summary so far

To find the retarded response functions, we may calculate first the temperature response
function in the interaction picture and then take the analytic continuation, i.e.,

Step 1:
- A{R{UB,0A@BE)}),
CAB(TJT)__ <l7(,8,0) )O
where,

2 (=1 (B B
0(3,0) = Lo~ 1 7@ = Y S [Cany - [ ann [0 - 9l
n=0

Step 2:

CR(w) = Cpg(iw,, » w +i07),
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Non-interacting temperature Green functions

Let us now consider the temperature Green function:

G(xot,x'c't")

|l
|
——
=

W, (6, W, (', 7))
G(kot, k'c't') = — <TT :‘Pa(k, T)LPUrT(k’,T’ )])

or in a general {v} representation:

Gvr,v't!) = — <TT [cv(r)cvﬁr(r')n

9th— 12t April 2018 WIPM, CAS
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The non-interacting temperature Green function in {v = ko} is to easy to calculate.
The non-interacting Hamiltonian is diagonal in the v} quantum numbers.

HO — Z gzzcicf/ﬂ
v

so that check by yourself!

Elr) e e e T g G cl (1) = eTHocl emmHo — fvT T

v i

which gives

Golv, 7 —7') = — <TT (CV(T)CI,(T'))>
= —0(r — 7){c, (7)) (7)) = (£) O(r" = 7){cl(7))e, (7))
= = [0(r = ) e, by @)0( = 7){ehe,)] e,
For fermions this is
Go.p(v,7 = 7)== [0(r = )(1 = np(&,)) = 0(7' = T)np(§,)] e &)

while the bosonic free particle Green’s function reads

Go.p(v,m—7') = = [6(r =) (1 + (&) + 67" = T)np(§,)] e,
9th— 12t April 2018 WIPM, CAS
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In the frequency representation, the fermionic Green’s function is

I6]
Go.r (v, ik,) = ] dT eik”Tgoﬁp(V,T), kn=02n+1)x/0
0

3

(1 =np(g) [ dretreer,
0
1 .

(1 —n- ( iknB _—Eu3 1) ‘

( n’F (gl/)) Z‘kn - fl/ € € ?
B 1
B %kn - 51}7

because e*? = —1 and 1 — n,.(¢) = (e77° + 1)_1, while the bosonic one becomes

5
gO,B(‘U; /an) - / dr ezqn’rgo:B(V% T)! n = 27?’71-//3
0

A
(14 np(§) | drenreer,
0
1 ,
=~ (1+np(&)) ——— (e Pe 7 = 1),
dn — gu
1

N éqﬂn_gyg

because €'’ =1 and 1+ npg(e) = — (e 7 — 1)71.
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To calculate Feynman diagrams, we often encounter different summation over
the bosonic or fermionic Matsubara frequency. Let us define,

S, = _kBTZi@ g(io e
Sy =+k;TY  h(iv,)e™"

To evaluate these, the trick is to rewrite them as integrals over a complex variable and
to use residue theory. For this we need two functions, n(z), which have poles at z = ik,

and z = 1w, respectively. These functions turn out to be the well known Fermi and Bose
distribution functions

1
np(z) = — ., poles for z =1(2n+ 1)7/j3,
e’ +1
1
np(z) = — T poles for z = i(2n)xw /3.
ebBz
The residues at these values are
Res nr()l = I e = w1 —
. (z—dwy) J 1
Res = 1 - =1 — - = f—.
z:ies)n [T?’B(Z)] Zi?;ﬂ 6-“32 _ 1 51_1% eﬁu,un 6;_5’5 _ 1 +3
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To calculate Feynman diagrams, we often encounter different summation over
the bosonic or fermionic Matsubara frequency. Let us consider first the
fermionic case. For any function g(x),

+00 d(D

B Img(iwm — ®+i0"). (fermionic)

=Y, )7 == j

This is because the left side of equation can be written
as a contour integral over C (see the left graph):

. +io, 07 1
\ Yk TY, glio,) ™ = §Ce

Due to the convergence factor, the integral at two half
circles vanishes. The contribution near the real axis
gives the right hand side of the equation (fermionic).

9th— 12t April 2018 WIPM, CAS



Evaluation of Matsubara sums

Consider the fermionic Green function,

G(ka; 07 ) = —(T;[Ws(k, 07)W, T (K, 0)]) = nyo

Nge = kgT z G(ko;iw,,)e @m0
m=—co

By taking the summation, we have,

ne, =

o dm ( 1
R e |

——jImG(kO' ®+i0") = j A(kG o).

TU “+1

This single-particle spectral function A(k, ) is experimentally measurable!

For a non-interacting Fermi system: A(O) (kCT ; (D) = 5((0 — ika)

For an interacting Fermi system: collective behaviour

single-particle

9th— 12t April 2018 WIPM, CAS
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Question 1: Consider the Matsubara summation,

(0) N eTen””
ng "’ = kgT z . = Np(Sk)
- lWm — fk
m=—oo
Answer: Let us consider ,
1 ew0”
fﬁ ePw+1 w-§;

and the contour C in the right plot

Question 2: What is the result of,  Remark: We don’t need the convergence factor if

+la)m0_ 1
A=k,T z B = k,T z
g m — Sk ? Sk lWm — $p

m=-—0o m=—oo
9th— 12t April 2018 WIPM, CAS
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Let us consider next the bosonic case. For any function A(x),

. . 1 —+00 .

This is because the left side of equation can be written
as a contour integral over C (see again the left graph):

1 ®0"

. +iv, 0" €
kBTZivn h(lvn)e "’ = 21ti §C eﬁw _lh(m)

Due to the convergence factor, the integral at two half
circles vanishes. The contribution near the real axis
gives the right hand side of equation (bosonic).
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Evaluation of Matsubara sums

No worries if you don’t remember the details, simply search wiki,
https://en.wikipedia.org/wiki/Matsubara frequency:

Distribution Function

Bosons
Galr=07) = L g+ 1)
B iwn — &
Fermions
Grr=0) =13 e
B ot wm — &
Gr(r=07) =23 )
B 2 iwm — €
Free Energy
Bosons
S In(B(iwn + ) = 5 In(1 - ),
B B
Fermions

—% Zln(ﬁ(—iwm +€) = —% In(1 + e 7).

9th— 12t April 2018

Diagrams Evaluation [ edit]

Frequently encountered diagrams are evaluated here with the single mode setting.

Fermion Self Energy |[edit]

1 1 1 nr(€) — nr(S2)
Y(iwm) = —— - - = _
(twm) ﬂ%zwm—mwn—eiwn—ﬂ Wy, — €+ £

Particle-Hole Bubble [edit]

1 1 1
M(iw,) = —
(ieon) 3 %} i +

Wy — € Wy, — €

B _np(e) —ng (€')
o iw, —e+¢€

Particle-Particle Bubble [edit]

M(iw,) = —lz - !

_ 1-—np(e) —nr(€)
B iwp + Wy — € —iwy, — € - ] ’
m

iw, —€—¢€

WIPM, CAS



OPTICAL SCIENCE WiCk theorem

We now consider the final technical issue, the calculation of
<7;(A1A2A3A4 e 'Azn—lAzn )>0

where all the field operators are defined in the interaction picture.

The Wick theorem states that in the interaction picture with H,

For example (for a normal Fermi gas):

——

——

\
(Tl o () (T Oy O~ (Flee (i O], (Tl O ),

J

l_'_l
|
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Why this happens?

7Ho ., —7H —EuT
(1) Recall, for example, ¢, (7) = "¢ e 770 = e % 7¢,

<Tf(cl(rl)cz(fz)c; (7;)c, (74))>0 = <Tf(e_§m cie e e et )>0

We may pull out all the time-dependent factors and consider only the average such as,

+ 4
(2) The Wick theorem is clearly valid for these averages.

(3) We then send back the time-dependent factors to the factorised product.

Reminder: Wick theorem holds only for the product under thermal average ( ),
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We are ready to draw Feynman diagrams!

We aim to calculate the Green functions,

(TT{I/J\(,B, 0O)P(x, 0)PT(x, T’)})O
(UB,0)),

(=D"

G(xt,xT') = —

where,

0(3,0) = T.Le~ o 47'7(z)] = 2

Step 1: We represent each term in the perturbatlve expansion using a Feynman diagram.

de1 denT [V(z1) -+ P (zn)]

Step 2: We then use Wick theorem to decouple each term as a product of Green functions.
By performing the Fourier transform, we obtain the expression in terms of,

1
Go (K, iwy) =

— Sk

Step 3: We may sum some sorts of geometric dlagrams as a series and take the Matsubara
frequency summation, either numerically or analytically.

Step 4: We finally take the analytic continuation to obtain the desired retarded response
function or spectral function.
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Hamiltonian

Our starting Hamiltonian is (for a two-component Fermi gas)
Y

2m
Hi,, = U, [ dxdxyi (0w} (x)3(x =X )y, (X )y (%)

In momentum space, the Hamiltonian takes the form,

Hy = [dx) oy () ————p |y, (%)

'k’
+ +
H,= cha —H |G = chaé:kcka
ko m ko
. + +
Hint o (]O CkTCq—kaCq—k'»LC 7T
ql(k'

Definition: p - chemical potential (grand-canonical ensemble), U, — interaction strength
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In the absence of the inter-particle interactions, we have perfect Fermi sea at T=0K:

FERMIONS I

Fermi Surface 1

F->

What will happen if we switch on the repulsive interactions (normal state)?

nik)a Ak, ®)
l

k
=
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PRL 118, 123401 (2017) PHYSICAL REVIEW LETTERS 24 MARCH 2017

S

Homogeneous Atomic Fermi Gases

Biswaroop Mukherjee,l Zhenjie Yan,l Parth B. Patel,1 Zoran Hadzibabic,l’2 Tarik Yefsah,l’3

Julian S‘[ruck,l and Martin W. Zwierlein'
'MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics,
and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
*Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 OHE, United Kingdom
SLaboratoire Kastler Brossel, CNRS, ENS-PSL Research University, UPMC-Sorbonne Universités
and College de France, Paris 75005, France
(Received 31 October 2016; published 23 March 2017)

We report on the creation of homogeneous Fermi gases of ultracold atoms in a uniform potential. In the
momentum distribution of a spin-polarized gas, we observe the emergence of the Fermi surface and the
saturated occupation of one particle per momentum state: the striking consequence of Pauli blocking in
momentum space for a degenerate gas. Cooling a spin-balanced Fermi gas at unitarity, we create
homogeneous superfluids and observe spatially uniform pair condensates. For thermodynamic measure-

7=0.49T 7=0.32T¢ 7=0.16Ty
1 (b) . (©) t

(d)

o o5 1 15 0 05 1 15 0 05 1 15 2
- k/ ke k/ke k/ke
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PRL 2018 (Editors’ Suggestion)

Two-Dimensional Homogeneous Fermi Gases

Klaus Hueck[*| Niclas Luick, Lennart Sobirey, Jonas Siegl, Thomas Lompe, and Henning Moritz
Institut fur Laserphysik, Uniwersitat Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany.
(Dated: April 24, 2017)

We report on the experimental realization of homogeneous two-dimensional (2D) Fermi gases
trapped in a box potential. In contrast to harmonically trapped gases, these homogeneous 2D
systems are ideally suited to probe local as well as non-local properties of strongly interacting many-
body systems. As a first measurement, we use a local probe to extract the equation of state (KOS)
of a non-interacting Fermi gas. We then perform matter wave focusing to extract its momentum
distribution and directly observe Pauli blocking in a near unity occupation of momentum states.
Finally, we measure the momentum distribution of homogeneous 2D Fermi gases in the crossover
between weakly-bound fermionic pairs and deeply-bound bosonic molecules and observe a dramatic
increase in the occupation of low momentum states with increasing attractive interactions.

A non-interacting Fermi gas 7=0.317, A strongly attractively interacting Fermi gas
5 E T ' ' ' - ' —3 4 1 400 =
1) ! o : f) ! (1)
= ' et e e S 2 { 200
= 05} e A} )
y u l%-
0 fooaggzsent® | | | , | oy o U 10
-3 -2 1 0 1 2 3 -4 -2 0 -2 0 2
k [pm] k [pm ! k [pm !

We may explain the observation by using

1 |
9th— 12t April 2018 Feynman diagrams! WIPM, CAS



Perturbative expansion of GF

Let us check the expansion of the Green function,
77 (D G Trur 1
(r {005, 0) 16,09 @, 1))

Gr(xT,x1") = — 0

with,

n

_ o (—Dn (P p _ _
0G6,0) = Y o= [ drs [ dmaT B e2) = i )
n=0

Consider first the numerator. The n=0 contribution is trivial, simply gives G,. The n=1
contribution from the numerator is,

a (_11!)1 Joﬂdn <Tr {LTJT(x, O Hine (1) Py (¥, T,)}>

(=D (” :
— 11 j dTl j dxldxl
: 0

(1) G T ~ T / INTTI ! (1) (1) T I/
(1 81000, G 1)@, et 1) U (s NP (7)1 (e, 7008 20},

or 0
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Perturbative expansion of GF in real space

Let us introduce the short-hand notations and rewrite the interaction,

x=(X,7),
x'=(x',7'), Ugx,=x',)= _[df'ona(x1 —-X')o(7,—7'))
xl = (X19T1)9

x'l - (X'l 37'1 )9

Then, the first-order contribution is,

([ et U, =2 (T W w6 w, ) ()i () )
By using Wick theorem, we may obtain for { ), (b GO(x',,x',+07)
(a) (_)G%O) (xax')G%O) (X}, %, +O_)Gi0) (x',x',+07) : o
Q G%O)(xl,x1 +07)
(b) (+)G§0) (x, X, )G%O) (x;,x' )Gio) (x',,x"\+07)

@Gi%xu,xwm

0

) : U 0)(r
Gy (x,x,) APy Gy (x,x")
| |
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il Perturbative expansion of GF in real space

A few observations:

LS l
(HWe use  ——> o reprogrt G AL

A
> X0 nz[;msw{' %lh-t(ﬁél,%f)

(2). The affh‘cafm of WicR theerom coerSFMc‘S 2o connect the Cines dq;fym uom}\s.

3) There &S disconmnatted olr‘aamm. Soe., (&),

w

(&), About the i r)“ (0 afFCgmg Ul/cc{é theorem ; ff thee & a Fm; &w?’ add (—)
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|l Perturbative expansion of GF in real space

On the d\bCorJMC{QD! d@%ms:

(..) Sabd, (770{1[/ (%) ){mw{! xl)}fmf(x’ xz) %wf i % Mmfx”x"%p‘“ )_]')

T—F 5:19 not conneck X0 other fu('l’SJ we crerte o diseomnected d&?rm !
This meang;
All
<A" Olbmam’n‘s Cbnno.cte X < %CF O)>
OR - A Y P a5 7 Al \\\
A
< .7,{[/3 ’ O)>o oka.ammg)
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ot wo check the second —ocoler conteibytdon .

! TPy ? i t s 2val) + . y
(—2:9< Tc{’L‘l)Tcsc)%m)%uﬁ) Y4 )ﬂ%od;) .%?m%xgmcxz)wla,cm) ”d)Tcx )_}>o Uy X=X )UK %,

i.Fuue consioler an@Y connected oh‘aarams:

’ Q
%7 %

) 0) (0) )
(@) 4 Q;}x,x,)g‘,ch,,zm)GTCXz,x’) G‘[,cx,’x,’)@,&cx{,xi) ! ;
| |
OL o x‘ > xz rd d.,
: ®)
(-] (0) 9
() ) ) ” ) ? ’
(). = GuULXDERCNN)EY (X)) GLH %G e %) Q:D,«;
S S S
4 X T
() Q
X2
) ©) ke () ’ 9
) g G;F(x)x,JGT(xl,x’) Q‘?cx-;,)éz)é{ycx,{x;)% 06,¥) O"
:Y‘I,
a7 X g a?
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CENTRE FOR

(0) ) (0) y, 19 ) 2 9
(d‘) GTCXJ X2) Gf(xz,xl) G,rcxvx ) GJ/(XZ” x'z: )G_y)(xlix; ) I ¥z [ %Y
| z
R SR N
A ¥ "(1 (A4
(0) (9) (0) (6) 9 3 10) (e) %
(©) —  GplXX2)Gy X% G XX Gy X )G, X ) A P
-362: | I
[ [
x, - Y 7 'llfi ¥ 4?
N ) (0) ('S') l![‘a-
\2 (0) ) ° o >.,9 9) o9 3 H
) =t G,rCX,Xz)GTch,x)Cfarwl,%:)GJ,ch %G, (%, %) ‘
£
. . ! | o i' .
(5) ottt prefitoe{z) o0 e cancosd 1 T
WIPM, CAS
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,)m,oﬂ;@g-rgv,%e e () in)
[eOm .
{- -—JQ'Y’ (WmT
fe T wom) = §o!¢ fod g e f%0)

st .
IT we, vtroduce four- a:mfomvfr vatoc QE(Z’{\ iWm) | 2= X, <), al a[-Qme.

bt =7 X —iwmT, 5_‘, @{ngg; folst = dcfotx:!

(m

Hhon, We mcu{ WOt Ahe Four&r Rrongfar‘m:
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dof ’/m' \
pete” me
"-.
¢ g
) 2 > ol
Achx—x)__ \ : = O [ oty o0k
_ Y : : 2 : ©) ,)

: 1 QTEX M,)G{T(xlv-d'@@ (Xg,X )Q,¢CM[,X3)Q "':z,xl’)”'fr
Uyt =X U0 ota.)

and Cet ws take fourec ¥sowfowm, o f——;————*—-
ﬁ ffo T’ij(j?l’ Lf K,-;K,_,j Lu %4 Q 4[% ';
\2) -—-!é()C—'
@f&) f OWQ E)-) c—)u - (A d)y - Gfdrxz)arcx:—x?,)a,tcxz—x & ch,_x-,,)e&cxz—xl)
il
10) iﬁ;(‘( %) (o) f{!’p—ﬂl) o ‘fgcxi'"x')
L < fioe :Eéffﬁ)e i };Ml}ﬁ
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il Perturbative expansion of GF in momentum space

To demonstrate the momentum conservation:

D LX) ) 'tﬁw“’k’;
E:«(;%)a ; %"’# fade
2) —f’%()(—x,
ﬂ@trf &) YOWQ f"‘D C")U fd)([dxa chx]—xl>%1xl_x'b)@¢fx2—x )G.L CX'}—-){L) G& C)(Z—'x[ )
Y
0) Jﬂ(i —X1) CF (Y X (o X ~)¢)
32aefoe Sallpre B _z:%’fﬂ)f ”
fs
?
. - - A%
= E—JE“)LL'Z-G#(P. )& cg)é ﬁ3§btﬁ>t§y5f€> X (s dyy v
Fifs

5 N\ i 7\
—iket—¥y i _ﬂc%—k’a) AT RACAS SR L ) e (> )
€ 2 e 2 e L

Gt ws collect Xy, %), ; o the folxldm E’mds X fwo 5—f4aotﬁms:

Prtba—Ps=fi=0 | k=X ipx iy e
SN A ML (I

/

.t ore YN0 o depunolit momontum, SQT P2 and fo then: Pr= p 4+,
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QUANTUM AND . ° °
il Perturbative expansion of GF in momentum space

The final result:

S — cod@rmalmf momontum, sz, P2 amd fo thon: Pr= f+p,—

/

o the resalt :
) (o)
s ky= T 2[@,5@] Gt PG Pt fate)
- A p q
Ac{’u.a.ml, ot 0 p+9—Rk,
]| i 12/
AL p L £

(POUkT? Y | j dp__dq [Go(k i0,)[ GA(p.io,)G(q.iv, )G (p+q—k,io, +io, —iv,)

i, ,i0, (
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Perturbative expansion of GF in momentum space

Alternatively

k| P ik

(VO (ks T) X [ (2‘1733 (533 Gk iw,) [ Gop.iw, )GUQ—p,iv, —iw, )G (Q—K, v, —iw,)

W, Wy: fermionic Matsubara frequency
V,,: bosonic Matsubara frequency
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Let assume the interaction terms: /7, =U(',J.cbcx|1$ W (xXN(x—x" )Wy, (X )y (x), where x=(r, 7).

Green functions (GF):

G” (x,x")

: + : . + - + .Inﬁnlte'
:Uo Up: : U - diagrams!

FFT to k-space, using the following Feynman rules to calculate the Green function:

» With each thin line, associate it with an ideal GF: G (k,in,)=1/[iw, —(g,. —W)];
e With n-interaction lines and /' Fermi loops, add a prefactor (—1)"*/;

* Integrate and sum over independent internal k and 1®,,, using ZEkBTZJak/(%ﬁ
k

o,

Why this? All (diagrams) — connected — different connected!

Recall G(x,x")=—-<Tyx)y (xHU(B)>,, WhereU(B)=T. exp{- IOB H, (1)dt}.

con
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i Perturbative expansion of Q

Let us now consider the thermodynamic potential (u, T). Once we know it,
we may work out the equation of state of the system. According to its
fundamental definition,

. . - . —BHo G (B,0
e~ BH e 'BHOU(ﬁ, 1) e —BHo 5 e-ﬁ[—[(oﬁ )
We thus have,
Q= Qo —kgTIn(U(B,0)),
where,

o (D"
n!

0(8,0) = fo dt - fo AT [ (2) -+ Bt (0]

n=0
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i Perturbative expansion of Q

Let us now consider the thermodynamic potential (u, T). Once we know it,
we may work out the equation of state of the system. According to its
fundamental definition,

. . - . —BHo G (B,0
e~ BH e 'BHOU(ﬁ, 1) e —BHo 5 e-ﬁ[—[(oﬁ )
We thus have,
Q= Qo — kpTIn(U(B,0)),
where,

o (D"
n!

0(8,0) = fo dt - fo AT [ (2) -+ Bt (0]

n=0

But, how to handle the “In””? We don’t need to consider “In”, if we keep only
connected diagrams!
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i Perturbative expansion of Q

Let us now consider the thermodynamic potential (u, T). Once we know it,
we may work out the equation of state of the system. According to its
fundamental definition,

. . - . —BHo G (B,0
e~ BH e 'BHOU(ﬁ, 1) e —BHo 5 e-ﬁ[—[(oﬁ )
We thus have,
Q= Qo — kpTIn(U(B,0)),
where,

o (D"
n!

0(8,0) = fo dt - fo AT [ (2) -+ Bt (0]

n=0

But, how to handle the “In””? We don’t need to consider “In”, if we keep only
connected diagrams!
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i Perturbative expansion of Q

The basic idea is for a n-th order diagrams,

(- 1)"

del JdTnT [Hmt(Tl) Hlnt(Tn)]

it can be written as (n = my + m, + --- + my,),

Any n-th order m,-th order m,-th order

diagram connected connected
diagram diagram

Mathematically, the right-hand side has the structure of the expansion of the
function e*1+ " **K)1 Here, l(ﬁ(ﬁ, 0)) ] =1+x;+-+.

connected
Thus, it is clear,

(1 =Qy —kpT [<ﬁ('g’ O)>0 - ]connected
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Tutorial: Perturbative expansion of Q in real space

Let us consider the second-order contribution to £,
1 { { ' '
(kT 5 _” dx,dx 1_” dxydx' U o X, = X' U o %, = X', ) %
(T AW o)W (v () w Go)w Gea )W (e v (s D () ).
By using Wick theorem, we may obtain one connected diagram,

1>
(=T 70 _” dxldsz%O) (X, %, )G%O) (x,,%, )GEO) (X, X, )GiO) (X,,X,)
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(kT Y j j j dQ dk dp L GQ-k,iv, —i®, )G (Q—p,iv, —i®, )G (k,i®, )G (p,io,)

100, 1V, )
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Perturbative expansion of Q

It 1s readily to see that, the rules for & should be slightly modified:

Q=0 — kT [(U(B,0)), — 1]

connected

(1) Because the “—” before kgT in the above equation, we have an additional “—”

(2) In connecting the different terms in T; [ﬁ ing (T1) *+* Hipy (Tn)], because we don’t
have external field operators, the prefactor 1/(n!) cannot be fully compensated. Each
topologically differently connected diagram has (n-1)! possibility, leading to a
remaining factor 1/n. Therefore, summation of different diagrams for the
thermodynamic potential is more difficult than for the single-particle Green function.

(3) In performing Fourier transform to momentum space, the absence of the external
field operators leads to additional integration over the center-of-mass coordinate and
hence a volume factor V (this is reasonable, since the thermodynamic potential is an
extensive quantity.

9th— 12t April 2018 WIPM, CAS



SWIN  _
B U R QUANTUM AND
OPTICAL SCIENCE

N Perturbative expansion of Q in momentum space

Let assume the interaction terms: /7, =U(',J.dxx|1$ W (xXN(x—x" )Wy, (X )y (x), where x=(r, 7).

Thermodynamic potential AQ=Q—Q"):

Infinite
diagrams!

@GS)) (.X, X' )

FFT to k-space, we have additional Feynman rules for the thermodynamic potential:

 With n-interaction lines and F Fermi loops, add a prefactor (—1)"**1;
* With n-interaction lines, add a prefactor 1/x;

* Additional integral over the centre-of-mass, leading to a factor of volume () to AQ.

Why this? All (diagrams) — connected — different connected !

Recall Q=" —k,Tn<U(8)> Where U(8)=T,exp{-[ H, (1)dx}.
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+NE » Tutorial: Perturbative expansion of Q in momentum space

In momentum space, please write down the expression for

(+)V —= kTZJ-dQ kTZ J.—GOQ k,iv, —i0,)G)(k,io,)
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&l Ideal gas thermodynamic potential

But, still, there is a minor problem: what is the thermodynamic potential
Qo (pu, T) of an ideal Fermi or Bose gas?

Q)
We may use the thermodynamic relation, — 6_ = n
au
Recall that,
lwm0+ wnO+
©) = np(&ke) = kT Z ) = np(&) = —kpT z
S;ka - vy —
m=—oo n=—oo
(fermions) (bosons)

We may have,

Qoo = —kgT Z In[—(iwm — &) €m®" Qg = +kpT Z In[—(iv, — &)] e?Vn0”

m=—oo n=—oo

Or
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SR 1deal gas thermodynamic potential

For bosons, we now have,

where,

Go ™ (K, ivp) = (ivy, — &)

What will happen if &, < 0 ?

Bose-Einstein condensation!

9th— 12t April 2018 WIPM, CAS



SWIN = _
B U R QUANTUM AND
OPTICAL SCIENCE

N A brief summary

1. Feynman rules for the Green function (or any response functions!!!):

e With each thin line, associate it with an ideal GF: G (k,iw,)=1/[in, —(g. —W)];
» With n-interaction lines and /' Fermi loops, add a prefactor (—1)"*/;

* Integrate and sum over independent internal k and i®,, using > =k, 7> j dk /(2n)’ .
k

103,

2. Feynman rules for the thermodynamic potential (additional):

» With n-interaction lines and /' Fermi loops, add a prefactor (—1)"*/*1;
* With n-interaction lines, add a prefactor 1/x;

* Additional integral over the centre-of-mass, leading to a factor of volume (V) to AQ.

3. You may build new Feynman rules for a new Hamiltonian (system) in a few minutes!
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*NE * Dyson equation

Let us think more about the diagrams: (1) How to simplify diagrams? (i1) How can we
find the most important diagrams, or a series of important diagrams and sum them
up?

We already consider disconnected diagrams, which can be taken into account if we
account for the connected diagram only!

Any similar considerations? Yes, we have, for the one-particle reducible diagrams!

one-particle reducible diagram one-particle irreducible diagram

May we consider the one-particle irreducible diagrams only? Yes, you can!
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*NE * Dyson equation

In all the diagrams (i.e., for the Green function), we may replace all the non-
interacting Green functions by the (unknown) exact Green function, except one non-
interacting Green function!

Let us consider, for example,

This one should be always \ / Bold line: unknown exact GF

non-interacting :

This diagram actually already includes,
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+NE * Dyson equation

Therefore the diagrams for the Green function can be represented by,

Gio)(x xv)
O Q Infinite
— + + - +
GT 'Uo T diagrams!
T T L] L] u
G%O)(x,x)

Thus, we may rewrite GT = G? + G%)ZG , where the self-energy . is
diagrammatically given by,

2 = : : Infinite
5 .—r —

diagrams!
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*NE * Dyson equation

We thus have the well-known Dyson equation:

G l=G, - X

A few diagrams for the self-energy are:

Y = : + : : + O + Infinite
; . » u n »

diagrams!

Then, how about the two-particle irreducible diagrams?

9th— 12t April 2018 WIPM, CAS



Renormalization of the contact interaction

Why we use contact interactions? /., =U, J- Ay O] ()OS —x )y, (X )y (x)?

van der Waals attraction regime

Optimum en

For ultra-low temperature dilute gas, we may use any interaction potentials
(including contact interaction!), provided that they give the same s-wave
scattering length. However, the contact interaction is physical only when the
momentum 4t < A=I1/r*, where r* is the effective range of interactions. This
requires re-normalization...

9th— 12t April 2018 WIPM, CAS



What we have learned about scattering

We can define an effective scattering potential,

Vyp =V +VeghV +Vghgh+---

At the low energy, the scattering amplitude is given by,

fO.9) == [V, (rydr

We then consider the different partial-wave amplitude, 1.e.,

f= i(ﬂf + 1) fe Py (cos @)

f=0

9th— 12t April 2018
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Here, let us consider the vertex function (7-matrix),

%
_§

]

.
+
S
i
+
+

]
.
+
‘ oq

T” @=U, ﬁ:x(fﬁ

In more detail (§,=¢,—1 and f(x) 1s the Fermi distribution functlon) ‘..

Sy | Zf(éi)-r—f@qk)l

1
F() U . o L0, —& ] [iv, —i®, =&, ] U m oA O 0,
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“NE * Renormalization of the contact interaction

Here, let us consider the vertex function (7-matrix),

]

.
+
S
i
+

%
i B

]
.
+
‘ Oq

versus

V,.=V+Vgl+Vghgh +---

eff

If we identify V' =U, and g =—%(q)

9th— 12t April 2018
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In our case, we consider s-wave interaction only. What is the relation between the vertex
function and the scattering amplitude?

The vertex function in vacuum (two-body) gives the scattering amplitude !!!

e T Tg= 0. =J, m4ma

Here, the vacuum (two-body) means (there is no Fermi sea or u=0):

Z_j

F(q)vac UO v, =& —

One may immediately find that (re-normalization),

m 1 m
2~ +Z 2.2
dira U, TIK
Recall the momentum k& should be smaller than 1/7*. However, this scale is very large and can
be sent to infinitely large. This implies the bare interaction U, is infinitely small!
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More physics with the vertex function in vacuum (two-body)?

1 _1+Z -1

[F(q!' ivn )]vac - UO k ivn T Z;k - E;q—k

For a given q, the two-body vertex function may have poles, which correspond to bound
states! And the position of the bound state determine the bound state energy, 1.e.,

[F(q.iv, > Ey(@)<0)],, =0

Actually, we may prove that,

. 3/2
m m

_|_
Anh*a  4Anh’

I (qo+i0") =

vac

0)+i0+—7q;

What happens if a > 0?
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*NE *
Consider the two-body vertex function,

m+J‘dk 1 m

I(qo+i0")= ( )
vac(q ) dnth’a (27[)3|_60+i0+_§q/2+k_E.Jq/2—k nk’

Let us define,

2 .M\t 8q
A" =w+i0 —E+2u

Then,
I (q,0+i0") C
o om N _[ dk 1 B 1
dmita ? 2n)’| HKE ,  BK’ A
_A <
L m m |
m m3?

= +
Anh’a  An*i’ 5

m m'?AT 1
= 7 T3 dq
dnhca Anny | (g—A)g+A)
. 3/2
m im
= T3
dnh a 4nh
gth— 12th April 2018 wax /A, CAS
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+NE » Renormalization of the contact interaction

We can see immediately that if a > 0,

noo€
Ed(q) — _maz +7‘1

Therefore, we have the following picture:

Vi)
Mg
Vo — ¢
a=(0

Scattering length
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Experimentally, the interaction depth can be changed by using Magnetic Feshbach resonance!!!
d

() (if) (i) (V)

e

10 —

Scattering length a /a,

D-‘i 1 1 1 1 1 1 1
210 -8 -8 -4

Magnetic field B — By (G)
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Application 1:
Moving impurity (Fermi/Bose polaron)

Many-body problems are difficult; can you recommend the
casiest one? Is the problem exactly solvable?

We are actually building a Fermi liquid
from the bottom up!
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What is polaron?

Swimming in the Fermi sea
What is the fate of a single impurity in a Fermi sea?
This 1s a crucial question for
* electron transport in lattices
* Kondo problem (single magnetic impurity)

* mobility of He in “He

* determines the properties of many condensed matter
systems at low temperature

9th— 12, April 2018 credit to Martin Zwierlein WIPM, CAS
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Impurity interacts with a Fermi sea

Example: Kondo effect
A spin impurity interacting with Fermi sea of electrons
leads to increase in resistance at low temperatures

VOLUME 86, NUMBER 24 PHYSICAL REVIEW LETTERS 11 JUNE 2001

Mesoscopic Kondo Screening Effect in a Single-Electron Transistor Embedded
in a Metallic Ring

Hui Hu,! Guang-Ming Zhang,' and Lu Yu,>*
YDepartment of Physics, Tsinghua University, Beijing 100084, China
2Center for Advanced Study, Tsinghua University, Beijing 100084, China
3Abdus Salam International Center for Theoretical Physics, P.O. Box 5806, Trieste 34100, Italy

*Institute of Theoretical Physics, Academic Sinica, Beijing 100080, China
(Received 9 February 2001)

We study the Kondo screening effect generated by a single-electron transistor or quantum dot embed-
ded in a small metallic ring. When the ring circumference L becomes comparable to the fundamental
length scale £x = hvp /Ty associated with the bulk Kondo temperature, the Kondo resonance is strongly
affected, depending on the total number of electrons (mod4) and magnetic flux threading the ring. The
resulting Kondo-assisted persistent currents are also calculated in both Kondo and mixed-valence regimes,
and the maximum values are found in the crossover region.
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Textbook for Kondo problem

The Kondo Problem
to Heavy Fermions
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What is polaron?

Swimming in the Fermi sea

Molecule
@ e

Q o
N o/
—
strong attraction
hZ

2
mda
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week endin
PHYSICAL REVIEW LETTERS 4MAY20()g7

PRL 98, 180402 (2007)

Normal State of Highly Polarized Fermi Gases: Simple Many-Body Approaches

R. Combescot
Laboratoire de Physique Statistique, Ecole Normale Supérieure, 24 rue Lhomond, 75231 Paris Cedex 05, France

A. Recati and C. Lobo
Dipartimento di Fisica, Universita di Trento and CNR-INFM BEC Center, I-38050 Povo, Trento, Italy

F. Chevy

Laboratoire Kastler Brossel, Ecole Normale Supérieure, 24 rue Lhomond, 75231 Paris Cedex 05, France
(Received 16 February 2007; published 1 May 2007)

We consider the problem of a single | atom in the presence of a Fermi sea of | atoms, in the vicinity of a
Feshbach resonance. We calculate the chemical potential and the effective mass of the | atom using two
simple approaches: a many-body variational wave function and a 7-matrix approximation. These two
methods lead to the same results and are in good agreement with existing quantum Monte Carlo
calculations performed at unitarity and, in one dimension, with the known exact solution. Surprisingly,
our results suggest that, even at unitarity, the effect of interactions is fairly weak and can be accurately
described using single particle-hole excitations. We also consider the case of unequal masses.

10 years for polaron problem in cold-atoms,
still a lot of surprise/fun and challenge!
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|8 Selected for a Viewpoint in Physics eek endine
PRL 102, 230402 (2009) PHYSICAL REVIEW LETTERS 12 JUNE 2009

S

Observation of Fermi Polarons in a Tunable Fermi Liquid of Ultracold Atoms

André Schirotzek, Cheng-Hsun Wu, Ariel Sommer, and Martin W. Zwierlein

Department of Physics, MIT-Harvard Center for Ultracold Atoms, and Research Laboratory of Electronics,

Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
(Received 17 February 2009; revised manuscript received 9 April 2009; published 8 June 2009)

We have observed Fermi polarons, dressed spin-down impurities in a spin-up Fermi sea of ultracold
atoms. The polaron manifests itself as a narrow peak in the impurities’ rf spectrum that emerges from a
broad incoherent background. We determine the polaron energy and the quasiparticle residue for various
interaction strengths around a Feshbach resonance. At a critical interaction, we observe the transition from
polaronic to molecular binding. Here, the imbalanced Fermi liquid undergoes a phase transition into a
Bose liquid, coexisting with a Fermi sea.

DOI: 10.1103/PhysRevLett.102.230402 PACS numbers: 05.30.Fk, 03.75.Ss, 32.30.Bv, 67.60.Fp
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week ending

PRL 118, 083602 (2017) PHYSICAL REVIEW LETTERS 24 FEBRUARY 2017

S

Repulsive Fermi Polarons in a Resonant Mixture of Ultracold °Li Atoms

F. Scazza,l’l:ﬁ G. \/altolina,l’2 P. Massignan,3 A. Recati,‘l’5 A. Amic:o,2 A. Burchianti,l’2 C. Fort,2
M. lnguscio,l’2 M. Zaccanti,]’2 and G. Roati'

Ustituto Naczionale di Ottica del Consiglio Nazionale delle Ricerche (INO-CNR), 50019 Sesto Fiorentino, Italy
2LENS and Dipartimento di Fisica e Astronomia, Universita di Firenze, 50019 Sesto Fiorentino, Italy
JICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Spain
*INO-CNR BEC Center and Dipartimento di Fisica, Universita di Trento, 38123 Povo, Italy
SLudwig—Maximilians—Universifc‘ir Miinchen, 80333 Miinchen, Germany
(Received 30 September 2016; published 21 February 2017)

We employ radio-frequency spectroscopy to investigate a polarized spin mixture of ultracold °Li atoms
close to a broad Feshbach scattering resonance. Focusing on the regime of strong repulsive interactions, we
observe well-defined coherent quasiparticles even for unitarity-limited interactions. We characterize the
many-body system by extracting the key properties of repulsive Fermi polarons: the energy £, the
effective mass m”*, the residue Z, and the decay rate I". Above a critical interaction, £, is found to exceed
the Fermi energy of the bath, while m* diverges and even turns negative, thereby indicating that the
repulsive Fermi liquid state becomes energetically and thermodynamically unstable.

DOI: 10.1103/PhysRevLett.118.083602
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In momentum space, the Hamiltonian takes the form,
@ @
Stk €k
( /
Q@ o b @ H, Z hzk u N Z .| 7k e
C C C (| ——
9 a.
o Y @ H, =0, TC Al Cgrd St

N &

Definition: M4 | — chemical potentials (grand-canonical
ensemble), U, — interaction strength

The Green function of NV spin-up atoms is exact!

Gr(k,iw,,) =

— Stk

The Green function of 1 spin-down atom is to determined!

1
G (k,i = ,
{6 1om) lwm — &y + (1 — Z(K, iwy,)
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A naive picture of the spectral function A l(k’ (D)

N
1

L‘:~

r

Non-interacting

o 21,2
pegs AV (K,0) = (0 -8
- — 2m

)

k
Interacting / { | A S

HEomle

L % o= -
.- S
-"'. > h2k2
/fv} . Ai(k,ﬂ)):ZS[(D_ $]+
N-l Ef N+l E 2m
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Feynman diagrammatic theory of Fermi polaron

This means that we approximate the spin-down Green function:

Z

Gl(k, ia)m) — thz +

2m*

Actually, we may Taylor-expand the self-energy at small k and w

LWy, —

21,2
5 (k, i) = 5(0,0) + [aRez] h2k +[aRez

dey | 2my

Then, the Green function takes the form,

1

Gy (K, tom) = - W2 k2 ORex] h2k2
o +m —2(0,0) — de | Zm,
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Feynman diagrammatic theory of Fermi polaron

Therefore, we must have,

uy = Z(0,0)
P 1
B {_ OReX]
 dw
1 'JReX ]
m - dw |
| O& |k |

The first equation determines the spin-down chemical potential, since here ® is the
energy measured from the chemical potential, and physically, the chemical potential
corresponds to the energy cost of adding a particle with zero momentum k=0.
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Now let us consider the following ladder diagrams for the self-energy:

DI~ +Q+Q+Allthe
E|: oo

ladder
diagrams!

Can you write down the expressions of the above diagrams, say the n-th diagrams?

q-Fk
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*NE * Feynman diagrammatic theory of Fermi polaron

Now let us consider the following ladder diagrams for the self-energy:

DI~ +Q+Q+Allthe
E|: oo

ladder
diagrams!

Can you write down the expressions of the above diagrams, say the n-th diagrams?

q-Fk
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Feynman diagrammatic theory of Fermi polaron

q-Fk

k, k

The answer 1is,

> (k)= (=) U, Z G.(g— k)z [GT (q—k)G, (K )] " Z [GT (¢—k,)G, (k,, )]

or

(k)= (=)"Us > G (g-0)(g)]
1f we define q
1@) =Gy (a= )G (P)]|=X K, TY. Gy (@-p.iv, ~i0,)G, (pio>,)
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Feynman diagrammatic theory of Fermi polaron

How about the summation over “n”?

(k)= Y 2"k)= Y (- )"“U"ZG (@-0(@]

n=l,...00 n=l,...00

Recall the identity: 1/(14+x)=1—x+x"—---

2(k) =Y G.(qg-k)U, 1+ Up(9)]=D_G,(g- k)T (q)

where, the two-particle vertex function (within ladder diagrams) is given by,

u, 1
1+Up(q) Uy +x(q)

['(q) =

9th— 12t April 2018 WIPM, CAS
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Actually we already define the vertex function (7-matrix) earlier,

%
i B

]

S
+
S
S
+
+

Il
S

q—k

We thus obtain I'(q) =U, +(-DU, > .G(k)G" (- k)[(g)
RS A

or

I'(9)=U, +x(q)
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e Feynman diagrammatic theory of Fermi polaron

This means we can directly calculate the self-energy by using the following diagram:

q-Fk

First order diagram
(k)= (-)()D_G:(g— 0T (q) = D kT Gy (q—-k.iv, —iw,)T(q,iv,)
q q v

One Fermi loop

9th— 12t April 2018 WIPM, CAS



gl Feynman diagrammatic theory of Fermi polaron

Can you give an example of ignored diagrams?
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Feynman diagrammatic theory of Fermi polaron

Now our problem becomes, solving the coupled equations (within ladder diagrams),

2(k,io,) =D kT G, (q-Kk,iv, —i®,)(q,iv,)
q v

I (q.v,)=U,' + 2 kT G (a-p.iv, —i0,)G, (p,i,)
p

l(,Op

together the Dyson equation,

1
G, (k,i -
v, o) lwm — & + py — Z(K, iwy,)

and subjected to the constriction (i.e., single impurity):

u, =2(0,0) <0

r

. . . m 1 2m
Also, note the renormalisation for interaction, + Z >

onita U, “1K
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The coupled equation can be solved iteratively, but first, let us work out the first-
order iteration, 1.e., using the non-interacting spin-down Green function,

1

G (k,iw,,) =
i m) m — Elk T U

LW

Let us also focus on the zero temperature case. What is the vertex function?

1

1

I''(q,iv,)=U, +Zk TZ

V —l(D

Let us sum over the fermionic Matsubara frequency
at zero temperature!

A
N

PN

PN

—Cirgp 10, =G

f e@0” 1 1
B'Bw+1 l'Vn—a)—qu_p a)—flp_
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You may only need to take care of the pole at ivy, — §14_p, S0 the result after
Matsubara frequency summation is,

—1 1
I(q.iv,)=U, + [ - }
0 ; e BaTq—P + 1 lvn — gTq_p — g\l,p

0&,, )

v _E-’Tq —p _gip

27[h2 _Z hZ 2

Here, we have already replaced the bare interaction with the scattering length a and
0(x) 1s the step function.

Remarks:

(1) For a given set of (q, iv,,), it is a two-dimensional integral to calculate I'(q, iv;,).

(2) We may and may not have a two-particle bound state. But from now on, let us
assume there is no bound state, which means that the vertex function does not
have poles in the left complex plane.
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Let us move on to calculate the self-energy,

2(k,io,) = Zk TZ : (q,iv,)

v, —1i0, éTq—k

with the assumption that there is no pole in I'(q, iv,,) in the left complex plane.
We need to sum over the bosonic Matsubara frequency at zero temperature...

Let us consider the contour integral,

ew0” 1
I'(qg, =0
feﬁw —1|w —iwy — &rg-k (9, )
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Feynman diagrammatic theory of Fermi polaron

We only need to take care of the pole at iw;, + §14_k, so the result after Matsubara
frequency summation is,

: 1 : :
Z(k,l(})m) = Z(_) eB(iwm+§Tq—k) B lr(qal(’)m T &-’Tq—k) = Ze(_gTq—k )F(qﬂlo‘)m T &-’Tq—k)
q q

This is another two-dimensional integral! Together with

0, )
B Z hz 7t

v, = éTq -p gip
and p; = 2(0,0), we solve the Fermi polaron!

I(q,iv,)=
ha

Remarks:

(1) This is the first-order iteration result (involving a four-dimensional integral).
(2) We assume that I'(q, iv,,) does not have poles in the left complex plane.
(3) Itis possible to solve the full coupled equation! (Hu et al., arXiv:1708.03410).
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Feynman diagrammatic theory of Fermi polaron

By the way, the self-consistent coupled equation will be,

2(k,io,) = ) 0(=&, IT(q,io,, +&, )

g, . m, 2m, :
[ 1(q,an) — znhza - Z|:h2p2 + 6(§Tq_p)G¢ (p,an o &Tq_p ):|
p

1
G (k,i = ,
(6 iom) lwm — & + py — X(K, iwy,)

Here, u; = 2(0,0).
Remarks:

(1) This is the zero-temperature result, so there are two step functions.
(2) We assume that I'(q, iv,,) does not have poles in the left complex plane.
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Feynman diagrammatic theory of Fermi polaron

Once we solve the first-order iteration equation, we may immediately obtain the
effective mass and residue by using,

1 '0ReX
m* . I 6(1) | 7 = 1
T 7 7 0ReX
m o %Rez 1 _[ re
| O& |k |

Before we present the numerical result, it is useful to consider weak-coupling limit,
where the scattering length a—0,

ml"

(q,iv,) > (K, 0(—
(q lvn) 271:h2a ( lo‘)m) — Zq: ( E.v’]*q_k)

2nhita B 2nh’a
m

r r

iy

This is simply the mean-field result.

Okay, we see the derivation of the Fermi polaron equations; but, what is the simple
physical picture of the above diagrammatic theory?
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Fermi polaron: one-particle-hole excitation

Swimming in the Fermi sea

A single N) atom immersed in a \T) cloud
with unitarity limited interactions

9th— 12, April 2018 credit to Martin Zwierlein WIPM, CAS



Fermi polaron: one-particle-hole excitation

Swimming in the Fermi sea

W) = ol0) | [FS),

F. Chevy PRA 74, 063628 (2006), Variational Cooper pair Ansatz

9th— 12, April 2018 credit to Martin Zwierlein WIPM, CAS



Fermi polaron: one-particle-hole excitation

Swimming in the Fermi sea

ko

B) = 4o[0) [FS), + 3 barla— k)l cq, [FS),

q<kr

F. Chevy PRA 74, 063628 (2006), Variational Cooper pair Ansatz
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Gl(k» iwm) =

lwm — & + py — Z(K, lwy,)

Here, u; = 2(0,0).
Remarks:

(1) This is the zero-temperature result, so there are two step functions.
(2) We assume that I'(q, iv,) does not have poles in the left complex plane.
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week endin
PHYSICAL REVIEW LETTERS 4MAY20()g7

PRL 98, 180402 (2007)

Normal State of Highly Polarized Fermi Gases: Simple Many-Body Approaches

R. Combescot
Laboratoire de Physique Statistique, Ecole Normale Supérieure, 24 rue Lhomond, 75231 Paris Cedex 05, France

A. Recati and C. Lobo
Dipartimento di Fisica, Universita di Trento and CNR-INFM BEC Center, I-38050 Povo, Trento, Italy

F. Chevy

Laboratoire Kastler Brossel, Ecole Normale Supérieure, 24 rue Lhomond, 75231 Paris Cedex 05, France
(Received 16 February 2007; published 1 May 2007)

We consider the problem of a single | atom in the presence of a Fermi sea of | atoms, in the vicinity of a
Feshbach resonance. We calculate the chemical potential and the effective mass of the | atom using two
simple approaches: a many-body variational wave function and a 7-matrix approximation. These two
methods lead to the same results and are in good agreement with existing quantum Monte Carlo
calculations performed at unitarity and, in one dimension, with the known exact solution. Surprisingly,
our results suggest that, even at unitarity, the effect of interactions is fairly weak and can be accurately
described using single particle-hole excitations. We also consider the case of unequal masses.

Bored with equations? But,
Congratulations: You reproduce the above titled

seminal PRL paper! Is research easy?
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We may find the three-particle vertex function:

P P P P, P q P,
L[ = >~ + >~ 1n
P-p, P-p, P-p, P-p, P-p, P-q P-p

2

And then the self-energy (corresponding to the two-particle-hole excitations):

Want to go beyond the ladder approximation?

9th— 12t April 2018
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A single ) atom immersedina |1 cloud
with unitarity limited interactions
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RF Spectrum: [(w)oc Z o(haw+E)) + T
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spectral response / a.u.

w)

incoherent (

Polaron weight: Z

Narrow peak
- long lifetime

scattered states

RF frequency / & Spectrum @ 690 G

credit to Martin Zwierlein WIPM, CAS
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molecular regime unitary limit

L
L)
2

atom transfer / a.u.

L —
_

2 3 45 6 0 1 2 3

o
N -
g
(0)]
o
—_

/ ° ° \ rf offset / €.
o © @ o
o @ o
7
N

9th— 12t April 2018 WIPM, CAS



SWIN CENTRE FOR
B|\L1J§ M MIT experiment on attractive Fermi polaron
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Figure 4. The energy spectrum of a zero-momentum impurity in a
Fermi sea contains a repulsive polaron, a continuum of dressed
dimers and an attractive polaron. The dotted black lines are the
mean-field result, and the dashed line 1s the dimer energy in the
absence of the Fermi sea. The spectrum is generic but the
quantitative details correspond here to the case m, = m | and

R* = 0. The curves are obtained from the 1PH approximation

described in section 2.3.
9th— 12t April 2018 WIPM, CAS



repulsive polaron dressed dimer + hole

attractive polaron

P. Massignan and G. M. Bruun, Eur. Phys. J D 65, 83 (2011).
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LETTER

doi:10.1038/naturel1065

Metastability and coherence of repulsive polarons in
a strongly interacting Fermi mixture

C. Kohstall*?, M. Zaccanti®, M. J agl'z, A. Trenkwalder!, P. Massignan3, G. M. Bruun®, F. Schreck' & R. Grimm"?

Ultracold Fermi gases with tunable interactions provide a test bed for
exploring the many-body physics of strongly interacting quantum
systems' ™. Over the past decade, experiments have investigated many
intriguing phenomena, and precise measurements of ground-
state properties have provided benchmarks for the development
of theoretical descriptions. Metastable states in Fermi gases with

parameterized by the scattering length, a, using a magnetic field, B.
The interaction strength is described by the dimensionless parameter
—1/kpa, where kp=h"'\/2myep = 1/2,850ay is the Fermi wave-
number. Here /1 = h/2m, a, is the Bohr radius and m;; is the mass of
a °Li atom. Near the centre of the FR, the linear approximation
—1/Kkra= (B — By)/(20 mG) holds. The momentum dependence of

But, narrow Feshbach resonance...

!nstitut fur Quantenoptik und Quanteninformation, Osterreichische Akademie der Wissenschaften, 6020 Innsbruck, Austria. ZInstitut fiir Experimentalphysik und Zentrum fiir Quantenphysik, Universitat
Innsbruck, 6020 Innsbruck, Austria. 3Institut de Ciéncies Fotdniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona), Spain. *Department of Physics and Astronomy, University of Aarhus,

8000 Aarhus C, Denmark.

31 MAY 2012 | VOL 485 | NATURE | 615

©2012 Macmillan Publishers Limited. All rights reserved
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Figure 2 | Spectral response of “’K impurities in a °Li Fermi sea. The false-
colour plots show the fraction of *’K atoms transferred from the non-
interacting spin state, |0), to the interacting state, | 1), for different values of the
radio-frequency detuning parameter, 4 = h(v,s — o), and for variable
interaction strength, —1/xpa: low radio-frequency power (a); high radio-
frequency power (b). For comparison, the lines correspond to the theoretical
predictions for E, E_, E,,, and E, — ¢z as shown in Fig. 1. In a, the two insets
show the signals for —1/kpa = —0.8 and 2, respectively, corresponding to
vertical cuts through the signal data.
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RS, ENss, PRA 83 (2011) KOHSTALL ET AL., NATURE 485 (2012)
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gt 12, RS, PHD THEsIs (2013) VIPM, CAS



—1/(kra)

Figure 11. The square root of the polaron residues for the *°K—°Li
mixture with kx R* = 1 extracted by the normalized Rabi frequency,
2/ Q. Lines are the 1PH results for ./Z+ and symbols are the
experimental measurements. Reprinted from [14]. Copyright 2012

Nature.
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RAPID COMMUNICATIONS

PHYSICAL REVIEW A 85, 021602(R) (2012)

Fermi polarons in two dimensions

Richard Schmidt and Tilman Enss
Physik Department, Technische Universitit Miinchen, D-85747 Garching, Germany

Ville Pietild and Eugene Demler
Physics Department, Harvard University, Cambridge, Massachusetts 02138, USA
(Received 18 October 2011; published 7 February 2012)

We theoretically analyze inverse radio-frequency (rf) spectroscopy experiments in two-component Fermi
gases. We consider a small number of impurity atoms interacting strongly with a bath of majority atoms. In
two-dimensional geometries we find that the main features of the rf spectrum correspond to an attractive polaron
and a metastable repulsive polaron. Our results suggest that the attractive polaron has been observed in a recent
experiment [B. Frohlich ef al., Phys. Rev. Lett. 106, 105301 (2011)].

DOI: 10.1103/PhysRevA.85.021602 PACS number(s): 67.85.Lm, 03.65.Ge, 32.30.Bv, 68.65.—k

Diagrammatic theory of 2D Fermi polaron
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LETTER

doi:10.1038/nature11151

Attractive and repulsive Fermi polarons in two

dimensions

Marco Koschorreck'*, Daniel Pertot'*, Enrico Vogll, Bernd Frohlich!, Michael Feld' & Michael Kohl*

The dynamics of a single impurity in an environment is a
fundamental problem in many-body physics. In the solid state, a
well known case is an impurity coupled to a bosonic bath (such as
lattice vibrations); the impurity and its accompanying lattice
distortion form a new entity, a polaron. This quasiparticle plays
an important role in the spectral function of high-transition-
temperature superconductors, as well as in colossal magnetoresis-
tance in manganites'. For impurities in a fermionic bath, studies

fermionic bath is notably different. For short-range interactions,
strong repulsion between particles can only be achieved if the under-
lying interaction potential is attractive, which implies a two-particle
bound state with binding energy Eg. Repulsive impurities are therefore
metastable and eventually decay either into a bound state or into an
attractive polaron with the simultaneous creation of particle and hole
excitations. It has very recently been theoretically proposed'>'® that a
repulsively interacting impurity, despite its metastability, still forms a

!Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 OHE, UK.
*These authors contributed equally to this work.

31 MAY 2012 | VOL 485 | NATURE | 619

©2012 Macmillan Publishers Limited. All rights reserved
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Figure 2 | Attractive polaron. a, b, Energy (a) and effective mass (b) of the
quasiparticle peak compared to the theoretical prediction' (solid line). The
dashed vertical line indicates the limit for reliably determining the effective
quasiparticle mass. The inset in a shows the difference between experiment and
theory. The inset in b shows an example of a fit used to determine the effective
mass at In(kga,p) = 0.7.

WIPM, CAS



SWIN

CENTRE FOR
B U R QUANTUM AND
OPTICAL SCIENCE

N Fermi polaron in 2D
220 221 222 223
a T T I T I T T
ok 1,500 -l T T l- .
; n " 3
% 1,000_— +%‘+ 1
| = 500} <>-._.+ '''' o
w
E \ | PR S N PR R U R R NI |
PR 050 05 1.0 15
£ F = Hold time (ms) ]
[
5
01F 1 Figure 4 | Repulsive polaron. a, Lifetime of the repulsive branch. The inset
| | | | 1 shows an example of a time-resolved measurement at In(kga,p) = —1.2 from
b | | | | | which we extract the lifetime by a fit (dashed line). The solid line is the
. [ | theoretical prediction from ref. 16. The grey shaded area reflects the range of
I | Fermi energies of (11 = 1) kHz. b, ¢, Measured energy (b) and effective mass
sl - (¢). Error bars correspond to 1 s.d. uncertainty in the fit.

E,ei/h (KH2)
[x]
|
1

0fF _
[ | . | . | \ | . |
c | T T T T T
11 -
£
S -0

P T T

nal 1 . 1 . 1 . 1 . 1

9th— 12t April 201, Inle2z0 WIPM, CAS



SWIN = _
B U R QUANTUM AND
OPTICAL SCIENCE

*NE * Bose polaron

impurity spectral function 4pa(w.p) = -2ImG%w.p) | from Dyson equation

o self-energy

. G™(w,p)
full Green’s function: —— = i

v~ TN depleted bosons

self-energy: @ = L + T gy

prerequisite: recover exact two-body solution [unlike previous works]
resummed perturbation theory

hoson 4, P Bog. quasiparticle ¢

A .
T-matrix equation: Typp | = /‘p"\ + )"\' T
impurity/
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PRL 117, 055301 (2016) PHYSICAL REVIEW LETTERS 29 JULY 2016

S

Bose Polarons in the Strongly Interacting Regime

Ming-Guang Hu, Michael J. Van de Graaff, Dhruv Kedar, John P. Corson, Eric A. Cornell, and Deborah S. Jin
JILA, NIST, and University of Colorado, Boulder, Colorado 80309, USA
and Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
(Received 3 May 2016; revised manuscript received 26 May 2016; published 28 July 2016)

When an impurity is immersed in a Bose-Einstein condensate, impurity-boson interactions are expected
to dress the impurity into a quasiparticle, the Bose polaron. We superimpose an ultracold atomic gas of
7Rb with a much lower density gas of fermionic “’K impurities. Through the use of a Feshbach resonance
and radio-frequency spectroscopy, we characterize the energy, spectral width, and lifetime of the resultant
polaron on both the attractive and the repulsive branches in the strongly interacting regime. The width of the
polaron in the attractive branch is narrow compared to its binding energy, even as the two-body scattering
length diverges.

DOI: 10.1103/PhysRevLett.117.055301
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" Rb condensate

() RF spectroscopy  (d) Topview ,y

| in Side view 1?;
| =
| Vef In-situ imaging

| s Rb thermal gas

FIG. 1. Impurities immersed in a bosonic bath. (a) Cartoon
depictions of the Bose polaron formed by an electron moving in a
crystal lattice and (b) its counterpart of an impurity in a
continuous system. (c¢) Radio-frequency (rf) spectroscopy of
40K impurities in a ¥’ Rb Bose-Einstein condensate (BEC). The
black lines denote two hyperfine states of bare K atoms and the
red dashed line is the shifted energy level due to interactions with
the BEC. (d) Geometry of the trapped BEC and impurity clouds.
The dark blue represents the Rb BEC cloud, the light blue shows
the Rb thermal cloud, and the red shows the K impurity cloud.
The imaging light propagates from top to bottom along z.
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FIG. 3. Energy shift, A, and spectral width of Bose polarons.
Cyan and black dots show data taken with long and short rf
pulses, respectively. Error bars indicate the measured rms spectral
width. The mean-field prediction is shown with dashed lines.
Recent 7= 0 Bose polaron energy predictions [11,12] for the
attractive and repulsive branches are shown with red and blue
lines, respectively. The gray line shows the universal two-body
prediction for the energy of KRb Feshbach molecules. Triangles
show separate measurements of this energy using rf association of
molecules performed in a very low-density Rb gas. This two-
body result is not valid for the high-density regime and is shown
only for reference. The blue shaded area indicates the predicted
spectral width of the repulsive branch.
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PRL 118, 083602 (2017) PHYSICAL REVIEW LETTERS 24 FEBRUARY 2017

S

Repulsive Fermi Polarons in a Resonant Mixture of Ultracold °Li Atoms

F. Scazza,]’z’* G. Valtolina,]’2 P. Massignan,3 A. Recati,qt’5 A. Amico,2 A. Burchianti,l’2 C. Fort,2
M. lnguscio,l’2 M. Zaccanti,]’2 and G. Roati'”
'Istituto Nazionale di Ottica del Consiglio Nazionale delle Ricerche (INO-CNR), 50019 Sesto Fiorentino, Italy

2LENS and Dipartimento di Fisica e Astronomia, Universita di Firenze, 50019 Sesto Fiorentino, Italy
SICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Spain
*INO-CNR BEC Center and Dipartimento di Fisica, Universita di Trento, 38123 Povo, Italy

SLudwig—Maximilians—Universitc’it Miinchen, 80333 Miinchen, Germany
(Received 30 September 2016; published 21 February 2017)

We employ radio-frequency spectroscopy to investigate a polarized spin mixture of ultracold °Li atoms
close to a broad Feshbach scattering resonance. Focusing on the regime of strong repulsive interactions, we
observe well-defined coherent quasiparticles even for unitarity-limited interactions. We characterize the
many-body system by extracting the key properties of repulsive Fermi polarons: the energy £, the
effective mass m”*, the residue Z, and the decay rate I'. Above a critical interaction, £, is found to exceed
the Fermi energy of the bath, while m* diverges and even turns negative, thereby indicating that the
repulsive Fermi liquid state becomes energetically and thermodynamically unstable.

DOI: 10.1103/PhysRevLett.118.083602
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On the other hand, polaron-polaron effective interactions
are expected, within an equilibrium Fermi liquid, to
contribute with a positive resonance shift o x ~ &2
[2,38,54,55], leading to a nonlinear increase of A, with
& Such a trend is incompatible with the observed linear
decrease.
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FIG. 4. (a) Decay rate I' of the repulsive branch population
measured as a function of 1/(kra). Theory predictions for three-
body recombination I'; [56] (yellow line), polaron-to-polaron T'pp
[25] (green line), and polaron-to-bare atom I'pp [38] (gray line)
decay processes are plotted within their respective regimes of
validity. Inset: Examples of polaron population decay for kpa = 1
(yellow squares), 1.3 (red circles), and 3 (purple diamonds),
together with the exponential fits. (b) (Q/€q)?* for the repulsive
(blue triangles) and attractive (yellow squares) polarons at various
1/(kpa). Solid curves are our theory predictions for (£/€)?
obtained within the ladder approximation [38], while dotted curves
depict the lowest-order results \/Z, ,Z_. 5. Inset: Repulsive polaron
Rabi oscillations at x = 0.15(3) for kra = 0 (empty gray circles),
1.1 (yellow squares), 1.3 (red circles), and 1.7 (purple diamonds).
Error bars combine the fit parameter errors with binned data s.e.m.
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Fermi/Bose polaron: Summary and outlooks

A simple many-body problem; yet, enormous experimental and theoretical efforts.
This is exactly the beauty of many-body systems.

Rapid experimental advances over the past ten years. Yet, we may anticipate new
big surprises!

Many theoretical attempts; however, the simple 7-matrix diagrammatic theory works
very well for attractive polaron (which is amazing!) ©.

Outlooks (we are clearly at the stage of making important contributions):

(1) How about the full self-consistent solution of the 7-matrix theory?
(2) What is the temperature effect?
(3) How about two-particle-hole excitations (Efimov physics)?

@) ...




