Wuhan Institute of Physics and Mathematics

April 25, 2017

Soliton Collisions on the Edge of Integrability

Jason Nguyen, Paul Dyke, De Luo (Rice)

Boris Malomed (Tel Aviv)

Outline

Intro to BEC with a<0

Intro to solitons

Phase-dependent collisions

Role of integrability

Quantum Gases

• Quantum regime $n\Lambda^3 \ge 1$

n = density $\Lambda = de Broglie wavelength$

Identical particles!

- Gas phase $n \approx 10^{12} \text{ cm}^{-3}$
- Low temperature T≈ 100 nK

$$\Rightarrow \Lambda \approx 1 \ \mu \text{m}$$

- Phase transitions
 - Bosons (⁷Li): Bose-Einstein condensation
 - Fermions (⁶Li): Fermion pairing

Interactions - Generic Discussion

$$\Lambda_{\text{dB}}$$
 ~ 1 μ m \Rightarrow detailed shape of V(R) unimportant

Characterize interaction by s-wave scattering length a:

• mean-field interaction energy $nU_0 = 4\pi\hbar^2 na/m$

$$a < 0$$
 attractive

$$a > 0$$
 repulsive

Implications of Interactions

Bosons

- stability of condensate
- bright or dark solitons
- healing length: vortices, speed of sound
- excitation spectrum
- Mott insulator: on-site interactions U
- miscibility or immiscibility of spinor condensates

Fermions

- Cooper pairing (BCS) or molecules (BEC)
- Hubbard model: U/t

What Determines a?

$$a = -27 a_0$$

$$a = -2300 \ a_{\rm o}$$

Answer: The last bound state!

Measuring a by Photoassociation

Abraham *et al.*, PRL **74**, 1315 (1995)

2-photon photoassociation: $E_B = \omega_2 - \omega_1$

Li potentials well characterized: 2-body physics known precisely

Implications of Interactions for BEC

Mean-field interaction energy $U = 4\pi\hbar^2 an/m$ a is the s-wave scattering length

- a > 0 (eg H, ²³Na, ⁸⁷Rb): repulsive
 - Stable BEC

- a < 0 (eg ⁷Li, ⁸⁵Rb): attractive
 - $dU/dn < 0 \Rightarrow$ mechanically unstable
 - .: BEC in a gas thought not possible

(Bogolubov, 1947; Landau and Lifshitz, 1958; Stoof, 1994)

Attractive condensate predicted to implode

Permanent Magnet Trap 1995

Result

There are condensates!

(although they are really puny)

BEC with Attractive Interactions - 30 00

Mean-field interaction energy $U = 4\pi\hbar^2 an/m$

- Condensate mechanically unstable no BEC in free space
- Stabilized by quantum pressure in a trap

Attraction balanced by zero-point energy

BEC is possible with a < 0, but N_0 limited:

 $U < \hbar \omega_{rz} \longrightarrow "0D" limit$

Quench Cool and Attractive Condensate

Collapse!

"Bosenova"

Gerton et al., Nature 408, 692 (2000) - Rice Donley et al., Nature 412, 295 (2001) - JILA

Tunable Interactions - Feshbach Resonance

Magnetically tune free atoms into resonance with a bound molecular state:

Alkali metal atoms interact via singlet or triplet potential

Feshbach Resonance in ⁷Li (Boson)

Hyperfine sublevels of ⁷Li

Coupled channels calculation of the scattering length of ⁷Li |1,1⟩ state

Outline

Intro to BEC with a<0

Intro to solitons

Phase-dependent collisions

Role of integrability

Solitons are Everywhere!

Scott Russell Aqueduct - Edinburgh

Photorefractive Crystal

Gulf of Carpentaria, Australia

Nerve Impulses – soliton collisions?

General Properties of Solitons

mathematically described by 1D nonlinear partial differential equations that are integrable, e.g

$$i\hbar \frac{d}{dt} \Psi = \left(-\frac{\hbar^2}{2m} \frac{d^2}{dz^2} + g|\Psi|^2 \right) \Psi \quad \text{where } g = 2\hbar^2/ma_{1D} < 0$$
and $a_{1D} = a_r/a$

where
$$g = 2\hbar^2/ma_{1D} < 0$$

and $a_{1D} = a_r/a$

dispersion compensated by nonlinear interaction – no spreading

- survives collisions without change in shape, amplitude or velocity (except for a possible phase jump)
 - independent of the number of collisions
 - system does not thermalize

Feshbach Resonance in ⁷Li – Stable BEC

Sweep Through the Zero-Crossing to Make Soliton(s)

Strecker et al., Nature 417, 150 (2002) Rice

Expansion into 1D Waveguide – Nondispersive

Formed in crossed beam trap and transferred into single beam:

Crossed beam: $\omega_z = 2\pi \times 31 \text{ Hz } (\tau = 32 \text{ ms})$

Single beam: $\omega_z = 2\pi \times 8 \text{ Hz } (\tau = 125 \text{ ms})$

Stable only in quasi-1D → critical number:

$$N_c = 0.67 \frac{a_r}{|a|}$$

$$a_r = \sqrt{\frac{\hbar}{m \ \omega_r}}$$

Nguyen, Dyke, Luo, Malomed & Hulet., Nat. Phys. 10, 918 (2014)

Phase-dependent Interactions

• Gordon-Haus Effect: J. P. Gordon, Opt. Lett. 8, 596 (1983)

Phase-dependent Interactions

Gordon-Haus Effect: J. P. Gordon, Opt. Lett. 8, 596 (1983)

 form BEC by evaporation at +140a_o

turn on barrier

 ramp magnetic field to -0.57a0

quickly turn barrier off

$$\Delta z = 26 \, \mu m$$

Atoms in $|F = 1, m_F = 1\rangle$ state

$$\omega_z = 2\pi \times 31 \, \mathrm{Hz}$$

$$\omega_r = 2\pi \times 254 \text{ Hz}$$

 form BEC by evaporation at +140a_o

turn on barrier

 ramp magnetic field to -0.57a0

quickly turn barrier off

Atoms in $|F = 1, m_F = 1\rangle$ state

$$w_x = 2.2 \text{ mm}$$

$$w_z = 5.6 \, \mu \text{m}$$

900 GHz blue-detuned light sheet

 form BEC by evaporation at +140a_o

turn on barrier

 ramp magnetic field to -0.57a0

quickly turn barrier off

Atoms in $|F = 1, m_F = 1\rangle$ state

$$\omega_z = 2\pi \times 31 \text{ Hz}$$
 $\omega_r = 2\pi \times 254 \text{ Hz}$

 $N \sim 28\,000$, N/Nc=-0.53

form BEC by evaporation at $+140a_0$

turn on barrier

ramp magnetic field to -0.57a0

quickly turn barrier off

Atoms in $|F = 1, m_F = 1\rangle$ state

$$\omega_z = 2\pi \times 31 \, \mathrm{Hz}$$
 $\omega_r = 2\pi \times 254 \, \mathrm{Hz}$

 $N \sim 28\,000$, N/Nc=-0.53

Phase-Dependent Collisions

Nguyen, Dyke, Luo, Malomed & Hulet., Nat. Phys. 10, 918-922 (2014)

Also, Parker, Martin, Cornish, Adams, J Phys B 41, 045303 (2008)

- collisions for a full trap period $(\tau = 32 ms)$
- multiple images using phase contrast
- N/ $N_c = -0.53$
- $\Delta \phi$ inferred from simulations:

$$\Delta \phi = 0$$
 collision

Phase-Dependent Collisions

Nguyen, Dyke, Luo, Malomed & Hulet., Nat. Phys. 10, 918-922 (2014)

But, integrability \rightarrow solitons must pass through one another (?)

- collisions for a full trap period $(\tau = 32 ms)$
- multiple images using phase contrast
- N/ $N_c = -0.53$
- $\Delta \phi$ inferred from simulations:

$$\Delta \phi = \pi$$
 collision

Z

Do They Cross? Tagged Collisions

numerical simulation (2:1 ratio):

- use resonant beam to remove atoms from only one side
 - $\Delta \phi = \pi$: appear to repel
 - solitons pass through one another

Consistent with integrability!

Examples of Quantum Integrability

Lieb-Liniger Model: 1D bosons with point interactions

"Quantum Newton's Cradle": Kinoshita, Wenger, Weiss, Nature (2006)

100's of collisions without thermalization

• 1D solitons: $g|\psi|^3$ nonlinearity with g < 0, e.g. BEC with a < 0

Quasi-1D if $\mu > \frac{1}{2} \square \omega_p$, otherwise unstable to *collapse*

The critical number for collapse is: $N_c = 0.7 a_r / a$, where $a_r = (\square m \omega_r)^{1/2}$

 N/N_c is a measure of the strength of the nonlinearity and $N/N_c = 1$ defines an *integrability edge*

What are the implications of this boundary?

On the Edge of Integrability: N/N_c = -0.53, $\Delta \phi \approx 0$

Nguyen, Dyke, Luo, Malomed & Hulet., Nat. Phys. **10**, 918-922 (2014)

Simulations, Durham: Parker et al, JPB (2008) Billam et al, PRA (2011)

On the Edge of Integrability: N/N_c = -0.53, $\Delta \phi \approx \pi$

Behaves as if it were *integrable:* survives for > 20 collisions

Nguyen, Dyke, Luo, Malomed & Hulet., Nat. Phys. 10, 918-922 (2014)

Fast quench → Soliton Train

Soliton Train Formed by Modulational Instability

- Soliton train formed by modulational instability (MI) following a quench:
 - → exponential growth of amplitude and phase fluctuations at

$$k_{mg} = \frac{1}{\xi}$$

wavevector of maximal growth

$$k_{mg}=rac{1}{\xi}$$
 $\xi=rac{a_r}{\sqrt{4|a_f|n_{1D}}}$ $\gamma=2\omega_r|a_f|n_{1D}$ or of maximal growth $\gamma=2\omega_r|a_f|n_{1D}$ characteristic rate length scale

$$\gamma = 2\omega_r |a_f| n_{1D}$$

MI is seen in many wave contexts involving a self-focusing nonlinearity:

- deep water waves (Benjamin-Feir instability) rogue waves
- plasma instabilities
- optical fibers with anomalous dispersion

Formation of Soliton Trains

trap frequencies

$$\omega_r = 2\pi \times 346 \, Hz$$
$$\omega_z = 2\pi \times 7.4 \, Hz$$

- start with BEC with a = +3a₀
- quench to a < 0 in $t_Q = 1$ ms
- hold for t_h, take in-situ image

Number Solitons vs Interaction

where the freeze-out time = quench time

Solitons Appear to Repel

Create soliton train, then set into harmonic oscillation

Distance between solitons increases at bottom of well, while bunching at turning points → repulsive interaction

K.E. Strecker et al., Nature 417, 150 (2002) Also, S. Cornish *et al.*, PRL 96, 170401 (2006) (JILA)

Gordon-Haus Effect: Repulsive interaction for out-of-phase solitons

How does this phase structure arise? Are they born that way, or does it develop?

Atom Loss During Hold Time

$$t_{\rm Q}$$
 = 1 ms: $\gamma^{-1} < t_Q$ for $a_f = -2.5a_0$

Data collapse by plotting N_a vs. γ^{-1}

$$N_a \propto (t_h \gamma)^{\kappa}$$

with $\kappa = 0.35(1)$

Soliton Number vs Hold Time

- Small $|a_f|$: soliton number is constant
- Large $|a_f|$: soliton number decreases

- Particle loss without loss of solitons:
 - → driven by partial, local collapse

(Papers by: Saito/Ueda, Kagan/Shlyapnikov)

Soliton Train Dynamics

 $a_f = -0.18a_0$

Mainly see repulsion between solitons, with just a few cases of attraction

Breathing mode excited: compression phase at ~34 ms

Conclusions

- System on the edge of integrability:
 - Integrability → solitons pass through one another without changing shape, speed, or amplitude
 - Yet, they undergo phase-dependent collisions
 - Breakdown of integrability is sudden and depends on $\Delta \phi$: annihilation and merger
- Soliton train is "born" with an alternating phase, whereas the notion of self-assembly by soliton annihilations is not supported by observation (L. Salasnich; H. Stoof)
- Freeze-out time agrees with modulational instability (L. Carr and J. Brand)
- After the freeze-out time, there is a continuous loss of atoms driven by partial local collapses (Saito/Ueda and Kagan/Shlyapnikov)

