Wuhan Institute of Physics and Mathematics

April 19/21, 2017

Quantum Magnetism with Ultracold Fermions

Pedro Duarte, Russell Hart, Tsung-Lin Yang, Xinxing Liu

David Huse (Princeton), Thereza Paiva (Rio), Ehsan Khatami (San Jose), Richard Scalettar (UC Davis), Nandini Trivedi (Ohio State)

Lithium: Non-identical Twins 7Li 6Li

- 3 e's, 3 p's, 4 n's
 = 10 spin-½ particles
 ⇒ Boson
- 94% abundance

- 3 e's, 3 p's, 3 n's
 = 9 spin-½ particles
 ⇒ Fermion
- 6% abundance

Bosons

Fermions

Bosons

Fermions

Bosons

Fermions

$$T/T_F = 1.0$$

$$T/T_F = 0.56$$

$$T/T_F = 0.25$$

Many-Body Physics with Ultracold Atoms

Ultracold atoms are being used to create strongly interacting many-body systems Relevant to: condensed matter, nuclear, quark matter

Examples underway:

- quantum magnetism
- exotic superconductors
- exactly solvable 1D systems
- quantum criticality
- disordered insulators
- topological matter

Tunable parameters:

- interactions (*U*)
- lattice hopping (t)
- temperature (T)
- density (n)
- dimensionality
- geometry
- spin polarization
- spin-orbit interaction
- disorder

Optical lattice configurations

Phase Diagram of a High-T_c Superconductor

Example: cuprate superconductor (also Fe pnictides, and heavy fermion superconductors)

Broun et al, Nature Phys. 4, 170 (2008)

Outline

Optical lattices

Hubbard model

Compensated optical lattice

Mott insulator

Detecting antiferromagnetic order

Optical lattice

AC Stark shift 2P_{3/2} excited state Light $U_{\text{dipole}} \propto$ 2S_{1/2} intensity ground state

simple cubic lattice

Tightly focused laser beam has an intensity maxima at the waist and can trap atoms there

"optical trap"

Band Structure

shaded area: lattice depth, dotted line: harmonic approximation $E_o \approx v_o^{\frac{1}{2}}$

Eigenstates

Tight binding limit:

For a deep lattice, $V_o \gg E_r$, the eigenstates are harmonic oscillator functions

For a weaker lattice, the eigenstates are not tightly bound

A basis of states localized around a single site are known as Wannier functions w(x)

Tunneling

Atoms can tunnel from site to site, but for $V_o > 5 E_r$ only nearest neighbors contribute:

t can be approximated in the tight-binding limit:

$$t/E_r \simeq \frac{4}{\sqrt{\pi}} v_0^{3/4} \exp(-2\sqrt{v_0})$$

Hubbard Model

- the hydrogen atom of condensed matter

$$H = -t \sum_{\langle i,j \rangle,\sigma} \left(c_{i,\sigma}^{\dagger} c_{j,\sigma}^{} + \text{h.c.} \right) + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

t = hopping energy

U =on-site interaction energy (repulsive)

- Paradigm model of strongly correlated matter
- Proposed model for high-T_c superconductors
 - but we don't know for sure if it has d-wave pairing

Cannot be solved exactly: basis size = 2^N

On-Site Interactions

Harmonic approximation:

$$U/E_{\rm r} \approx (8\pi)^{1/2} a_{\rm s}/a {\rm v_o}^{3/4}$$

Mott Insulator Develops for $T \leftrightarrow U$

A Mott insulator develops at n = 1 ("half-filling"):

Fermi-Hubbard Model

Special case: n = 1 "half-filling": $H_{AFM} = J \sum_{\langle i,j \rangle} \mathbf{S}_i \cdot \mathbf{S}_j$,

with $J = t^2/U$ "super-exchange"

• Mott insulator for T < U, with U/t >> 1

R. Jördens *et al.* (ETH), Nature, 2008: reduction of double occupancies

U. Schneider *et al.* (Munich), Science, 2008: reduction of compressibility

Fermion Mott Insulator – ETH, 2008

Double Occupancy

R. Jordans et al, Nature 455, 204, (2008)

Fermion Mott Insulator – Munich, 2008

Incompressibility

U. Schneider et al, Science 322, 1520 (2008)

Fermi-Hubbard Model

Special case: n = 1 "half-filling": $H_{AFM} = J \sum_{\langle i,j \rangle} \mathbf{S}_i \cdot \mathbf{S}_j$,

with $J = t^2/U$ "super-exchange"

- Mott insulator for T < U, with U/t >> 1
 - R. Jördens *et al.* (ETH), Nature, 2008: reduction of double occupancies
 - U. Schneider *et al.* (Munich), Science, 2008: reduction of compressibility
- Antiferromagnet for $T < T_{N\'{e}el} \sim 4\ell^2/U$

$$\rightarrow$$
 S/N < $k_{\rm B}$ ln(2) ~ 0.7 $k_{\rm B}$

Fermions in an Optical Lattice:

Greif et al (ETH), Science 2013: nearest neighbor singlet correlations along 1D chains

T_{Néel} not yet achieved in a 3D optical lattice
 Poses a major challenge for realizing novel quantum materials w/ cold atoms

Néel Transition

Quantum Monte Carlo

Paiva et al, PRL **107**, 086401 (2011)

"Spin" States in ⁶Li

$$m_s = \frac{1}{2}$$

Interactions tunable by a Feshbach resonance

$$m_s = -\frac{1}{2}$$

Typical experimental parameters for $N \approx 2 \times 10^5$ ⁶Li atoms:

$$V_{\rm L} \approx 7 \; E_{\rm R} \quad (E_{\rm R} = \hbar^2 k^2 / 2m = 1.4 \; \mu {\rm K})$$

 $t \approx 0.038 \; E_{\rm R} \approx 50 \; {\rm nK} \approx 1 \; {\rm kHz}$
 $U \approx 0.38 \; E_{\rm R} \; @ \; 250 \; a_{\rm o}$
 $4\ell^2 / U \approx 25 \; {\rm nK} \approx 0.025 \; T_{\rm F}$

Narrow-Line Laser Cooling

P. Duarte, R. Hart *et al.*, PRA 84, 061406 (2011) Also, in ⁴⁰K: D. McKay (Toronto), PRA 84, 063420 (2011)

Red MOT

$$N = 1 \times 10^9$$

$$T = 290 \mu K$$

$$n = 3 \times 10^{10} \text{ cm}^{-3}$$

$$ho_{
m ps}$$
 = 2 $imes$ 10⁻⁶

UV MOT

$$N = 5 \times 10^{8}$$

$$T = 59 \mu K$$

$$n = 3 \times 10^{10} \text{ cm}^{-3}$$

$$\rho_{\rm ps} = 2 \times 10^{-5}$$
 \rightarrow ×10 increase

Optical Trap - Magic Wavelength

Crossed-beam trap at 1070 nm

Usual non-magic wavelength

- Trap light shifts cooling transition out of resonance

Magic wavelength

- Light shifts of upper and lower levels are equal

Light shift measurement: Light shift $\square \gamma$ at full trap depth

P. Duarte, R. Hart *et al.*, PRA 84, 061406 (2011) Light shift calculation: M. Safranova

After laser cooling in trap:

$$N = 1 \times 10^{7}$$

 $T = 50 \mu K$
 $n_0 = 4 \times 10^{13} \text{ cm}^{-3}$
 $T/T_F = 2.5$

$$\rho_{\rm ps}$$
 = 2 × 10⁻² \rightarrow ×1000 increase

After 5 s of evaporation:

$$N = 4 \times 10^6$$
 atoms

 $T < 0.1 T_{\rm F}$

Evaporative Cooling - Trap vs Lattice

Evaporative cooling in a trap:

Very effective cooling: $T < 0.05 T_F \rightarrow S < 0.7 k_B$

Crossed Beam Trap

In a red-detuned 3D lattice:

(looking along a lattice direction)

No cooling (but there is heating)

Optical Lattice

Compensated Lattice - How to get colder

Evaporative cooling in a trap:

Very effective cooling: $T < 0.05 T_F \rightarrow S < 0.7 k_B$

Proposed solution: *compensated lattice* with anti-confining green beams (not a lattice)

In a red-detuned 3D lattice:

(looking along a lattice direction)

No cooling (but there is heating)

In a compensated lattice:

Three Functions of Compensated Lattice

Mathy, Huse, Hulet, Phys. Rev. A 86, 023606 (2012)

Compensation

- 1) density control knob
- 2) flatten band
- 3) provide cooling

3D densities from Abel transform Central density plateaus as Mott core is formed

Three Functions of Compensated Lattice

Mathy, Huse, Hulet, Phys. Rev. A 86, 023606 (2012); also Ma et al, Phys. Rev. A 78, 023605 (2008)

Compensation

- 1) density control knob
- 2) flatten band
- 3) provide cooling

Compensation beams have smaller waists than lattice beams in order to flatten potential

Evaporative Cooling in Compensated Lattice

Compensation

- 1) density control knob
- 2) flatten band
- 3) provide cooling

Compensation beams have smaller waists than lattice beams in order to flatten potential

Three Functions of Compensated Lattice

Mathy, Huse, Hulet, Phys. Rev. A 86, 023606 (2012)

Compensation

- 1) density control knob
- 2) flatten band
- 3) provide cooling

Current setup is not optimized for evaporative cooling, but we observe the suppression of heating:

Mott Insulator Develops for Large U/t

P.M. Duarte et al, Phys Rev Lett (2015)

Solid lines are calculated using a numerical linked-cluster expansion

Incompressibility of Mott Phase

dn/dN is related to the compressibility: $\kappa = (1/n^2) dn/d\mu$

P. Duarte, Phys Rev Lett (2015)

Local Compressibility

The compressibility vanishes in the Mott phase, due to the presence of a Mott gap:

$$\kappa = \frac{1}{n^2} \frac{\partial n}{\partial \mu}$$

P.M. Duarte et al, Phys Rev Lett (2015)

Local Compressibility

The compressibility vanishes in the Mott phase, due to the presence of a Mott gap:

$$\kappa = \frac{1}{n^2} \frac{\partial n}{\partial \mu}$$

P.M. Duarte et al, Phys Rev Lett (2015)

Normalized Density

Lines and shaded regions: numerical calculations \rightarrow $T/t \le 1.0$

Detect Order by Bragg Scattering

Bragg scattering of near resonant light:

Bragg condition:

Detect Order by Bragg Scattering

Bragg scattering of near resonant light:

(0 0 1) peak indicates presence of cubic lattice structure

(½ ½ ½) peak unambiguously indicates presence of AFM order

Bragg Scattering - Crystalline Order

Image the scattered light onto a single pixel

Also: (0 0 1)
Birkl et al (NIST) PRL (1995)
Weidemuller et al (MPQ), PRL (1995)
Miyake et al (MIT), PRL (2011)

Detect AFM Order by Bragg Scattering

Spin-sensitive Bragg scattering of near resonant light:

Bragg condition:

 $(\pi~\pi)$ peak unambiguously indicates presence of AFM order

Spin-sensitive:

analogous to neutron scattering

Bragg Signal / Spin-Structure Factor

$$S_{m{Q}} = rac{4}{N} \sum_{mn} e^{i{m{Q}}({m{R}}_m - {m{R}}_n)} S_{zm} S_{zn} = \text{spin structure factor} = 1 \text{ to } N$$

Bragg signal is proportional to S_{O} :

$$I_{\rm Q} \propto S_{\rm Q}$$

Normalization:

Bragg signal is normalized by the signal after long TOF τ :

$$S_{\rm Q} = I_{\rm Q} (\tau=0) / I_{\rm Q} (\tau=\infty)$$

Density Dependence - QMC

Bragg signal comes mainly from an n = 1 shell

In the experiment, we vary N to maximize S_{π}

Interaction Dependence

Comparison with theory provides sensitive thermometry

Theory: Numerical Linked-Cluster Expansion and Quantum Monte Carlo

Temperature fit: $T/t = 0.50 (0.04) \rightarrow T/T_N = 1.4 (0.1)$

R. Hart, P.M. Duarte et al, Nature 2015

Detection of Magnetic Order

If the atoms are released from the lattice the Bragg signal decays due to loss of coherence:

Debye-Waller factor:

$$e^{\frac{-\left\langle r^2\right
angle K^2}{2}}$$

where

$$\langle r^2 \rangle_t = \langle r^2 \rangle_0 + \frac{t^2}{m} \langle p^2 \rangle_0$$

$$S_{\rm Q} = I_{\rm Qo} / I_{\rm Q\infty}$$

7 Er,
$$U/t = 13.4$$

 $a = 350 a_0$

Shading indicates broadening by probe exposure time (1.7µs)

R. Hart, P.M. Duarte et al, Nature (2015)

Charge-Density Order for U < 0

For $T < t^2/|U|$, the system will order according to the sign of U:

- Both types of order have symmetry planes in the π, π, π direction
 → detect by Bragg scattering
- Determine dynamical response of system to sudden change in U

Canted Antiferromagnetism

Bragg signal only sensitive to magnetism along *z*But small population imbalances favor AFM in the x-y plane:

Gottwald and van Dongen, PRA (2009) and E. Demler et al., PRA (2010)

Summary

Detected short-range antiferromagnetic correlations:

- Spin-dependent Bragg scattering
- Thermometry by comparison with QMC
- Temperature: $T = 1.4 T_N$ Limit of QMC! (away from n = 1)

Enabled by compensated lattice

- Density control
- Flatten band
- Mitigation of heating by evaporation
- Optimized compensation could lead to even lower T

Opens new avenues for exploring other novels states of matter such as non-Fermi liquids

