

Dynamics of Two-Body Systems

Doerte Blume University of Oklahoma, Norman

Supported by the NSF.

This Lecture: Motivation, How To, and Two Examples

Why Do We Care About Dynamics?

Most processes that occur in nature are not in equilibrium.

(Ultra-) cold atoms provide test bed: Clean, good preparation fidelity,...

Probing and imaging are continually improving: Single-particle resolution. Interferometric probes. Non-destructive imaging.

Want to identify general, underlying/governing principles. Conditions for thermalization. Time scale separation.

Things to Keep in Mind

Time-independent Hamiltonian:

Eigen states evolve with time (trivial space-independent phase): $\exp\left(-\frac{\iota E_j t}{\hbar}\right)\psi_j.$

Energy is conserved (even for superposition state; assuming unitary time evolution).

Wave packet dynamics can be thought of as evolution of superposition state.

<u>Time-dependent Hamiltonian:</u>

Energy is not, in general, conserved.

How Do We Perform Time-Dynamics?

Given: $\Psi(\vec{r}, t_0)$. Wanted: $\Psi(\vec{r}, t)$.

Act with time evolution operator: $\Psi(\vec{r}, t) = U(t - t_0)\Psi(\vec{r}, t_0)$.

$$U(t-t_0) = exp\left(-\frac{\iota H(t-t_0)}{\hbar}\right).$$

Assume that *H* is independent of time for each $t - t_0$ interval.

How to implement $U(t - t_0)\Psi(\vec{r}, t_0)$ operation?

- 1) Expand *U* in terms of Chebychev polynomials (requires smooth potential).
- 2) Split-operator approach + zero-range interactions.

Expansion In Terms Of Chebychev Polynomials

Expand
$$U(t - t_0) = \sum_{k=0}^N a_k \phi_k \left(\frac{-\iota H(t - t_0)}{\hbar R} \right)$$

Tal-Elzer et al., JCP 81, 3967 (1984). Leforestier et al., J. Comp. Phys. 94, 59 (1991).

R: real number chosen such that $\frac{-\iota H(t-t_0)}{\hbar R} \in [-\iota, \iota]$.

k-th Chebychev polynomial is obtained recursively: $\phi_k(X) = 2X\phi_{k-1}(X) + \phi_{k-2}(X).$

Initialization: $\phi_0(X) = \Psi(\vec{r}, t_0)$ and $\phi_1(X) = X\Psi(\vec{r}, t_0)$.

 a_k : expansion coefficients (*k*-th order Bessel fct. of first kind).

Advantages: Large "time steps" $t - t_0$. Nice convergence of expansion.

Split-Operator Approach: Zero-Range Interactions

$$\Psi(\vec{r},t+\Delta t)=\int\rho(\vec{r}',\vec{r};\Delta t)\Psi(\vec{r}',t)d\vec{r}'.$$

Blinder, PRA 37, 973 (1988). Yan, Blume, PRA 91, 043607 (2015).

$$\rho(\vec{r}',\vec{r};\Delta t) = \left\langle \vec{r}' \left| exp\left(\frac{-\iota H \Delta t}{\hbar} \right) \left| \vec{r} \right\rangle.$$

Let $H = H_{ref} + V$. Let propagator for H_{ref} be $\rho_{ref}(\vec{r}', \vec{r}; \Delta t)$.

Use Trotter formula: $\rho(\vec{r}',\vec{r};\Delta t) \approx exp\left(\frac{-\iota V\Delta t}{2\hbar}\right)\rho_{ref}(\vec{r}',\vec{r};\Delta t) exp\left(\frac{-\iota V\Delta t}{2\hbar}\right).$

If H_{ref} contains kinetic energy plus two-body zero-range interaction, then $\rho_{ref}(\vec{r}',\vec{r};\Delta t)$ is known analytically.

Requires small Δt . Integrand oscillates with frequency $\propto (\Delta t)^{-1}$.

Example 1: Simplest Non-Trivial Open Quantum System

Dynamic properties of one-dimensional few-atom gases:

Tunneling dynamics in the presence of short-range interactions.

Serwane et al., Science 332, 6027 (2011) open

In cold atom context: Tunneling as spectroscopy.

More generally: Weird quantum mechanical phenomenon. Details: Gharashi, Blume, PRA 92, 033629 (2015).

Other works: Rontani, PRL 108, 115302 (2012); PRA 88, 043633 (2013). Lundmark et al., PA 91, 041601(R) (2015).

α -Decay (Textbook Example). E.g.: ²³²Th → ²²⁸U + ⁴He

Alpha Decay Through Tunneling

Explanation: α-particle repeatedly hits the barrier and each time there is a probability to get out.

Short-comings: ⁴He is not just repeatedly hitting the barrier (⁴He does not even exist before it has been separated from the daughter nucleus).

In reality: We have a complicated (open) A-body quantum system with certain final state distribution.

Different Example: H-Atom In External Field

Relatively simple single-electron problem. What happens when we go to He-atom? Two electrons...

He-Atom In External Field: Single-Particle vs. Pair Tunneling

Why do we care? Highly non-trivial particle-particle correlations are of fundamental interest.

Emitted electrons serve as a probe: The system is its own probe (we don't have any other microscope available...).

Tunneling Dynamics Of Two Interacting Particles

Somewhat similar to He atom (two electrons) in external field.

A key difference: The cold-atom experiments are effectively onedimensional.

From Zuern et al., PRL 108, 075303 (2012).

Electrons: Atoms in particular hyperfine state.

Electron-electron Coulomb potential: Zero-range contact potential. Electron-nucleus Coulomb potential: External harmonic trap.

Some General Considerations

Hamiltonian H = (kinetic energy operator) + (potential energy).

For single particle: potential energy = trapping potential $V_{trap}(z)$. For two particles: $V_{trap,1}(z_1) + V_{trap,2}(z_2) + (interaction potential)$.

Trap time scale: $T_{ho} = \omega^{-1}$. "Many runs against the barrier": Need to go to t >> T_{ho} .

Use damping (= absorbing boundary conditions) so that wave packet will not get reflected by the box.

Start With Single-Particle System

Functional form of $V_{trap}(z)$: $V_{trap}(z) =$ $pV_0[1-1/[1+(z/z_r)^2]]-\mu_m c_{|j>}B'z$

First task:

Can we look at outward flux and determine p and c_{|j>}B' through comparison with experimental data?

Second task: What happens if we prepare two-atom state? Look at upper branch.

Single-Particle Dynamics: Experiment vs. Theory

Experimental paper contains trap parameters p and c_{|j>}B' [Zuern et al., PRL 108, 075303 (2012)].

When we use these parameters, our tunneling rate γ differs by up to a factor of two from experimentally measured tunneling rate.

Why? Trap parameters p and c_{|j>}B' are calibrated using semi-classical WKB approximation. WKB tunneling rate is inaccurate.

> See also Lundmark et al., PRA 91, 041601(R) (2015).

Re-parameterize trap: Find parameters such that our γ agrees with experimental γ .

Fraction P_{sp,in} **Inside The Trap: Exponential Decay + Extras**

Overview: Upper Branch And Molecular Branch For Deep Trap

2D Numerics: Three Different Lengths ($z_0 \ll a_{ho} \ll \text{Num. Box } L$)

Region with two trapped particles (R_2) .

Regions with one trapped particle $(R_{1A} \text{ and } R_{1B})$. Region with zero trapped particles (R_0) .

To get average number of particles in trap, we monitor flux through $b_{2,1A}$, $b_{2,1B}$, $b_{2,0}$.

"Numerical" region (yellow): Apply damping so as to avoid reflection from edge of box.

Upper Branch: Comparison With Experimental Data

Fermionization Of Two-Particle System: Effect On Tunneling

There is a small difference since the trapping potential depends on the hyperfine state.

Also, the two distinguishable particle system exhibits dynamics that reflects the near degeneracy of two states.

Fermionization

Two distinguishable particles: Approximately even/odd

Example 1: What Did We Learn?

Tunneling is exponentially sensitive (well, we knew this...): Accurate trap parametrization is crucial.

Two-particle system in 1D: Flexible, "simple" toy model that allows for direct contact between theory and experiment.

Access to single-particle and pair tunneling dynamics.

Outcome can be used to analyze "ordering" of three- and higher-particle systems.

Magnetic ordering and spin chain Parish, Levinsen, Massignan, Santos, Deuretzbacher, Pu, Guan,...

Example 1: Beyond Two Particles

Example 2: Only Cold And Not Ultracold...

Cold And Not Ultracold Samples

Cold ⁴He atoms (sub-Kelvin temperatures):

Three-body (three-body Efimov state; no real-time dynamics)

Two-body (real-time dynamics)

In collaboration with Reinhard Doerner's group at Frankfurt University (lead postdoc Maksim Kunitski)

Size-selected nozzle beam expansion experiments and theory

Some Background on the Helium System...

• Dimer:

$$1 \text{ K} = 8.6 \times 10^{-5} \text{ eV}$$

- ⁴He-⁴He bound state energy E_{dimer} = -1.3mK.
- No J > 0 bound states.
- Two-body s-wave scattering length $a_s = 171a_0$.
- Two-body effective range $r_{eff} = 15.2a_0$ (alternatively, twobody van der Waals length $r_{vdW} = 5.1a_0$).
- Trimer:
 - Two J = 0 bound states with $E_{trimer} = -131.8$ mK and -2.65mK.
 - No J > 0 bound states.

• Binding energy of liquid helium is E/N = -7K.

Helium Trimer Excited State is an Efimov State

How to Prepare/Probe Helium Trimer Excited Efimov State?

Grating serves as mass selector (N times atom mass m).

Matter Wave Diffraction Experiment

Kornilov, Toennies, 10.1051/ epn:2007003

Nozzle temperature and pressure can be adjusted.

How to Prepare/Probe Helium Trimer Excited Efimov State?

Grating serves as mass selector (N times atom mass m): He₃ signal contains ground state trimer *and* excited state trimer. Laser beam ionizes trimer: Coulomb explosion of ⁴He₃ (3 ions).

Kinetic Energy Release Measurement

kinetic energy release (KER) in eV (log scale)

The ionization is instantaneous and the He-ions are distributed according to the quantum mechanical eigen states of the ground and excited helium trimers. Large r_{12} , r_{23} and r_{31} correspond to small KER=1/ r_{12} +1/ r_{23} +1/ r_{31} .

Reconstructing Real Space Properties

The excited state is eight times larger than the ground state. Assuming an "atom-dimer geometry", the tail can be fit to extract the binding energy of the excited helium trimer. Fit to experimental data yields 2.6(2)mK. Theory 2.65mK.

Normalized Structural Properties of ⁴He₃

Divide all three interparticle distances by largest r_{ij} and plot k^{th} atom (positive y): Corresponds to placing atoms i and j at (-1/2,0) and (1/2,0).

Ground state and excited states have distinct characteristics!!! Message: Reconstruction of quantum mechanical trimer density.

Summary: Today, Just Two Particles. Want to Treat More...

Thanks To Collaborators

Lecture 2:	Lecture 1:
Debraj Rakshit,	Chris Greene:
Xiangyu (Desmond) Yin:	Scattering physics.
ÈCG approach.	Brian Granger: Effective odd-z coupling
John Bohn, Michelle Sze:	constant, frame transformation.
Trapped	Krittika Kanjilal:
bosons.	p-wave and odd-z pseudopotentials.
Qingze Guan:	
Generalized radial scaling	Grigori Astrakharchik, Stefano Giorgini:
law, ECG	Quasi-1D Bose and Fermi gases.
approach.	
•••	Su-Ju Wang, Qingze Guan: Wayequide + SOC
	<text><text></text></text>