The few-atom problem

Dmitry Petrov

Laboratoire Physique Théorique et Modèles Statistiques (Orsay)

Few-body problem in ultracold gases?

Microscopic level

Path towards many-body case

Exact account of few-body correlations, cluster expansion, virial coefficients...

Size of configuration space

N-body problem in 3D

- 3N (degrees of freedom)
- 3 (translational invariance)
- 3(2) (rotational invariance)

= 3N-6(5)

- 2-body Single coordinate. Radial Schrödinger equation. Clculations possible for realistic potentials
- 3-body 3 coordinates. Involved numerics with simple model potentials.
- 4-body 6 coordinates. Reliable solution very difficult even for simple model potentials

Fortunately, many interesting few-body problems can be solved in an elegant way by using the short-range character of interparticle forces

Some history (of the zero-range approach)

Bethe – Peierls boundary conditions

Thomas effect

Example: three ⁴He atoms form much deeper bound molecule than two ⁴He atoms

Neutron-deuteron scattering

Skorniakov and Ter-Martirosian (1957) derived an integral equation for the neutron-neutron-proton 3-body problem in the zero-range approximation. They calculated the neutron - deuteron scattering length.

Exact in the limit $R_e \ll a$

This results are more applicable for the field of ultracold gases because

Nuclear matter:

 $R_e \approx 10^{-13} \,\mathrm{cm}$, $a \approx 4.5 \cdot 10^{-13} \,\mathrm{cm}$

Ultracold atoms:

 $R_e \sim 0.5 \cdot 10^{-6} \,\mathrm{cm}$, $a > 10^{-5} \,\mathrm{cm}$

Three Body Problem for Short Range Forces. I. Scattering of Low Energy Neutrons by Deuterons

G. V. SKORNIAKOV AND K. A. TER-MARTIROSIAN (Submitted to JETP editor July 23, 1955) J. Fxptl. Theoret. Phys. (U.S.S.R.) 31, 775-790 (November, 1956)

$$(\boldsymbol{\alpha} - \boldsymbol{\gamma}_k) \boldsymbol{\chi} (\mathbf{k}) \tag{12}$$

+
$$8\pi \int \frac{d\mathbf{k}'}{(2\pi)^3} \frac{\chi(\mathbf{k}')}{k^2 + k'^2 + \mathbf{k}\mathbf{k}' - (ME/\hbar^2) - i\tau} = 0.$$

The solution of this equation determines the wave function of the system, in accord with Eq. (11). For states with a definite quantity of momentum, Eq. (12) reduces to an equation for a function which depends on one independent variable, which can be solved numerically.

The idea for this consideration of the three body problem was supplied by L. D. Landau.

Borromean binding

Borromean rings – symbol of strength in unity. Remove one ring and the other two fall apart

The symbol is used in a number of other applications

Borromean sculptures (John Robinson)

Borromean binding

Efimov effect

Efimov (1970) found that the number of trimer states

$$N_{tr} \sim \frac{s_0}{\pi} \log(|a|/R_e) \rightarrow \infty$$

with the accumulation point at E=0

Efimov state – weakly bound trimer state

Discrete scaling symmetry: three-body observables depend on R_e , but if $R'_e = R_e \exp(\pm \pi/s_0)$, they do not change

For three identical bosons $s_0 \approx 1.00624$. This number depends on the symmetry (Fermi, Bose) and on the masses of particles

Few-ultracold-atom physics after 1995

BEC of atoms is metastable. Increasing density leads to enhanced 3-body recombination

3-body recombination to a weakly bound state Theoretical papers: Fedichev, Reynolds, and Shlyapnikov (1996) Nielsen and Macek (1999) Esry, Greene, and Burke (1999) Bedaque, Braaten, and Hammer (2000)

MIT (1999) BEC + Feshbach resonance Strong losses

Difficult to reach strongly interacting regime with bosons! Efimov states are not stable because of the relaxation to deep molecular states

2003: BCS-BEC crossover, molecules

Few-body problem in this case is non-efimovian

Skorniakov,

Ter-Martirosian (1957)

$$a_{dd} = 0.6 a$$

DSP, Salomon,

Shlyapnikov (2003)

DSP (2003)

Modern history

Efimovian theme:

- Homonuclear bosons (Innsbruck, Florence, Rice, Ramat Gan, Paris)
- Heteronuclear mixtures (Florence, JILA, Heidelberg, Chicago...)
- Three-component Li (Heidelberg, PennState)
- Effective-range effects; wide and narrow resonances
- Van der Waals universality of the three-body parameters

Non-efimovian theme:

 Fermi-Fermi Li-K mixture (Innsbruck, Singapour), Li-Cr (Florence), K-Dy (Innsbruck)...

Theory (mostly):

- Mixed-dimensional
- Rabi- and spin-orbit-coupled mixtures

Heavy-heavy-light problem

- Crystallization

- pentamers...

- trimers

- tetramers

- atom-dimer scattering

3-body problem. Born-Oppenheimer approximation

a

Effective interaction between heavy atoms is provided by exchange of the fast light particle. Born-Oppenheimer approximation. Fonseca, Redish, Shanley (1979)

Light atom wavefunction:

$$\psi(\mathbf{r}) = \frac{\exp(-\kappa |\mathbf{r} - \mathbf{R}/2|)}{|\mathbf{r} - \mathbf{R}/2|} + \frac{\exp(-\kappa |\mathbf{r} + \mathbf{R}/2|)}{|\mathbf{r} + \mathbf{R}/2|}$$

on gives:
$$\frac{1}{a} - \kappa + \frac{\exp(-\kappa R)}{R} = 0$$

Bethe-Peierls boundary condition give

$$R \ll a \implies \kappa \approx \frac{0.567}{R}$$

$$U_{eff}(R) = -\frac{\hbar^2 \kappa^2}{2m} \approx -0.16 \frac{\hbar^2}{mR^2}$$

 $\left| -\frac{\hbar^2}{M} \frac{\partial^2}{\partial R^2} + \widetilde{U}_{eff}(R) \right| \chi(R) = E \chi(R)$

Solving the Schrödinger equation for the heavy atoms we take into account their statistics:

$$\widetilde{U}_{eff}(R) \approx U_{eff} + \frac{\hbar^2 l(l+1)}{MR^2}$$

Heavy fermions $\implies l=1,3,5...$ Heavy bosons $\implies l=0,2,4...$

 $\widetilde{U}_{eff}(R) \approx \frac{\hbar^2}{MR^2} \left| \frac{l(l+1) - 0.16 \frac{M}{m}}{\beta} \right|$

 $R \ll a, E = 0 \implies (-\partial^2/\partial R^2 + \beta/R^2)\chi(R) = 0$ $\chi(R) = R^{\nu} \qquad \nu_{\pm} = 1/2 \pm \sqrt{\beta + 1/4}$

Efimov effect. Discrete scaling symmetry

$$R \ll a, E = 0 \implies (-\partial^2/\partial R^2 + \beta/R^2)\chi(R) = 0$$
$$\chi(R) \propto R^{\nu} \qquad \nu_{\pm} = 1/2 \pm \sqrt{\beta + 1/4}$$

$$\beta = \left| l(l+1) - 0.16 \frac{M}{m} \right| < -1/4 \implies v_{\pm} = 1/2 \pm i s_0 \Longrightarrow \chi(R) \propto \sqrt{R} \sin(s_0 \log R/r_0)$$

"Fall of a particle to the center in R^{-2} potential". Infinite number of zeros of the wavefunction. Infinite number of trimer states. Efimov effect Discrete scaling symmetry. Multiplicative factor $\lambda = \exp(\pi/s_0)$

$$\chi(\lambda R) \propto \chi(R)$$

Manifestation of discrete scaling symmetry

Values of s_0 and the scaling parameter $\lambda = \exp(\pi/s_0)$

Observation of discrete scaling symmetry

Fermion or boson m 👝 Recombination loss rates in a cold mixture: MHelfrich, Hammer, Petrov (2010) Boson Boson Rate constant for three-body Rate constant for three-body recombination to a weakly $\rightarrow \alpha_s = C(M/m) \frac{\sin^2[s_0 \log(a/a_{0*})] + \sinh^2 \eta_*}{\sinh^2(\pi s_0 + \eta_*) + \cos^2[s_0 \log(a/a_{0*})]} \frac{\hbar a^4}{m}$ bound molecular level $\mathbf{r} \alpha_d(a>0) = C(M/m) \frac{\operatorname{coth}(\pi s_0) \operatorname{sinh}(\eta_*) \operatorname{cosh}(\eta_*)}{\operatorname{sinh}^2(\pi s_0+\eta_*) + \cos^2[s_0\log(a/a_{0+1})]} \frac{\hbar a^4}{m}$... and to deeply bound states $\sim \alpha_d(a < 0) = C(M/m) \frac{\coth(\pi s_0) \sinh(\eta_*) \cosh(\eta_*)}{\sinh^2 \eta_* + \cos^2[s_0 \log(|a|/a_{0*})]} \frac{\hbar a^4}{m}$ where $\begin{cases} C(M/m) = 64 \left| \left| \frac{M+m}{M} \right|^2 \arcsin\left| \frac{M}{M+m} \right| - \frac{\sqrt{m(2M+m)}}{M} \right| \\ \eta_* \quad \text{- elasticity parameter} \\ a_{0*} \quad \text{- the value of } a \text{ where } \alpha_s(a) \text{ reaches its minimum} \end{cases}$

Recombination maxima symmetric with respect to the resonance center!

Skorniakov and Ter-Martirosian zero-range approach

2D scattering by a curve

 $\int_{S} G_{E}[\rho_{s}(x) - \rho_{s}(x')]f(x')dx' + f(x)/g(x) = -\psi_{0}[\rho(x)]$

Fredholm int. eq.

Example: quantum billiard

 $- \nabla_{
m
ho}^2 \psi(
m
ho) = E \psi(
m
ho)$ Helmholtz vs Fredholm ;)

- huge 2D configurational space
- + sparse matrix
- difficult to implement boundary conditions
- + more general; works with any potential

Calculation of ~1000 energy levels of Sinai billiard Bohigas, Giannoni, Schmit (1984)

They call the method Korringa-Kohn-Rostoker and cite Berry...

$$\int_{S} K_{E}(x, x') f(x') dx' = \lambda f(x)$$

- + 1D configurational space
- full matrix
- + boundary conditions are taken into account naturally
- only billiard

1D three-body = 2D one-body

Some simple applications

Trimer in a Bose-Bose mixture

Rb-K-K Bose-Fermi-Fermi, non integrable M. Colome-Tatche and DSP (2011)

State number 1835

Comparison with Born-Oppenheimer

Comparison with hyperspherical approach

$$(\alpha - \gamma_{k}) \chi (\mathbf{k})$$
(12)
$$\overline{+ 8\pi \int \frac{d\mathbf{k}'}{(2\pi)^{3}}} \frac{\chi (\mathbf{k}')}{k^{2} + k'^{2} + \mathbf{k}\mathbf{k}' - (ME / \hbar^{2}) - i\tau} = 0.$$

The solution of this equation determines the wave function of the system, in accord with Eq. (11). For states with a definite quantity of momentum, Eq. (12) reduces to an equation for a function which depends on one independent variable, which can be solved numerically.

The idea for this consideration of the three body problem was supplied by L. D. Landau. Heteronuclear Fermi-Fermi mixture in the non-efimovian regime

3-body problem. Born-Oppenheimer approximation

Effective interaction between heavy atoms is provided by exchange of the fast light particle. Born-Oppenheimer approximation.

Light atom wavefunction:

$$\psi(\mathbf{r}) = \frac{\exp(-\kappa |\mathbf{r} - \mathbf{R}/2|)}{|\mathbf{r} - \mathbf{R}/2|} + \frac{\exp(-\kappa |\mathbf{r} + \mathbf{R}/2|)}{|\mathbf{r} + \mathbf{R}/2|}$$

on gives:
$$\frac{1}{a} - \kappa + \frac{\exp(-\kappa R)}{R} = 0$$

Bethe-Peierls boundary condition gives:

$$R \ll a \implies \kappa \approx \frac{0.567}{R}$$

$$U_{eff}(R) = -\frac{\hbar^2 \kappa^2}{2m} \approx -0.16 \frac{\hbar^2}{mR^2}$$

$$R \gg a \implies \kappa \approx \frac{1}{a}$$

$$U_{eff}(R) \approx -\frac{\hbar^2}{2ma^2} = -|\epsilon_0|$$

 $\left| -\frac{\hbar^2}{M} \frac{\partial^2}{\partial R^2} + \widetilde{U}_{eff}(R) \right| \chi(R) = E \chi(R)$

Solving the Schrödinger equation for the heavy atoms we take into account their statistics:

$$\widetilde{U}_{eff}(R) \approx U_{eff} + \frac{\hbar^2 l(l+1)}{MR^2}$$

Heavy fermions $\implies l=1,3,5...$ Heavy bosons $\implies l=0,2,4...$

 $\widetilde{U}_{eff}(R) \approx \frac{\hbar^2}{MR^2} \left| \frac{l(l+1) - 0.16 \frac{M}{m}}{\beta} \right|$

 $R \ll a, E = 0 \implies (-\partial^2/\partial R^2 + \beta/R^2)\chi(R) = 0$ $\chi(R) = R^{\nu} \qquad \nu_{\pm} = 1/2 \pm \sqrt{\beta + 1/4}$

"Fall of a particle to the center in *R*⁻² potential". Infinite number of zeros of the wavefunction. Infinite number of trimer states. Efimov effect

"Universal" regime in the sense that one needs no three-body parameter. Fermi statistics wins over the induced attraction

Heavy-heavy-light problem, magic mass ratios

13.4

12

10

E_{1c}

13

8

Born-Oppenheimer approximation

Born-Oppenheimer approximation

S-wave atom-dimer repulsion

Light fermion in the antisymmetric "ungerade" state

6

Collision of atomic and molecular thermal clouds

(N+1)-body problem

How many heavy fermions can be bound by a single light atom?

	Symmetry L^{π}	appear at <i>M/m></i>	Efimovian for <i>M/m></i>
2+1 trimer	1-	8.173 Kartavtsev&Malykh'06	13.607 Efimov'73
3+1 tetramer 🔊	1+	~9.5 Blume'12	13.384 Castin,Mora&Pricoupenko'10
4+1 pentamer	? ?	?	?
:	?	?	?
N+1-mer	?	?	?

(N+1)-body problem

How many heavy fermions can be bound by a single light atom?

	B. Bazak and DSP (2017)		
	Symmetry L^{π}	appear at <i>M/m></i>	Efimovian for <i>M/m></i>
2+1 trimer	1-	8.173 Kartavtsev&Malykh'06	13.607 Efimov'73
3+1 tetramer 🔊	1+	$\sim 9.5 \rightarrow 8.862(1)$ Blume'12	13.384 Castin,Mora&Pricoupenko'10
4+1 pentamer	0-	9.672(6)	13.279(2)
:	?	?	?
N+1-mer	?	?	?

Effective-range effects

Effective-range effects

- History and basics of the zero-range few-body physics
- Efimovian and non-efimovian regimes of three-body systems with zero-range interactions
- Approach of Skorniakov and Ter-Martirosian and its comparison with the Born-Oppenheimer and hyperspherical methods
- Universal trimers, tetramers, and pentamers in mass-imbalanced fermionic mixtures