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Outline Of  This Lecture
Why are few-body systems interesting?

Understanding transition from few to many.
Neat systems on their own.

Discussion of  one few-body technique: 
Stochastic variational approach with explicitly correlated 
Gaussians.

Application of  this approach to…

…spinless bosons under external harmonic confinement.

…bosons in the presence of  1D spin-orbit coupling. 



Going From Few To
Many…

• Microscopic to macroscopic:

• Doped helium clusters: Molecular rotations, microscopic 
superfluidity,... 

• Metal clusters: conductivity, designing materials,...

• What is special about cold atomic Bose and Fermi systems?
• Universal behavior.
• Much experimental progress!
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Figure from
Toennies
et al.,
Physics
Today 54, 
31 (2001).

Examples:



Use Few-Body System To 
Understand BCS-BEC Crossover

Images (experiment) from JILA website: Jin group, JILA.
See Regal et al., PRL 92, 040403 (2004).

STABLE GAS!!! Dilute gas:
!" ≪ $%&, |$)|.
Or * " !"+ ≪ ,. 

aho/as

�BCS� �BEC�
Weakly-attractive
atomic Fermi gas

Weakly-repulsive
molecular Bose 
gas

Strongly-
interacting
(unitarity)

Levinsen et al., J. Phys. B 
50, 072001 (2017);
Blume, Rep. Prog. Phys. 75,
046401 (2012).



Weakly-bound three- and four-body bound states are absent.
Atom-dimer s-wave scattering length aad » 1.2as.
Dimer-dimer s-wave scattering length add » 0.6as.

Petrov, PRA 67, 010703(R) (2003); Petrov, 
Salomon, Shlyapnikov, PRL 93, 090404 (2004).
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weak attraction

weak repulsion

Dimer Bound State But No Up-
Up-Down Trimer Or Tetramer

Free space
(no trap).
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Borromean rings:
The blue ring lies under
the green ring (the 
“blue-green dimer” is 
unbound). If  the red 
ring is cut open, the 
trimer flies apart.



BBB: Let s-Wave Scattering 
Length Be Infinitely Large

Hyperradial and hyperangular motion separate exactly: 
! = # $%&'() * + ; $
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Peculiar Three-Boson 
Efimov States

! = #$%%
%&$%

+ #$%,)%

%&$%,)
+ ∑+,-.%/ 0+- + .)/ 0$ − 0% / 0% − 0) .

.% = 23ℏ%56
7 and .) = # ℏ%9∗;2

7 , where <=>?@ = ℏ%9∗%
7 .

Time-dependent SE for ! possesses continuous scaling 
symmetry: 
@ → B%@; 0 → B0; 56 → B56; < → BC%<; 9∗ → BC$9∗

Time-dependent SE for ! also possesses discrete scaling 
symmetry: 
@ → BD%@; 0 → BD0 56 → BD56; < → BDC%<; 9∗ → 9∗; BD ≈ %%. G

Braaten, Hammer,
Physics Reports 
428, 259 (2006).
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Finite s-Wave Scattering Length: 
Universally Linked States

stronger attraction
V(r)

r

V(r)

r

Spectrum is 
determined
by !" and  
three-body
parameter #∗.

Numerical test 
for two-body plus 
three-body 
Gaussian 
potential: Perfect 
“collapse” of  
neighboring 
energy levels.
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Measurement Of  Loss Rate For 
Non-Degenerate 133Cs Gas

g-wave

g-wave

Enhanced losses when 
trimer is degenerate 
with three free atoms.

!" = −%&'!( !" = −)(, +%(!(

Ratio of ,( = )+. ' (compared 
to 22.7)! Confirmation of 
discrete scaling symmetry.

−
|/
|

Huang et al., PRL 112, 190401 (2014).



Basis Set Expansion: 
Variational Approach

Let !" with " = $, &,⋯ be an orthonormal complete set.

Any eigen state () with energy *) of + can be expanded as 
() = ∑"-$. /"

())!".

In reality: 2) = ∑"-$
34 /"

())!" (34 < ∞; 2) is an approximation to ()).

Form matrix 7 with matrix elements 7") = /"
()).

Eigenvalues 8) of matrix equation + 7 = 8⃡ 7 have the following property:

*$ ≤ 8$, *& ≤ 8&,⋯ (variational upper bounds).



Basis Set Expansion:
Variational Approach

Now: Allow !" with " = $, &,⋯ to be linearly dependent (but not too 
much).

Expand () = ∑"+$
,- ."

())!" (,- < ∞; () is an approximation to exact eigen
state 3)).

Form matrix 4 with matrix elements 4") = ."
()).

The eigenvalues 5) of generalized eigen value equation 6 4 = 5⃡ 8 4, 
where 8") = 9"|9) , have the following property:

;$ ≤ 5$, ;& ≤ 5&,⋯ (variational upper bounds).



Basis Set Expansion:  
Variational Approach

Take advantage of  the fact that the basis functions !" can be 
“anything”.

Pick !" such that integrals have compact analytical expressions.

Pick !" such that the different length scales of  the system are covered.

Take advantage of  the fact that low-energy Hamiltonian can be 
constructed using different functional forms for interaction potential:

# =%
"
&" + ()*+,," + (./0," +%

"12
(34,"2 + %

"1215
(64,"25

(34,"2 = 789:, −
*"23
3*83

Usually, *8 ≪ +=/ (>88+8 ≪ >8888+8): 
Need to resolve multiple scales. 
Use !" with different widths.



Basis Set Expansion:
Stochastic Variational Approach

Method first introduced to cold atom community for bosons by Sorensen, Fedorov and 
Jensen, AIP Conf. Proc. No. 777, p. 12 (2005). See also work on fermions by von Stecher
and Greene, PRL 99, 090402 (2007). For details see: Suzuki and Varga (Springer, 1998); von 
Stecher, Greene, Blume, PRA 77, 043619 (2008). 

r
r0

ahoIdea: 

Use basis functions that involve Gaussians with 
different widths in interparticle distances 
(correlations). 

Large number of  non-linear parameters that are 
being optimized semi-stochastically.

Simplest case: Basis functions with ! = # and $ = +&.
() = *+, −∑/012 3/14

45),/14 = *+, − &
4 7

8 9 7 .

7: Denotes Jacobi vectors :&, :4,⋯. 
9: (2 − &)×(2 − &) matrix with 2(2 − &)/4 independent parameters.

:&

:4
:A



Stochastic Variational Approach: 
Outline of  Algorithm

• Pick basis function !" and calculate #".

• Goal: Add !$.

• Procedure:
• Pick !$,",…,!$,& (&~" − "))))).
• Calculate #$,",…,#$,&. #$,* is eigen value of  target state if  basis function 
!$,* is added to basis.

• Determine !$ = !$,* such that #$ = #$,* = ,-.(#$,",…,#$,&).
• Diagonalize Hamiltonian matrix to obtain eigenvalues and eigenvectors.

• To add !1, proceed as above.

• Once basis set is “complete”, calculate structural properties.

• Can optimize ground or excited state. 

• Can optimize multiple states simultaneously.



Harmonically Trapped Five-
Boson System: Convergence

r0 = 0.01aho
as = 0.0096aho

For each Nb, try 
a few 1000 and 
keep the best.

Used energy to benchmark effective 
field theory Hamiltonian: 
Johnson, Blume, Yin, Flynn, 
Tiesinga, NJP (2012).



Lowest energy at unitarity 
(1/as=0):

r0=0.07aho

0.04

Two-peak structure of up-
down pair distribution function: 
Small !"# peak: pair formation.
Large !"# peak: unpaired.

Trapped (3,3) System: Energy 
And Pair Distribution Function

extrapolate to obtain
zero-range energy



A Few More Comments

Basis functions need to be symmetrized: Five identical bosons 
implies 5!=120 permutations.

Use physical insight to choose !",$% efficiently:
E.g., “2+1” or “1+1+1” configuration.

If  parameter windows for non-linear variational parameters are not 
set properly, a non-converged energy may appear converged…

Basis sets tend to be small (a few 1000); but we work hard to select 
the basis functions we want.

Beyond &' = )* states? Many possibilities… Global vector 
approach is quite convenient.



Application: Four Harmonically 
Confined Bosons

Want to know:
If  we start in the non-interacting state and slowly increase 
the s-wave scattering length to an infinitely large value, 
what type of  state do we end up in?
State that is dependent on !" only? 
Or state that depends on three-body parameter #∗ as well?

Why do we want to know this?
Recent experiments on Bose gases in unitary regime (Cornell/Jin, 
Hadzibabic, Salomon): many-body treatment of  these systems is hard.
Attempts to gain insight based on two- and three-body problem.
Go a step further and look at % = ' bosons.

Approach:
Calculate and analyze four-body spectrum.



First: Think About Three 
Harmonically Confined Bosons 

There exists a 
smallest trimer:

!"#$ = &'()/ℏ&
,/-

provides cutoff; this is
*not* trap specific.

There exists a 
largest trimer
(./0 provides 
cutoff).

12 = 34 trap states that depend on three-body parameter 
(“squished” version of  free-space trimers).

There also exist 12 = 34 trap states that are largely independent 
of  three-body parameter (eigenvalues 5,, … are real).

Semi-analytical solution: Werner, Castin, PRL 97, 150401 (2006).



Energy Spectrum For Trapped 
Three-Boson System

! = #$% + #$%,( + )%* +$% + )%* +$( + )%* +%( +
)(* +$%% + +$(% + +%(% .

+$%
+$%,(

)%*: Attractive two-body Gaussian.
)(*: Repulsive three-body Gaussian. Hardcore interactions universal

non-universal



Energy Spectrum For Trapped 
Four-Boson System

Hardcore
interactions

depth of  two-body potential increases



Energy Spectrum For Trapped 
Four-Boson System

Hardcore
interactions

gas-like or 
BEC state



Classification Of  States At 
Unitarity

Two-body contact:

Three-body 
contact:

Universal states at unitarity: ! = ($% + '( + ))ℏ,
Wave function is product state: - = . / 0(123456); 123456 hyperradius.

Seminal work by 
Tan. 
Smith et al., PRL
112, 110402 (2014).



Energy Spectrum For Trapped 
Four-Boson System

Hardcore
interactions

gas-like or 
BEC state



Pair Distribution Function For 
Various s-Wave Scattering Lengths

“node” at !"# ≈ %&
“node” at !"# ≪ %&
(saturation)



Four Harmonically Trapped 
Bosons: What Did We Learn?

Explicitly Correlated Gaussian basis can be used to map out good 
portion of  eigen energies.

BEC state at unitarity seems to be quasi-universal (weak 
dependence on three-body parameter).

Saturation of  “near zero crossing” of  pair distribution function.

Future:

Like to calculate four-body dynamics…

Blume, Sze, Bohn, PRA 97, 033621 (2018)
Sze, Sykes, Blume, Bohn, PRA 97, 033608 (2018)



Three Bosons With 1D Spin-
Orbit Coupling

Effects of  modified single-particle dispersion on three identical 
bosons with large s-wave scattering length: 
What happens to discrete scaling symmetry/Efimov physics?

Fermions with 3D SOC: 
Shi et al., PRL 112, 013201 (2014); PRA 91, 023618 (2015).

discrete scaling 
symmetry

does not survive

discrete scaling 
symmetry

does survive

We find for BBB with 1D SOC: Discrete scaling symmetry does 
survive.
Conjecture: Should hold for any type of  SOC. 



Two Bosons With One-
Dimensional Spin-Orbit Coupling 

3D system with 1D SOC (spin-orbit coupling + Raman coupling + 
detuning) → Two-body bound state or not? 

Rewrite Hamiltonian in relative coordinates (" and # with reduced 
mass $) and center-of-mass coordinates (% and & with total mass '):

( = ("*+ + (-.

("*+ &/
= #01 + #21 + #/1

1$ 31
(5)⨂311 + ℏ9:;#/$ </5 ⨂311 − 315 ⨂</1

+ > <05 ⨂311 + 315 ⨂<01 + ? + ℏ9:;&/' </5 ⨂311 + 315 ⨂</1

+ @1A(")31
(5)⨂31

(1)

("*+, &/ = C

x

coupling

parametric dependence on CoM momentum 



Basis Functions: 
Need To Account For Spin…

!" = $%& −(
)*+

, -)+.
./",)+. + (

+23

,43
5)",+ 6 7+

Spatial two-body
correlations

Correlation between spin and 
spatial degrees of  freedom.

Can be rewritten as
∑+23, 59",+ 6 -+

Matrix elements have compact analytical expressions.

:-;< = ∑"23
,= >"?" and  ?" = @(!" 73, … , 7,43 C")

Bound state:
Energy of  dimer with CM momentum EF is more negative than that of  two free 
atoms with the same EF.
Energy of  trimer with CM momentum EF is more negative than that of  three 
free atoms with the same EF and that of  a dimer and an atom with the same EF.
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Two Identical Bosons: 
! = #$%&; '( ≥ * (+↑↑ = +↑↓ = +↓↑ = +↓↓)

increase 
'( = ( + ℏ0%&123 .
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So far: 3D Space with 1D SOC.
Now: 3D Space with 3D SOC.  

Three BB, 
one FF 
bound 
states
(! = #$%&)

Scattering 
threshold:

Where does 
the “shape” 
come from?

BB (gr.) BB (1st exc.)

BB (2nd exc.) FF (gr.)

DM

SM

!/$%&

( )/
$ %

&



“Shape”? 
Simple Qualitative Picture

! = # (analytical)$ = %&'( (numerical)
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the dispersion has three global 
minima

momentum space real space

Weakly-bound state for 
certain negative free-space 
s-wave scattering lengths.

For FF, see: Shenoy, PRA 88, 033609 (2013).
Dong et al., PRA 87, 043616 (2013).
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With SOC: Fate Of  Three-
Boson Efimov States?

! = (
$%&&

&'%&
+
$%&,*&

&'%&,*
++

,-.

/&0 1,. + /*0 1% − 1& 0 1& − 1* )45

+
ℏ.78
9

… + ; … + <0 … .

Continuous scaling symmetry! 
> → @&>; 1 → @1; A7 → @A7; .78 → @B%.78; ; → @B&;; 
<0 → @B&<0; C → @B&C; D∗ → @B%D∗

Discrete scaling symmetry? 
> → @F&>; 1 → @F1 A7 → @FA7; .78 → @FB%.78; ; → @FB&;; 
<0 → @FB&<0; C → @FB&C; D∗ → D∗; @F ≈ &&. H

all three bosons
feel 1D SOC



Generalized Radial Scaling Law? 
!" = $ And (&∗))* = ++,$

(-./))* = 0$12,$.

3 = ($. $$*+/0$1) ℏ1
7,$1

.

(-./))* = 12,$.

3 = $. $$*+ ℏ1
7,$1

.

898,:; ×0$1

×=

×*

×*

dimer dimer



Generalized Radial Scaling Law 
(Five Instead Of  Two Axes)

!"

!"
!#

!#

Solid line (gr. st.):
(%∗)() = ++,-.
(./0)() = "1,-.
2 = "!/0; 45 = -.
Dots (exc. st. of  6
with scaled 
parameters). 

Discrete 
scaling 
symmetry 
(7- ≈ "". :)! 
;/ → 7-;/; 
./0 → 7-()./0; 
= → 7-("=; 
45 → 7-("45; 
! → 7-("!.
%∗ → %∗.

Solid lines (gr. st.
manifold):
(%∗)() = ++,-.
(./0)() = )--,-.
2 = "!/0. 45 = -.
Dots (exc. st.
manifold of  6 with 
scaled 
parameters). 

Collapse of  
neighboring energy levels!

Collapse of  neighboring 
energy manifolds!



Proposal:
Experimental Observability

Using three-body 
parameter for 133Cs.
Lowest state in excited 
state manifold.
("#$)&' ≈ '), '+),).
"#$
.∗
≈ '. 01 (exc. state).

2 = 14#$.

Ground state resonance 
mostly unchanged. 

Excited state resonance: 
Enhanced losses between 
,# ≈ −6, 67),) and 
,# ≈ −1), '7),). 
Scattering length window!
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Summary
Why are few-body systems interesting?

Discussion of  one few-body technique: 
Stochastic variational approach with explicitly correlated 
Gaussians.

Application of  this approach to…

… spinless bosons under external harmonic confinement.

…bosons in the presence of  1D spin-orbit coupling. 
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