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Outline

• The standard procedure to establish Feynman rules/diagrams

• Application 1: Polaron problem – the simplest many-body systems 

• Application 2: Nozières & Schmitt-Rink theory (pairing instability)

• Application 3: The BCS theory and GPF theory

• Application 4: Beyond-GPF (ε-expansion theory)

• Any unsolved problems/challenges (FFLO)?
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Feynman diagrams

For every physicist: Brain washed by Feynman 

diagram and Feynman path-integral techniques: 

• Elegant and powerful to understand the physics: a 

simple diagram will give the essential picture!

• We may sum up all the diagrams one day…and 

hence solve the many-body problem completely!
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Feynman diagrams

     +              +                      +                              +Σ =

             +              +                    +                              +Π = . . . . . . . .
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Feynman diagrams

A few per-cent accuracy for the equation of state of a unitary Fermi gas:

Feynman diagrams vs. Fermi gas quantum emulator (Science 2012)
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Standard textbooks
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Kubo linear response at a glance

�0 �

Add an external perturbation � to the system described by ��:

Equilibrium state Non-equilibrium state

� � �� 	 � ~ � � � � �′ � � , � �′
where

retarded response functions ���� � ���
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Fluctuation-dissipation theorem

In the frequency domain, the response function 

� �
� ImImImIm����� is directly measurable. Two very 

important examples:

• ARPES/momentum-resolved rf (single-particle)

• Neutron/Bragg scattering (collective modes)
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Single-particle spectral function ���,��

ARPES versus momentum resolved rf-spectroscopy; JILA, Nature (2008)

JILA, Nature Physics 6, 569 (2010): Pseudo-gap!

    ∝∝∝∝ f(ωωωω)A(k,ωωωω)
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Dynamic structure factor ���,��

Swinburne group (Chris Vale), PRL 101, 250403 (2008).
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Response functions

We are interested in the retarded response function:

� �, �� � �� � � �′ � � , ! �′ " #$: 					'()(*)�: +,-.�(*)
But, let us consider first the response function:

�/0 �, �� � � � � ! �′
from which we find the retarded function as � � �θ � � �′ �/0 ∓ �0/ . By definition, 

we have

�/0 �, �� � � 14 Tr ,789� � ! �′
Now, let us specify the time-dependence of the operators, if the Hamiltonian is � � �� $ �, where �	is the interaction Hamiltonian.



9th ̶  12th, April 2018 WIPM, CAS

The interaction picture
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The interaction picture

In (retarded) response functions, we always assume the 

Heisenberg picture for the time-dependence of the operators.
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The interaction picture

Note that: from now on the hat above the operator : means “the interaction picture”
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The interaction picture

which  leads to, 
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The interaction picture
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The interaction picture
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The interaction picture

In a brief summary, we have a unitary operator,

;< � = ≡ ,?9@A ; � B � ,?9@A,7?9A ; 0 9

C: �, �� ≡ ,?9@A,7?9 A7A@ ,7?9@A@ � DA ,7? E FAGHH@ I: AG

For the states, 

For the operators, 

�J � = ≡ ,?9@A � B,7?9@A
� ,?9@A,7?9A � � 9,?9A,7?9@A		� C: �, 0 � � 9C: 0, �

Or, � � 9 � C: 0, � �J � =C: �, 0
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�/0 �, �� � � 14 Tr ,789� � ! �′

Response functions

Recall that in the Heisenberg picture, the response function is

In the interaction picture, it takes the form,

�/0 �, �� � � 14 Tr K7L�C:�0, ���J � C:��, ���!< �� C:���, 0�	

� → ��N
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Thus, similar to the interaction picture defined for real times, we can define the 

interaction picture for imaginary times as,

Response functions

�J N = ≡ ,9@O � B,79@O
And, the time-evolution operator C: in the interaction picture is,
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Temperature response functions/Green functions

On the other hand, we may write the density matrix operator (check by yourself),

K7L� � ,789@ C: P, 0 � ,789@DO ,7 E FOGQ@ I: OG

�/0 N, N� ≡ � DO � N ! N′ � � 14 Tr ,789DO� N ! N′
Let us now define temperature/thermal/Matsubara response function,

Thus, we find that,

�/0 N, N� � � 14 Tr ,789@C: P, 0 DO C:�0, N��J N C:�N, N��!< N� C:�N�, 0�
																				� �Tr RSQT@UV W:�8,��/< O 0< OGTr RSQT@W:�8,��
																				� � DO C:�P, 0��J N !< N� �C:�P, 0�	 �
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Temperature response functions/Green functions

�/0 N, N� ≡ � DO � N ! N�	� �θ N � N� � N ! N� ∓ θ N� � N ! N� � N
Temperature/thermal/Matsubara Green functions,

What values can the imaginary time X have? 

First, ��Y X, X� � ��Y X � X� 	.
Proof: Let us consider the case X [ X�

and of course, likewise for the case X \ X� (check!). Therefore, we may set X� � 0. 
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Temperature response functions/Green functions

�/0 N, N� ≡ � DO � N ! N�	� �θ N � N� � N ! N� ∓ θ N� � N ! N� � N
Temperature/thermal/Matsubara Green functions,

What values can the imaginary time X have? 

Second, ��Y X	 � "��Y X $ L 	. “+” for bosons and “–” for fermions

Proof: Let us consider the case X \ 0 (similar proof for X [ 0 (check by yourself)): 
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Temperature response functions/Green functions

Let us consider the Fourier transform of Matsubara Green functions,

Recall that, ��Y X	 � "��Y X $ L . “+” for bosons and “–” for fermions

Note that the length scale along the imaginary time is L � �/�^0D�, we have,

�/0 N � N� � ^0D _ ,7?`a O7OG �/0 �bc
de

cf7e
and

�/0 �bc � g h N � N� ,?`a O7OG �/0 N � N�8
�

The periodic/anti-periodic boundary condition for bosons and fermions leads to,

,?`a8 � #$1�1 and bc � i 2*k^0D2* $ 1 k^0D
for bosons

for fermions
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Analytic continuation in the frequency domain 

Let us consider now the relation between the retarded response functions (real 

time) and the temperature response functions (imaginary time), i.e.,

versus

First, consider the temperature response functions at N [ 0,

� �, �� � �� � � �� � � ! �′ ∓ ! �′ � �
�/0 N, N� 	� �θ N � N� � N ! N� ∓ θ N� � N ! N� � N
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Analytic continuation in the frequency domain 

And hence

For the retarded functions, in the frequency domain, we obtain (check by yourself),

This means once we find �/0��bc�, we obtain � b by analytic continuation:

� b � �/0��bc → b $ �0d�, 
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Analytic continuation in the frequency domain 

� b � �/0��bc → b $ �0d�, 

If we define,
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A brief summary so far

�/0 N, N� � � DO C:�P, 0��J N !< N� �C:�P, 0�	 �

C: P, 0 � DO ,7 E FOGQ@ I: OG

To find the retarded response functions, we may calculate first the temperature response 

function in the interaction picture and then take the analytic continuation, i.e.,

Step 1:

where,

Step 2: 

� _ ��1�c
*! g hNm⋯

8
�

e

cf�
g hNcDO �<�Nm�⋯�<�Nc�
8
�

� b � �/0��bc → b $ �0d�, 
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Non-interacting temperature Green functions

Let us now consider the temperature Green function:

o pqN, p�q�N� � � DO Ψs p, N ΨsGt p�, N�
o �qN, ��q�N� � � DO Ψs �, N ΨsGt ��, N�

or in a general {u} representation:

o vN, v�N� � � DO wx N wxGt N�
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Non-interacting temperature Green functions

The non-interacting temperature Green function in u � �q 	is to easy to calculate.

The non-interacting Hamiltonian is diagonal in the u quantum numbers,

check by yourself!
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Non-interacting temperature Green functions
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To calculate Feynman diagrams, we often encounter different summation over 

the bosonic or fermionic Matsubara frequency. Let  us define, 

Evaluation of Matsubara sums
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To calculate Feynman diagrams, we often encounter different summation over 

the bosonic or fermionic Matsubara frequency. Let us consider first the 

fermionic case. For any function g(x),

.)0ωω(Im
1

ω

π

1
)ω(

βω

0ω

ω ∫∑
+∞

∞−

++ +→
+

=−
+

iig
e

d
eigTk m

i

i mB
m

m

This is because the left side of equation can be written 

as a contour integral over C (see the left graph):

)ω(
12π

1
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Due to the convergence factor, the integral at two half 

circles vanishes. The contribution near the real axis 

gives the right hand side of the equation (fermionic). 
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Evaluation of Matsubara sums
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Evaluation of Matsubara sums

Consider the fermionic Green function,

o �q; 07	 � � DO Ψs �, 07 Ψst �, 0 � *�s
*�s � ^0D _ o �q; �bz ,7?`{�S

de

zf7e
By taking the summation, we have,

.)ω;(
1

ω
)0ω;(Im

π

1

1

ω
βωβω ∫∫

∞+

∞−

∞+

∞−

+

+
=+
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+
= σσσ kkk A

e

d
iG

e

d
n

This single-particle spectral function A(k, ωωωω) is experimentally measurable!

For a non-interacting Fermi system:

For an interacting Fermi system: 

)ξδ(ω)ω;()0(

σσ kk −=A

single-particle

collective behaviour
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Tutorial on Matsubara sums:

Question 1: Consider the Matsubara summation,

*���� � ^0D _ ,7?`{�S
�bz � |�

de

zf7e
� *}�|��

Question 2: What is the result of,

� � ^0D _ ,d?`{�S
�bz � |�

de

zf7e

x

x

x

x

x

x

C

x

|�

Answer: Let us consider ,

∮ m
RQ�dm

R�@�
`7��

and the contour C in the right plot

Remark: We don’t need the convergence factor if

! � ^0D _ 1
�bz � |�

de

zf7e
1

�bz � |�
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Evaluation of Matsubara sums

Let us consider next the bosonic case. For any function h(x),

.)0ων(Im
1

ω

π

1
)ν(

βω

0ν
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++ +→
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This is because the left side of equation can be written 

as a contour integral over C (see again the left graph):
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Due to the convergence factor, the integral at two half 

circles vanishes. The contribution near the real axis 

gives the right hand side of equation (bosonic). 
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Evaluation of Matsubara sums

No worries if you don’t remember the details, simply search wiki,

https://en.wikipedia.org/wiki/Matsubara_frequency:
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Wick theorem

We now consider the final technical issue, the calculation of

where all the field operators are defined in the interaction picture.

The Wick theorem states that in the interaction picture with ��, 

( )
02124321 nn AAAAAAT −Lτ

( ) ( ) ( ) ( ) ( )
000

n permutatio
possible

all
02124321 2124321 nn PPPPPP

P

P

nn AATAATAATAAAAAAT
−∑ ±=− ττττ LL

For example (for a normal Fermi gas):

( ) ( )[ ] ( ) ( )[ ] ( ) ( )[ ] ( ) ( )[ ]
0''0''0''''0

0000 ττττ σστσστσστσστ
+

−
+

+−
+

+
+ −+ kqkkqkqkkqkk ccTccTccTccT

( ) ( ) ( ) ( )[ ] =−
+

+
+

0'''' 00 σσσστ ττ qkkqkk ccccT
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Wick theorem

Why this happens? 

(1) Recall, for example,

We may pull out all the time-dependent factors and consider only the average such as,

(2) The Wick theorem is clearly valid for these averages.

(3) We then send back the time-dependent factors to the factorised product.

Reminder: Wick theorem holds only for the product under thermal average �

( ) ( )
04321044332211

44332211)()()()( ++−−++ = cecececeTccccT
τξτξτξτξ

ττ ττττ

04321

++cccc
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We aim to calculate the Green functions,

where,

Step 1: We represent each term in the perturbative expansion using a Feynman diagram.

Step 2: We then use Wick theorem to decouple each term as a product of Green functions. 

By performing the Fourier transform, we obtain the expression in terms of,  

Step 3: We may sum some sorts of geometric diagrams as a series and take the Matsubara 

frequency summation, either numerically or analytically.

Step 4: We finally take the analytic continuation to obtain the desired retarded response 

function or spectral function.

We are ready to draw Feynman diagrams!

o pN, pN� � � DO C:�P, 0�Ψ: p, N Ψ: t p�, N� �C:�P, 0�	 �
C: P, 0 � DO ,7 E FOGQ@ I: OG � _ ��1�c

*! g hNm⋯
8
�

e

cf�
g hNcDO �<�Nm�⋯�<�Nc�
8
�

o� �, �bz � 1
�bz � |�
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Our starting Hamiltonian is (for a two-component Fermi gas)

In momentum space, the Hamiltonian takes the form, 

Definition: µ - chemical potential (grand-canonical ensemble), U0 – interaction strength 

Hamiltonian

)(ψµ
2

)(ψ
22

0 xxx σ
σ

σ 
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−= ∫ δddUH
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σ ξ kk
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kk
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22
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+
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'

0int kkqkq
qkk

k
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In the absence of the inter-particle interactions, we have perfect Fermi sea at T=0K:

What will happen if we switch on the repulsive interactions (normal state)?

Hamiltonian

|� � 0

A(k, ωωωω) 

σ
σ

σ k

k

k

k
c

m
c 








−∑ + µ

2

22
h
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Fermi sea is real !!!

T=0.49TF T=0.32TF T=0.16TF
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Fermi sea is real !!!

A non-interacting Fermi gas T=0.31TF A strongly attractively interacting Fermi gas

We may explain the observation by using 

Feynman diagrams!

PRL 2018 (Editors’ Suggestion)
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Let us check the expansion of the Green function,

with, 

Consider first the numerator. The n=0 contribution is trivial, simply gives o�. The n=1 

contribution from the numerator is,

or

Perturbative expansion of GF

o↑ pN, pN� � �
DO C:�P, 0�	Ψ: ↑ p, N Ψ: ↑t p�, N� �C:�P, 0�	 �

C:�P, 0� � _ ��1�c
*! g hNm⋯

8
�

e

cf�
g hNcDO �:?cA�Nm�⋯�:?cA	�Nc�
8
�

���1�m1! g hNm
8
�

DO Ψ: ↑ p, N �:?cA�Nm�Ψ: ↑t p�, N� �

� �1 m
1! g hNm

8
�

�hpmhpm′
DO Ψ: ↑ p, N Ψ: ↑t pm, Nm Ψ: ↓t pm′, Nm C��pmpm′�Ψ: ↓ pm′, Nm Ψ: ↑ pm, Nm Ψ: ↑t p�, N� �
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Perturbative expansion of GF in real space

Let us introduce the short-hand notations and rewrite the interaction,

Then, the first-order contribution is,

By using Wick theorem, we may obtain for ,

(a)  

(b) 

),','('
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),','('

),,(

111

111
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τ
τ
τ

x

x

x

x

=

=

=

=

x

x

x

x
)'()'(')'( 111101110 ττδδτ −−=− ∫ xxUdxxU

{ }
0

111111011 )'(ψ)(ψ)'(ψ)'(ψ)(ψ)(ψ)'('))(( xxxxxxTxxUdxdx +
↑↑↓

+
↓

+
↑↑

−−− ∫∫ τ

)0','()0,()',()( 11

)0(

11

)0()0( −
↓

−
↑↑

++− xxGxxGxxG

)0','()',(),()( 11

)0(

1

)0(

1

)0( −
↓↑↑

++ xxGxxGxxG

)0','( 11

)0( −
↓ +xxG

)',()0( xxG
↑

0U

)0,( 11

)0( −
↑

+xxG

)0','( 11

)0( −
↓ +xxG

),( 1

)0( xxG
↑

0U
)',( 1

)0( xxG↑
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Perturbative expansion of GF in real space

A few observations:
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Perturbative expansion of GF in real space
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Perturbative expansion of GF in real space
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Perturbative expansion of GF in real space
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Perturbative expansion of GF in momentum space
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Perturbative expansion of GF in momentum space
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Perturbative expansion of GF in momentum space

To demonstrate the momentum conservation:
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Perturbative expansion of GF in momentum space

The final result:

p q

( ) ( )
[ ] )ωωω,()ω,()ω,()ω,(

π2π2
)()()( 00020

33

ω,ω

22

0

2

mqpqpm

ii

B iiiGiGiGiG
dd

TkU
qp

−+−+−−
↓↓↑↑∫∫∑ kqpqpk

qp
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Perturbative expansion of GF in momentum space

Alternatively

( ) ( )
[ ] )ων,()ων,()ω,()ω,(

π2π2
)()()( 00020

33

ν,ω

22

0

2

mnpnpm

ii

B iiGiiGiGiG
dd

TkU
np

−−−−−−
↓↓↑↑∫∫∑ kQpQpk

Qp

k kp

Q-k

Q-p

bz, b�: fermionic Matsubara frequency

vc: bosonic Matsubara frequency

C�C�
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Perturbative expansion of GF in momentum space

+ +

Let assume the interaction terms: ),(ψ)'(ψ)'()'(ψ)(ψ0int xxxxxxdxUH ↑↓
+
↓

+
↑ −= ∫ δ where ).τ,(r≡x

=
)0(

↑
−↑ GG

)',()0( xxG↓

)',()0( xxG
↑

0U
+

Infinite 

diagrams!

Why this?

conβUxxTxxG ><−= + )()'()ψψ()',( τ

FFT to k-space, using the following Feynman rules to calculate the Green function:

Green functions (GF):

}.τ)τ(exp{)(
β

0
intτ ∫−= dHTβU

All (diagrams) → connected → different connected!

Recall where

)];µ(ω/[1)ω,()1( −−= kεiikG mm• With each thin line, associate it with an ideal GF:

• With n-interaction lines and F Fermi loops, add a prefactor (−1)n+F;

• Integrate and sum over independent internal k and iωm, using ∑≡
k

( ) .2π/
ω

3∑∫
mi

B dTk k

0U 0U
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Perturbative expansion of ����
Let us now consider the thermodynamic potential ������, ��. Once we know it, 

we may work out the equation of state of the system. According to its 

fundamental definition,

We thus have,

where,

,78��Tr ,789 �Tr ,789@C:�P, 0� � Tr ,789@ Tr RSQT@W:�8,��Tr RSQT@ � ,78�@ C:�P, 0� �

Ω � Ω� � ^0D ln C:�P, 0� �

C: P, 0 � _ ��1�c
*! g hNm⋯

8
�

e

cf�
g hNcDO �:?cA�Nm�⋯�:?cA�Nc�
8
�



9th ̶  12th, April 2018 WIPM, CAS

Perturbative expansion of ����
Let us now consider the thermodynamic potential ������, ��. Once we know it, 

we may work out the equation of state of the system. According to its 

fundamental definition,

We thus have,

where,

But, how to handle the “ln”? We don’t need to consider “ln”, if we keep only 

connected diagrams!

,78��Tr ,789 �Tr ,789@C:�P, 0� � Tr ,789@ Tr RSQT@W:�8,��Tr RSQT@ � ,78�@ C:�P, 0� �

Ω � Ω� � ^0D �� C:�P, 0� �

C: P, 0 � _ ��1�c
*! g hNm⋯

8
�

e

cf�
g hNcDO �:?cA�Nm�⋯�:?cA�Nc�
8
�
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Perturbative expansion of ����
Let us now consider the thermodynamic potential ������, ��. Once we know it, 

we may work out the equation of state of the system. According to its 

fundamental definition,

We thus have,

where,

But, how to handle the “ln”? We don’t need to consider “ln”, if we keep only 

connected diagrams!

,78��Tr ,789 �Tr ,789@C:�P, 0� � Tr ,789@ Tr RSQT@W:�8,��Tr RSQT@ � ,78�@ C:�P, 0� �

Ω � Ω� � ^0D �� C:�P, 0� �

C: P, 0 � _ ��1�c
*! g hNm⋯

8
�

e

cf�
g hNcDO �:?cA�Nm�⋯�:?cA�Nc�
8
�



9th ̶  12th, April 2018 WIPM, CAS

Perturbative expansion of ����
The basic idea is for a n-th order diagrams, 

it can be written as (* � .m $.� $⋯$.�),

=                                             + … + 

Mathematically, the right-hand side has the structure of the expansion of the 

function K�p�d⋯dp��! Here, C:�P, 0� � ��ccR�ARF 	� � $ p� $⋯$.

Thus, it is clear,

��1�c
*! g hNm⋯

8
�

g hNcDO �:?cA�Nm�⋯�:?cA�Nc�
8
�

Any n-th order 

diagram

m1-th order 

connected 

diagram

mk-th order 

connected 

diagram

Ω � Ω� � ^0D C:�P, 0� � � 1 ��ccR�ARF
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Tutorial: Perturbative expansion of ���� in real space

Let us consider the second-order contribution to ����,

By using Wick theorem, we may obtain one connected diagram,

{ }
0

22221111

2201102211

)(ψ)'(ψ)'(ψ)(ψ)(ψ)'(ψ)'(ψ)(ψ

)'()'(''
2

1
)(

xxxxxxxxT

xxUxxUdxdxdxdxTkB

↑↓
+
↓

+
↑↑↓

+
↓

+
↑

×−−− ∫∫∫∫

τ

),(),(),(),(
2

)( 12

)0(

21

)0(

12

)0(

21

)0(

21

2

0 xxGxxGxxGxxGdxdx
U

TkB ↓↓↑↑∫∫−

)','( 21

)0( xxG↓

0U

),( 21

)0( xxG
↑

0U

1x

2x

2'x

1'x

),( 12

)0(
xxG↑

)','( 12

)0(
xxG↓
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Tutorial: Perturbative expansion of ���� in momentum space

In momentum space, the result will be,

0U

0U

Q-k k p Q-p

( ) ( ) ( )∫∫∫∑ ↓↓↑↑
−−−−

×−

)ω,()ω,()ων,()ων,(
π2π2π2

)(

2
)(

0000

333

ν,ω,ω

3

2

0

pmpnmn

iii

B iGiGiiGiiG
ddd

Tk

U
V

npm

pkpQkQ
pkQ
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Perturbative expansion of ����
It is readily to see that, the rules for ���� should be slightly modified:

(1) Because the “�” before ^0D in the above equation, we have an additional “�”

(2) In connecting the different terms in DO �:?cA�Nm�⋯�:?cA�Nc� , because we don’t 

have external field operators, the prefactor 1/(n!) cannot be fully compensated. Each 

topologically differently connected diagram has (n-1)! possibility, leading to a 

remaining factor 1/n. Therefore, summation of different diagrams for the 

thermodynamic potential is more difficult than for the single-particle Green function.

(3) In performing Fourier transform to momentum space, the absence of the external 

field operators leads to additional integration over the center-of-mass coordinate and 

hence a volume factor V (this is reasonable, since the thermodynamic potential is an 

extensive quantity.

Ω � Ω� � ^0D C:�P, 0� � � 1 ��ccR�ARF
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Perturbative expansion of �	in momentum space

+ +

Let assume the interaction terms: ),(ψ)'(ψ)'()'(ψ)(ψ0int xxxxxxdxUH ↑↓
+
↓

+
↑ −= ∫ δ where ).τ,(r≡x

=

)',(
)0(

xxG↑

)',(
)0(

xxG↓

0U

+
Infinite 

diagrams!

Why this?

><−Ω=Ω )(ln)0( βUTkB

FFT to k-space, we have additional Feynman rules for the thermodynamic potential:

Thermodynamic potential

}.τ)τ(exp{)(
β

0
intτ ∫−= dHTβU

All (diagrams) → connected → different connected !

Recall where

• With n-interaction lines and F Fermi loops, add a prefactor (−1)n+F+1;

• With n-interaction lines, add a prefactor 1/n;

• Additional integral over the centre-of-mass, leading to a factor of volume (V) to ∆Ω.

:)( )1(Ω−Ω=∆Ω

∆Ω 0U

0U

0U

0U

0U



9th ̶  12th, April 2018 WIPM, CAS

Tutorial: Perturbative expansion of ���� in momentum space

In momentum space, please write down the expression for 

( ) ( )

3

00

3

ω

3

ν

3

0 )ω,()ων,(
π2π23

)( 







−−+ ↓↑∫∑∫∑ mmn
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B
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B iGiiG
d

Tk
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Tk
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kkQ
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Ideal gas thermodynamic potential

But, still, there is a minor problem: what is the thermodynamic potential �������, �� of an ideal Fermi or Bose gas?  

We may use the thermodynamic relation,

Recall that,

(fermions)                                                                (bosons)

We may have,

Or

� ��
�� � *

*����� � *} |�� � ^0D _ ,?`{��
�bz � |��

de

zf7e
*���� � *0 |� � �^0D _ ,?xa��

�vc � |�
de

cf7e

Ω�,�s � �^0D _ ln � �bz � |�� ,?`{��
de

zf7e
Ω�,� � $^0D _ ln � �vc � |� ,?xa��

de

cf7e

Ω� � $^0D _ _ln �o�7m��, �vc� ,?xa��
�

de

cf7e
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Ideal gas thermodynamic potential

For bosons, we now have, 

where, 

What will happen if                  ?

o�7m �, �vc � �vc � |�

Ω� � $^0D _ _ln �o�7m��, �vc� ,?xa��
�

de

cf7e

|� \ �

Bose-Einstein condensation!
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1. Feynman rules for the Green function (or any response functions!!!):

)];µ(ω/[1)ω,()1( −−= kεiikG mm• With each thin line, associate it with an ideal GF:

• With n-interaction lines and F Fermi loops, add a prefactor (−1)n+F;

• Integrate and sum over independent internal k and iωm, using ∑≡
k

( ) .2π/
ω

3∑∫
mi

B dTk k

A brief summary

2. Feynman rules for the thermodynamic potential (additional):

• With n-interaction lines and F Fermi loops, add a prefactor (−1)n+F+1;

• With n-interaction lines, add a prefactor 1/n;

• Additional integral over the centre-of-mass, leading to a factor of volume (V) to ∆Ω.

3. You may build new Feynman rules for a new Hamiltonian (system) in a few minutes!
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Dyson equation

Let us think more about the diagrams: (i) How to simplify diagrams? (ii) How can we 

find the most important diagrams, or a series of important diagrams and sum them 

up? 

We already consider disconnected diagrams, which can be taken into account if we 

account for the connected diagram only!

Any similar considerations? Yes, we have, for the one-particle reducible diagrams!

one-particle reducible diagram one-particle irreducible diagram 

May we consider the one-particle irreducible diagrams only? Yes, you can!
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Dyson equation

In all the diagrams (i.e., for the Green function), we may replace all the non-

interacting Green functions by the (unknown) exact Green function, except one non-

interacting Green function! 

Let us consider, for example,

This diagram actually already includes,

This one should be always 

non-interacting

Bold line: unknown exact GF
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Dyson equation

Therefore the diagrams for the Green function can be represented by,

Thus, we may rewrite                                  , where the self-energy     is 

diagrammatically given by,

+ +=↑
G

)',(
)0(

xxG↓

)',()0( xxG
↑

0U
+

Infinite 

diagrams!
0U 0U

+

↑↑↑↑ Σ+= GGGG 00 Σ

+ + +
Infinite 

diagrams!
=Σ
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Dyson equation

We thus have the well-known Dyson equation:

A few diagrams for the self-energy are:

Then, how about the two-particle irreducible diagrams?

o7m � o�7m � Σ

+ + +
Infinite 

diagrams!
=Σ
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Renormalization of the contact interaction

Why we use contact interactions? ?)(ψ)'(ψ)'()'(ψ)(ψ0int xxxxxxdxUH ↑↓
+
↓

+
↑ −= ∫ δ

For ultra-low temperature dilute gas, we may use any interaction potentials

(including contact interaction!), provided that they give the same s-wave

scattering length. However, the contact interaction is physical only when the

momentum k < Λ=1/r*, where r* is the effective range of interactions. This

requires re-normalization…
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What we have learned about scattering

L+++= VgVgVVgVVVeff

We can define an effective scattering potential,  

At the low energy, the scattering amplitude is given by,

We then consider the different partial-wave amplitude, i.e., 

rr dV
m

f eff )(
π2

),θ(
2 ∫−=

h
ϕ
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Renormalization of the contact interaction

Here, let us consider the vertex function (T-matrix), 

0U0U 0U+ + + …=

0U0U +=

ΓΓΓΓ

ΓΓΓΓ

k

kq−

)()()()1()( )0()0(

00 qkqGkGUUq
k

Γ−−+=Γ ∑We thus obtain                                         or

)(χ)( 1

0

1 qUq +=Γ −−

In more detail (ξk=εk−µ and f(x) is the Fermi distribution function)

∑∑ ∑
−

−

− −−

−+
+=

−−−
+=

Γ k kqk

kqk

kqk k ξξν

1)ξ()ξ(1

]ξων[

1

]ξω[

11

)(

1

0ω0 nmni m

B
i

ff

Uiii
Tk

Uq
m
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Renormalization of the contact interaction

Here, let us consider the vertex function (T-matrix), 

0U0U 0U+ + + …=

0U0U +=

ΓΓΓΓ

ΓΓΓΓ

k

kq−

versus

L+++= VgVgVVgVVVeff

If we identify               and 0UV = )(χ qg −=
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In our case, we consider s-wave interaction only. What is the relation between the vertex 

function and the scattering amplitude? 

The vertex function in vacuum (two-body) gives the scattering amplitude !!!

Here, the vacuum (two-body) means (there is no Fermi sea or µ=0):

afq
m

scvac π4)0(
2

≈==Γ
h

One may immediately find that (re-normalization),

∑+=
k k

22

0

2

1

π4 hh

m

Ua

m

Recall the momentum k should be smaller than 1/r*. However, this scale is very large and can 

be sent to infinitely large. This implies the bare interaction U0 is infinitely small!

Renormalization of the contact interaction

∑
−

−

−−

−+
+=

Γ k kqk

kqk

ξξν

1)ξ()ξ(1

)(

1

0 nvac i

ff

Uq
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More physics with the vertex function in vacuum (two-body)?

For a given q, the two-body vertex function may have poles, which correspond to bound 

states! And the position of the bound state determine the bound state energy, i.e., 

Actually, we may prove that,

What happens if a > 0?

Renormalization of the contact interaction

[ ] ∑
−−−

−
+=

Γ k kqkq ξξν

11

)ν,(

1

0 nvacn iUi

[ ] 0)0)(ν,(
1 =<→Γ −

vacn Ei qq d

;
2

0ω
π4π4

)0ω,(
3

2/3

2

1 q
q

ε
−++=+Γ ++− i

im

a

m
ivac

hh
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Consider the two-body vertex function,

Let us define,

Then,
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We can see immediately that if a > 0,

Therefore, we have the following picture:

Renormalization of the contact interaction

2
)(

2

2
q

d q
ε

+−=
ma

E
h

Potential depth  ̶ U0
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Experimentally, the interaction depth can be changed by using Magnetic Feshbach resonance!!!

Magnetic Feshbach resonance

Potential depth  U0<0 
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Application 1: 

Moving impurity (Fermi/Bose polaron)

Many-body problems are difficult; can you recommend the 

easiest one? Is the problem exactly solvable?

We are actually building a Fermi liquid 

from the bottom up!
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What is polaron?

What is the fate of a single impurity in a Fermi sea?

This is a crucial question for 

• electron transport in lattices

• Kondo problem (single magnetic impurity)

• mobility of 3He in 4He

• …

• determines the properties of many condensed matter 

systems at low temperature

Swimming in the Fermi sea

credit to Martin Zwierlein
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What is polaron?

Impurity interacts with a Fermi sea 
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Textbook for Kondo problem
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What is polaron?

credit to Martin Zwierlein

Swimming in the Fermi sea
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Feynman diagrammatic theory of Fermi polaron

10 years for polaron problem in cold-atoms, 

still a lot of surprise/fun and challenge! 
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First cold-atom on Fermi polaron
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Latest cold-atom on Fermi polaron
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Feynman diagrammatic theory of Fermi polaron

In momentum space, the Hamiltonian takes the form, 

Definition: – chemical potentials (grand-canonical 

ensemble), U0 – interaction strength 

↓↓
↓

+
↓↑↑

↑

+
↑ 








−+








−= ∑∑ k

k
kk

k
k

kk
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m
cc

m
cH µ

2
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2222

0

hh

↓↑,
µ

↑↓−
+

↓−
+
↑∑=

''
'

0int kkqkq
qkk

k
ccccUH

o↑��, �bz� � 1
�bz � |↑�

|↑�

The Green function of N spin-up atoms is exact! 

The Green function of 1 spin-down atom is to determined! 

o↓��, �bz� � 1
�bz � �↓� $ �↓ � Σ��, �bz�

�↓�
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Feynman diagrammatic theory of Fermi polaron

A naïve picture of the spectral function A↓(k, ωωωω) 

)
2

δ(ω)ω,(
22

)0(

↓
↓

−=
m

A
k

k
h

L
h

+−=
↓

]
2

δ[ω)ω,(
*

22

m
ΖA

k
k

Non-interacting

Interacting
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Feynman diagrammatic theory of Fermi polaron

This means that we approximate the spin-down Green function:

o↓ �, �bz � 4
�bz � ����2.∗

$⋯

o↓��, �bz� � 1
�bz � ����2.↓ $�↓ �Σ 0,0 � �ReΣ��↓�

����2.↓ �
�ReΣ�b �bz

Actually, we may Taylor-expand the self-energy at small � and	b

Σ �, �bz � Σ 0,0 $ � ¡¢
�£↓�

�¤�¤
�z↓+

� ¡¢
�` �bz $⋯

Then, the Green function takes the form, 
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Feynman diagrammatic theory of Fermi polaron

Therefore, we must have,

�↓ � Σ 0,0

The first equation determines the spin-down chemical potential, since here ωωωω is the 

energy measured from the chemical potential, and physically, the chemical potential 

corresponds to the energy cost of adding a particle with zero momentum k=0.

4 � 1
1 � �ReΣ�b

.∗

.↓ �
1 � �ReΣ�b
1 $ �ReΣ��↓�
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Now let us consider the following ladder diagrams for the self-energy:

Can you write down the expressions of the above diagrams, say the n-th diagrams?  

+ + +
All the 

ladder 

diagrams!

≈Σ

Feynman diagrammatic theory of Fermi polaron

q – k

⋯⋯
k1

q – k1 q – kn

knk k
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Now let us consider the following ladder diagrams for the self-energy:
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Feynman diagrammatic theory of Fermi polaron
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Feynman diagrammatic theory of Fermi polaron

q – k

⋯⋯
k1

q – k1 q – kn-1

kn-1

[ ] [ ]∑∑∑
−

−↓−↑↓↑↑
+ −−−−=Σ

11

)()()()()()()( 11110

1)(

nk

nn

kq

nnn kGkqGkGkqGkqGUk L

The answer is,

or
[ ]∑ −

↑
+ −−=Σ

q

nnnn qkqGUk
1

0

1)( )(χ)()()(

[ ] ∑ ∑∑ ↓↑↓↑ −−=−=
p

ppq
pi

ppnB

p

iGiiGTkpGpqGq
ω

)ω,()ων,()()()(χ

if we define
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Feynman diagrammatic theory of Fermi polaron

How about the summation over “n”?

[ ]∑ ∑∑
∞=

−

↑
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∞=
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1
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1

,...1
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Recall the identity:   L−+−=+ 21)1/(1 xxx

[ ] ∑∑ Γ−=+−=Σ
↑↑

qq

qkqGqUUkqGk )()()(χ1/)()( 00

where, the two-particle vertex function (within ladder diagrams) is given by,

)(χ
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)(χ1
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U
q

+
=
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Actually we already define the vertex function (T-matrix) earlier, 

0U0U 0U+ + + …=

0U0U +=

ΓΓΓΓ

ΓΓΓΓ

k

kq −

)()()()1()( )0()0(

00 qkqGkGUUq
k

Γ−−+=Γ ∑We thus obtain 

or

)(χ)( 1

0

1 qUq +=Γ −−

Feynman diagrammatic theory of Fermi polaron
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Feynman diagrammatic theory of Fermi polaron

This means we can directly calculate the self-energy by using the following diagram:

ΓΓΓΓ(q)

q – k

∑ ∑∑ Γ−−=Γ−−−=Σ ↑↑
q

qkq
ni

nmnB

q

iiiGTkqkqGk
ν

)ν,()ων,()()())(()(

First order diagram

One Fermi loop

ΓΓΓΓ 0U0U += ΓΓΓΓ

k
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Can you give an example of ignored diagrams?

Feynman diagrammatic theory of Fermi polaron
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Feynman diagrammatic theory of Fermi polaron

Now our problem becomes, solving the coupled equations (within ladder diagrams),

together the Dyson equation,

and subjected to the constriction (i.e., single impurity): 

Also, note the renormalisation for interaction,

∑ ∑ ↓↑
−− −−+=Γ

p

ppqq
pi

ppnBn iGiiGTkUi
ω

1

0

1 )ω,()ων,()ν,(
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q

qkqk
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nmnBm iiiGTki
ν

)ν,()ων,()ω,(

o↓��, �bz� � 1
�bz � �↓� $ �↓ � Σ��, �bz�

�↓ � Σ 0,0 \ 0
∑+=

k k
22
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2
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π2 hh

rr m

Ua

m
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Feynman diagrammatic theory of Fermi polaron

The coupled equation can be solved iteratively, but first, let us work out the first-

order iteration, i.e., using the non-interacting spin-down Green function,

Let us also focus on the zero temperature case. What is the vertex function?

Let us sum over the fermionic Matsubara frequency

at zero temperature!

o↓��, �bz� � 1
�bz � �↓� $ �↓

∑ ∑
↓−↑

−−

−−−
+=Γ

p ppq

q
pi ppn

Bn
iii

TkUi
ω

1

0

1

ξω

1

ξων

1
)ν,(

x

x

x

x

x

x

C

¥ ,`��
,8` $ 1

1
�vc � b � |↑¦7�

1
b � |↓� � 0?

�vc � |↑¦7�
x

x
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Feynman diagrammatic theory of Fermi polaron

You may only need to take care of the pole at �vc � |↑¦7�, so the result after 

Matsubara frequency summation is, 

Here, we have already replaced the bare interaction with the scattering length a and

θ(x) is the step function.

Remarks:

(1) For a given set of (q, �vc), it is a two-dimensional integral to calculate Γ ¦, �vc .
(2) We may and may not have a two-particle bound state. But from now on, let us 

assume there is no bound state, which means that the vertex function does not 

have poles in the left complex plane.  
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Feynman diagrammatic theory of Fermi polaron

Let us move on to calculate the self-energy,

with the assumption that there is no pole in Γ ¦, �vc in the left complex plane. 

We need to sum over the bosonic Matsubara frequency at zero temperature…

Let us consider the contour integral,
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Feynman diagrammatic theory of Fermi polaron

We only need to take care of the pole at �bz $ |↑¦7�, so the result after Matsubara 

frequency summation is, 

This is another two-dimensional integral! Together with

and �↓ � Σ 0,0 , we solve the Fermi polaron!

Remarks:

(1) This is the first-order iteration result (involving a four-dimensional integral). 

(2) We assume that Γ ¦, �vc 	does not have poles in the left complex plane. 

(3) It is possible to solve the full coupled equation! (Hu et al., arXiv:1708.03410). 
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Feynman diagrammatic theory of Fermi polaron

By the way, the self-consistent coupled equation will be,

Here, �↓ � Σ 0,0 .

Remarks:

(1) This is the zero-temperature result, so there are two step functions.

(2) We assume that Γ ¦, �vc 	does not have poles in the left complex plane. 
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Feynman diagrammatic theory of Fermi polaron

Once we solve the first-order iteration equation, we may immediately obtain the 

effective mass and residue by using,

Before we present the numerical result, it is useful to consider weak-coupling limit, 

where the scattering length a→0, 

This is simply the mean-field result.

Okay, we see the derivation of the Fermi polaron equations; but, what is the simple 

physical picture of the above diagrammatic theory?
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Fermi polaron: one-particle-hole excitation

Swimming in the Fermi sea

credit to Martin Zwierlein
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Fermi polaron: one-particle-hole excitation

Swimming in the Fermi sea
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Feynman diagrammatic theory of Fermi polaron

That is the reason why you have two step functions at zero temperature!!!

Here, �↓ � Σ 0,0 .

Remarks:

(1) This is the zero-temperature result, so there are two step functions.

(2) We assume that Γ ¦, �vc 	does not have poles in the left complex plane. 
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Feynman diagrammatic theory of Fermi polaron

Bored with equations? But,

Congratulations: You reproduce the above titled 

seminal PRL paper! Is research easy? 
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Feynman diagrammatic theory of Fermi polaron

Want to go beyond the ladder approximation?

ΓΓΓΓ3

We may find the three-particle vertex function:

And then the self-energy (corresponding to the two-particle-hole excitations):

ΓΓΓΓ3 ΓΓΓΓ3



9th ̶  12th, April 2018 WIPM, CAS

Feynman diagrammatic theory of Fermi polaron

In the unitary limit, where the scattering length a diverges, the energy of Fermi 

polaron (i.e., ªe � �↓) should be universal! i.e., 

Remarkably, A(T-matrix) = 0.6066, agrees very well with quantum Monte Carlo 

simulations: A(QMC) = 0.615.

«e � ��«↑}
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MIT experiment on attractive Fermi polaron

credit to Martin Zwierlein
�«↓
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MIT experiment on attractive Fermi polaron

molecular regime unitary limit
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MIT experiment on attractive Fermi polaron

Diamonds: QMC

Dotted: Diagrammatic result

Molecules

Mean-field
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Repulsive Fermi polaron?
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Repulsive Fermi polaron?

P. Massignan and G. M. Bruun, Eur. Phys. J D 65, 83 (2011).
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Repulsive Fermi polaron!

But, narrow Feshbach resonance…
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Repulsive Fermi polaron!

4
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Fermi polaron in 2D

Diagrammatic theory of 2D Fermi polaron
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Fermi polaron in 2D

Diagrammatic theory of 2D Fermi polaron
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Fermi polaron in 2D

A two-component 40K Fermi gas (broad MFR): no final-state effect
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Fermi polaron in 2D
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Fermi polaron in 2D
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Bose polaron

credit to Richard Schmidt 
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Bose polaron
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Bose polaron
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Bose polaron

Radio-frequency spectroscopy
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Bose polaron
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Latest experiment: Repulsive Fermi polaron

A two-component 6Li Fermi gas (broad Feshbach resonance)

Reverse radio frequency: no final-state effect
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Latest experiment: Repulsive Fermi polaron
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Latest experiment: Repulsive Fermi polaron
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Latest experiment: Repulsive Fermi polaron

Diagrammatic theory should be 

refined for repulsive polaron!



9th ̶  12th, April 2018 WIPM, CAS

Latest experiment: Repulsive Fermi polaron
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A simple many-body problem; yet, enormous experimental and theoretical efforts. 

This is exactly the beauty of many-body systems.

Rapid experimental advances over the past ten years. Yet, we may anticipate new 

big surprises!

Many theoretical attempts; however, the simple T-matrix diagrammatic theory works 

very well for attractive polaron (which is amazing!) ☺. 

Outlooks (we are clearly at the stage of making important contributions):

(1) How about the full self-consistent solution of the T-matrix theory? 

(2) What is the temperature effect?

(3) How about two-particle-hole excitations (Efimov physics)?

(4) …

Fermi/Bose polaron: Summary and outlooks

ΓΓΓΓ3

ΓΓΓΓ2


