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Abstract

This is the first part of our lecturing course on ultracold quantum

gases. It is dedicated to the gases of ultracold bosonic atoms and to the

phenomenon of Bose-Einstein condensation. After the celebrated observa-

tion of Bose-Einstein condensation in trapped ultracold alkali atom gases

in 1995, which got the Nobel Prize in 2001, the field of ultracold quan-

tum gases is strongly expanding and it attracts scientists from atomic

physics and quantum optics, condensed matter physics, nuclear physics,

non-linear phenomena, and mathematical physics. The purpose of the lec-

turing course is to give an Introduction to the theory of ultracold quantum

gases and to provide students and young researchers with necessary tools

to work in this and related areas.
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Lecture 1. Key quantities. Elastic and inelastic

interaction between atoms

1.1 Key quantities

What is an ultracold quantum gas? Let us consider a gas of atoms and introduce
length scales for this system (see Fig. 1.1). First of all, there is a thermal de
Broglie wavelength of the atoms, ΛT , which is usually expressed in terms of the
gas temperature T and atom mass m:

ΛT =

(

2π~
2

mT

)1/2

∝ k−1
T , (1.1)

and the thermal wavevector of the atoms, kT , is inversly proportional to ΛT .
Second, there is a characteristic radius of interaction between atoms, Re. The
meaning of this quantity is that at interatomic distances much larger than Re

the motion of atoms is free, whereas at distances of the order of or smaller than
Re the shape of the wavefunction of the atoms is strongly influenced by the
interaction between them. This brings us to the other important length scale,
the mean interparticle separation n−1/3, where n is the gas density.
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Re

n
−1/3

Λ
T

Figure 1.1: The gas of atoms. Black circles denote atoms, and blue circles show
the size of an atom plus the radius of interatomic interaction. The red line
is the mean interatomic distance, and the brown curve shows the wave of the
translational motion of an atom.

The gas is called dilute if the mean interatomic distance is much larger
than the radius of interatomic interaction Re, and this condition is commonly
identified as the dilute limit:

n−1/3 ≫ Re → nR3
e ≪ 1 dilute limit. (1.2)

Moreover, if n−1/3 . Re, then the motion of atoms is not free anywhere in the
coordinate space, and in most cases the system is no longer a gas. It is a liquid
or solid.

The gas for which the thermal de Broglie wavelength ΛT greatly exceeds
Re is called ultracold, and the inequality ΛT ≫ Re is usually identified as the
ultracold limit:

ΛT ≫ Re → kTRe ≪ 1 ultracold limit. (1.3)

In a dilute ultracold gas we usually consider only pair interactions and collisions
between the atoms, and the inequality (1.3) provides the leading role of s-wave
collisions, i.e. collisions with zero orbital angular momentum. The latter issue
will be discussed later in this lecture. The first ultracold dilute gas, the gas
of spin-polarized atomic hydrogen (H↑) was created in 1979 in Amsterdam by
I.F. Silvera and J.T.M. Walraven, with temperatures of the order of hundreds
of millikelvins and densities ranging from 1016 to 1019 cm−3.
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When the de Broglie wavelength ΛT is much smaller than the mean in-
terparticle separation, the gas can be considered as classical and it obeys the
Boltzmann statistics:

n−1/3 ≫ ΛT → nΛ3
T ≪ 1 Boltzmann statistics. (1.4)

When the temperature is made so low or the density so high that the inequality
(1.4) is not satisfied and n−1/3 & ΛT , then the gas obeys quantum statistics and
its macroscopic properties crucially depend on whether the atoms are bosons or
fermions:

nΛ3 & 1 → Quantum statistics. (1.5)

In this case the gas is called quantum and the quantity nΛ3 is often called
degeneracy parameter. The temperature at which nΛ3

T ≃ 1 is called temperature
of quantum degeneracy. It is given by

Td ≃ 2π~
2

m
n2/3. (1.6)

The first quantum gases have been created in 1995 at JILA (E.A. Cornell
and C.E. Wieman, 87Rb), at MIT (W. Ketterle, Na), and at Rice (R. Hulet,
7Li). At present many tens of labs all over the world work with quantum gases
of various types of atoms. The temperature is commonly ranging from 100 nK
to 1 µK, and the density is in the range from 1012 to 1014 cm−3. The number
of atoms in such a system is usually in the interval from 105 to 108. These
parameters are achieved by optical and evaporative cooling in magnetic and
optical traps. These methods are discussed in the course of J.T.M. Walraven.

1.2 Elastic interaction between atoms. Weakly interact-

ing regime

An obvious energy scale in a gas is its temperature T . Another energy scale
in an ultracold gas is the interaction energy per particle, and we now discuss
how to calculate this quantity relying on the knowledge of the potential of inter-
action between atoms. We mean here the so-called elastic interaction between
atoms, i.e. the interaction which does not change their internal states. In the
dilute limit determined by the inequality (1.2) the total interaction energy in
the system is the sum of all pair interactions:

Eint =
N2

2
ǫint, (1.7)

where N ≫ 1 is the number of particles, N2/2 is the number of pairs, and ǫint

is the interaction energy for a pair of atoms. Equation (1.7) also assumes the
regime of weak interactions, where the wavefunction of particles at the mean
interparticle separation is not influenced by the interaction between them. The
related criterion will be discussed later in this Lecture. Let us calculate ǫint

assuming that atoms interact with each other via a potential U(r) (see Fig. 1.2).
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Re

r

U(r)

R
0

Figure 1.2: The potential of interaction between two atoms, U(r), versus inter-
atomic separation r. The brown line indicates the location of the characteristic
radius of interaction, Re. At r ∼ Re the kinetic energy term in the Schroedinger
equation (1.8) is ∼ ~

2/mR2
e and it is of the order of the interaction term |U(Re)|.

Assuming that for r ∼ Re the potential of interaction has the Van-der-Waals
shape U(r) = −C6/r

6, with C6 being the Van-der-Waals constant, we obtain
Re ≈ (mC6/~

2)1/4. In alkali atom gases Re ranges from 20Å for Li to 100Å for
Cs, and it greatly exceeds the turning point for the zero-energy relative motion,
R0 .

The Schroedinger equation for the relative motion of a pair of atoms reads:

[

− ~
2

2mr
∆r + U(r)

]

ψ(r) = Eψ(r), (1.8)

where E = ~
2k2/2mr is the energy of the relative motion, and we consider con-

tinuum states with a very low wavevector k. The quantity mr = m1m2/(m1 +
m2) is the reduced mass, and for the case of atoms with equal masses (m)
which we consider hereinafter one has mr = m/2. We also introduced the usual
notation for the Laplacian, ∆r = d2/dr2.

The calculation of ǫint is equivalent to calculating the shift of the energy of
particles with mass m/2 in a large spherical box, due to their interaction via the
potential U(r) with a force center at r = 0 (see Fig. 1.3). We now consider atoms
with momenta ~k satisfying the condition of the ultracold limit (1.3) and confine
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ourselves to calculating their energy levels at zero orbital angular momentum
(s-wave levels) in the box. Then the particle wavefunction ψ depends only on
the distance r from the force center, and the Schroedinger equation (1.8) takes
the form:

−~
2

m

(

d2

dr2
+

2

r

d

dr

)

ψ(r) + U(r)ψ(r) = Eψ(r), (1.9)

where the energy of an eigenstate with wavevector k is E = ~
2k2/m, and we

put the boundary condition
ψ(R) = 0 (1.10)

at the boundary of the box.
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r

Figure 1.3: Atoms (red points) in a large spherical box of radius R, interactiong
with the force center (brown point) at the origin via the potential U(r).

At distances from the force center, r ≫ Re, we can drop the potential energy
term U(r)ψ from Eq. (1.9) and obtain the wavefunction

ψ ∝ sin(kr + φ(k))

kr
, (1.11)

where φ(k) is the (scattering) phase shift. The boundary condition (1.10) en-
sures a quantization relation for the wavevectors of the eigenstates:

kR+ φ(k) = πj, (1.12)
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with j being an integer. In order to express the phase shift φ through the
parameters of the interaction potential U(r) we consider distances in the interval
where k−1 ≫ r ≫ Re. Then we can drop both U(r) and E from Eq. (1.9)
which thus becomes an equation for the free motion at zero energy and gives
the wavefunction

ψ ∝
(

1 − a

r

)

. (1.13)

The quantity a is called the scattering length and it is determined by the be-
havior of U(r) at distances r . Re. For finding a one should solve Eq. (1.9)
putting E = 0 and considering distances r ≫ k−1. The scattering length is
then obtained by matching this exact solution for a given U(r), with ψ (1.13)
at distances r ≫ Re. It is clear that a depends on a particular shape of the
interaction potential U(r). In the case of a fairly deep potential well, where
the relative motion in the region of the well is quasiclassical (WKB), the scat-
tering length can be expressed through Re and the WKB phase of the relative
wavefunction (see Problem 1.1).

Considering distances r ≪ k−1 in Eq. (1.11) we obtain

ψ ∝
(

1 +
tanφ

kr

)

. (1.14)

Within the normalization coefficient, this expression should coincide with ψ
(1.13). Assuming that k|a| ≪ 1, this gives for the phase shift:

φ = −ka. (1.15)

Equation (1.15) allows us to reduce the quantization relation (1.12) to

kj =
πj

R− a
= k

(0)
j +

πj

R2
a, (1.16)

where we assumed that certainly R ≫ |a| and put the subscript j for the
wavevector of the eigenstate with a given quantum number j. The momentum

k
(0)
j in the right hand side of Eq. (1.16) determines the energy levels E

(0)
j =

~
2k

(0)2
j /m in the absence of interaction (a = 0), and the second term leads to

the interaction-induced shift δEj of the eigenenergies Ej . We thus obtain:

δEj = Ej − E
(0)
j =

~
2

m
(k2

j − k
(0)2
j ) =

~
2k2

j

m

2a

R
. (1.17)

The interaction energy ǫint(kj) for particles in the interval from kj to kj + dkj

is then related to the energy shift δEj for particles in the momentum interval
from kj to kj + dkj is then related to the energy shift δEj for particles in the
interval of quantum numbers from j to j + dj as:

V 4πk2
jdkj

(2π)3
N(kj)ǫint(kj) = δEjN(j)dj, (1.18)
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where V is the volume of the box, the occupation number N(kj) = N(j), and
dkj/dj = π/R. Equation (1.18) yields

ǫint =
g

V
, (1.19)

where the quantity g is called the coupling constant and is given by

g =
4π~

2

m
a. (1.20)

For the total interaction energy in the system, Eq. (1.7) then gives:

Eint =
N2

2V
g, (1.21)

and the interaction energy per particle is

∂Eint

∂N
= ng. (1.22)

The interaction energy ng is a very important quantity for ultracold bosons.
This can be naively seen from the fact that at temperatures T ≪ ng the prop-
erties of the gas are mostly determined by the interactions.

Actually, for identical bosons in different momentum states the interaction
energy per particle is 2ng, i.e. it is twice as large as the result of Eq. (1.22).
This is because we have to symmetrize the wavefunction of the relative motion
of two bosons with respect to their permutation. At large separations, where
the interaction is not important, we have

ψ =
1√
2
[exp(iqr) + exp(−iqr)],

where q is the relative wavevector. For qr ≪ 1 the wavefunction is larger by
a factor of

√
2 than without symmetrization, and this will also be the case at

smaller distances where the interaction is already important. The interaction
energy is proportional to |ψ2| and, as a result of symmetrization, it increases by
a factor of 2. Note that the symmetrization is not needed for bosons with zero
momenta, which is the case in a Bose-Einstein condensate that will be discussed
later in the course, since their relative wavefunction is already symmetrical
without interchanging the bosons. In this case the interaction energy per particle
is given by Eq. (1.22).

What is the condition of the weakly interacting regime that allows us to
confine ourselves to pair interactions between particles and use Eq. (1.7), which
then leads to Eqs. (1.19), (1.21) and (1.22) ?. As we already said, in this
regime the wavefunction of particles at the mean interparticle separation r̄ is
not influenced by the interaction between them. Only under this condition one
may omit many-body interactions and use Eq. (1.7). Let us consider a box of
size r̄:

4πr̄3

3
=

1

n
⇒ r̄ =

(

3

4πn

)1/3

. (1.23)
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On average such a box contains one particle. In the limit of T → 0, the particle
kinetic energy in this box is ∼ ~

2/mr̄2. The wavefunction of the particle is not
influenced by its interaction with other particles, characterized by the energy
ng, if

~
2

mr̄2
≫ n|g|. (1.24)

Then, using Eq. (1.23) we immediately obtain the inequality

n|a|3 ≪ 1. (1.25)

Together with the condition of the dilute limit, nR3
e ≪ 1, Eq. (1.25) gives the

criterion of the weakly interacting regime. Note that Eqs. (1.20) and (1.22)
and, hence Eq. (1.25), assume that characteristic particle momenta ~k satisfy
the inequality

k|a| ≪ 1. (1.26)

1.3 Two-body scattering problem

We now establish how the scattering length a is related to the parameters of the
two-body elastic scattering problem. Again, the two-body scattering problem
is equivalent to the scattering of a particle with mass m/2 from a force center,
due to the particle-center interaction via the potential U(r). As a result of the
interaction, an incident particle moving along the axis z with wavevector k is
scattered on an angle θ and acquires the momentum k′ (see Fig. 1.4). For elastic
scattering we have |k′| = |k|.

k

z

θ

k’

Figure 1.4: Elastic scattering of an atom (red point) from the force center (brown
point). The atom is initially moving along the z-axis with momentum k and is
scattered on an angle θ.

The motion of the particle is governed by the Schroedinger equation (1.8)
and at an infinite separation from the center the particle wavefunction is a
superposition of the incident plane wave and scattered spherical wave:

ψ = exp(ikr) +
f(θ)

r
exp(ikr), (1.27)
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where f(θ) is called the scattering amplitude, and the vector r is taken in the
direction of k′. The probability α(k) for the scattered wave to pass through
the surface of a sphere of radius r per unit time is equal to the intensity of the
scattered wave |f(θ|2/r2 multiplied by vr2dΩ and integrated over the solid angle
Ω. Here v = 2~k/m is the velocity of the incident particle or, returning to the
two-body scattering problem, the relative velocity of colliding atoms. We thus
have:

α(k) =

∫ |f(θ)|2dΩ
r2

r2v, (1.28)

The quantity α(k) is called the rate constant of elastic collisions. The number
of scattering events per unit time and unit volume is given by ᾱN2/2V , where
ᾱ is the rate constant averaged over the momentum distribution of particles.
The quantity

σ(k) =
α(k)

v
=

∫

|f(θ)|2dΩ (1.29)

has a dimension of surface area and is called the elstic cross section.
For finding the scattering amplitude f(θ) one commonly expands it in Leg-

endre polynomials:

f(θ) =

∞
∑

l=0

(2l+ 1)flPl(cos θ), (1.30)

where fl is called the partial scattering amplitudes. It corresponds to the scat-
tering with orbital angular momentum l. Using the same type of expansion for
the plane wave in Eq. (1.27):

exp(ikr) =

∞
∑

l=0

il(2l + 1)jl(kr)Pl(cos θ), (1.31)

where jl are spherical Bessel functions, one then deduces from Eq. (1.8) a set of
equations for a given orbital angular momentum l and finds the partial scattering
amplitudes by solving these equations.

In the ultracold limit where the momentum ~k satisfies the inequality kRe ≪
1, the leading scattering channel is the one with the orbital angular momentum
l = 0. It is called s-wave scattering and the corresponding scattering amplitude
f0 is independendent of θ. The scattering cross section then is σ0 = 4πf2

0 , and
for identical bosons we have to multiply it by a factor of 2 due to symmetrization
of the wavefunction of colliding atoms with respect to their permutation as
explained in the end of the previous subsection.

The wavefunction ψ(0) of the relative motion of atoms at l = 0 obeys the
Schroedinger equation (1.9). At r → ∞ it is given by the s-wave part of ψ
(1.27), which is obtained straightforwardly by using Eqs. (1.30) and (1.31) in
Eq. (1.27). This yields

ψ(0) =
sinkr

kr
+
f0
r

exp(ikr); r → ∞ (1.32)
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On the other hand, at r ≫ Re one can drop U(r) in Eq. (1.9) and arrive at
Eq. (1.11) for the relative wavefunction, which we now rewrite in the form:

ψ(0) =
1

kr
(cosφ sin kr + sinφ cos kr). (1.33)

Then, writing Eq. (1.32) as

ψ(0) =
1

kr
[(1 + ikf0) sin kr + kf0 cos kr] ; r → ∞ (1.34)

and equalizing logarithmic derivatives of ψ(0) (1.33) and ψ(0) (1.34) we find:

f0 =
tanφ

k(1 − i tanφ)
=

exp(2iφ) − 1

2ik
. (1.35)

As we already discussed in the previous subsection, at distances in the in-
terval Re ≪ r ≪ k−1 one can drop both U(r) and ~

2k2/m from Eq. (1.9)
and reduce it to the equation for the free motion at zero energy. This leads to
Eq. (1.13) for the wavefunction: ψ ∝ (1 − a/r). On the other hand, Eq. (1.33)
at r ≪ k−1 leads to Eq. (1.14): ψ ∝ (1 + tanφ/kr). We thus immediately see
that

tanφ = −ka, (1.36)

and equation (1.35) reduces to

f0 = − a

1 + ika
. (1.37)

For k|a| ≪ 1 we have f0 = −a and clearly see that the scattering length is the
amplitude of the s-wave scattering in the limit of k → 0.

In most of the forthcoming discussions we will consider momenta ~k of par-
ticles satisfying the inequality k|a| ≪ 1. It is however instructive to briefly men-
tion that a general expression for the cross section, following from Eqs. (1.29)
and (1.37), reads:

σ0 =
4πa2

1 + k2a2
. (1.38)

For k|a| ≪ 1 Eq. (1.38) reduces to σ0 = 4πa2 as we already discussed above.
However, for k|a| ≫ 1 we obtain σ0 = 4πk2. Note that Eq. (1.38) is obtained in
the ultracold limit, i.e. it assumes that kRe ≪ 1. So, in order to have k|a| & 1
we should have an anomalously large scattering length |a| ≫ Re. This case is
called resonance scattering of slow particles.

What does this correspond to? Let us consider a weakly bound state with or-
bital angular momentum l = 0 (s-state) for two atoms in the potential U(r) (see
Fig. 1.5). The term weakly bound means that the extention of the wavefunction
ψb of this state greatly exceeds the radius of the potential, Re. The wavefunc-
tion ψb obeys the Schroedinger equation (1.9) in which we should now replace
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a positive energy E by −ǫ0, where ǫ0 is the binding energy of the considered
s-state:

−~
2

m

(

d2

dr2
+

2

r

d

dr

)

ψb(r) + U(r)ψb(r) = −ǫ0ψb(r). (1.39)

For r ≫ Re we drop U(r) from Eq. (1.39) and obtain

ψb(r) =

√

κ

2π

1

r
exp(−κr), (1.40)

where κ−1 = ~/
√
mǫ0 is the extention of the wavefunction ψb. According to the

definition of a weakly bound state, we should have the inequality κ−1 ≫ Re.

r

R

U(r)

eε
0

Figure 1.5: Weakly bound state of two atoms (red line), with the binding energy
ǫ0, in the interaction potential U(r) (blue curve). The brown point shows the
location of the characteristic radius of the potential, Re, and the brown lines
indicate possible deeply bound states.

At distances in the interval Re ≪ r ≪ κ−1 we can drop both U(r) and
ǫ0 from Eq. (1.39), which transforms it to an equation of free motion at zero
energy. The resulting wavefunction is given by

ψb ∝
(

1

r
− κ

)

∝
(

1 − 1

κr

)

(1.41)

and it should coincide within a normalization coefficient with the wavefunction
ψ(0) of the scattering problem at k → 0 in the same potential U(r). As we
already found above, ψ(0) ∝ (1 − a/r) in the limit of vanishing energy. Thus,
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comparing this expression with Eq. (1.41) we see that in the presence of a weakly
bound s-state the scattering length is positive and large: a = κ−1 ≫ Re. The
binding energy is related to the scattering length as

ǫ0 =
~

2κ2

m
=

~
2

ma2
. (1.42)

Let us now look at equations (1.19) and (1.20). They show that the energy
of interaction between two particles in the continuum states with very low mo-
menta is large and positive at a large and positive a. This means that such
particles strongly repel each other. At the same time, we just arrived at the
conclusion that they can form a weakly bound state. This is an interesting
observation and it allows us to answer the frequently asked question: does a
potential well supporting many bound states repel or attract an incident slow
particle ? The answer is that in general it can be both. However, if there exists
a weakly bound state of this particle in the well, then at particle wavevectors
k → 0 it is repelled by the well.

1.4 Inelastic collisions

Besides elastic collisions, atoms of an ultracold gas can undergo inelastic colli-
sions, i.e. the collisions changing their internal states. Consider a gas of bosonic
atoms which are in an excited (hyperfuine) internal state A2. Then binary col-
lisions between the can lead to their relaxation transition to the ground state
A1. One may consider, for example, the following inelastic collisional processes:

A2 +A2 ⇒ A1 +A2 + ∆E (1.43)

A2 +A2 ⇒ A1 +A1 + 2∆E, (1.44)

with ∆E being the difference between energies of the internal states A2 and A1.
In most of the ultracold gases (alkali atoms, atomic hydrogen, chromium,

metastable triplet helium) the inelastic relaxation processes (1.43) and (1.44)
are induced by the magnetic dipolar interaction, and the energy release ∆E
greatly exceeds the gas temperature and interparticle elastic interaction so that
the outgoing atoms are ejected from the gas sample. The Hamiltonian of the
magnetic dipolar interaction reads

Ĥd =
(µ̂1µ̂2)r

2 − 3(µ̂1r)(µ̂2r)

r5
, (1.45)

where µ̂1 and µ̂2 are operators of magnetic moments of the colliding atoms, and
r is the interatomic distance. The product µ1µ2 is of the order of µ2

B, where µB

is the Bohr magneton, so that the magnetic dipolar interaction is rather weak
and can be treated within the perturbation theory by using the Fermi Golden
rule. In this sense the magnetic dipolar relaxation belongs to the class of weak
inelastic processes. For the number of relaxation events per unit time, due to
the process (1.43) we have:

Wrel =
2π

~

∑

f

| < i|Hd|f > |2δ(Ef − Ei)
N2

2
. (1.46)

14



Here N2/2 is the number of pairs of A2-state atoms, and the subscripts i and
f label the initial and final states of the relaxation transition. Omitting the
small initial kinetic energy of colliding atoms the energy conservation law for
the relaxation process (1.43) becomes

Ef − Ei =
~

2k2
f

m
− ∆E = 0, (1.47)

where kf = (m∆E/~2)1/2 is the wavevector of the relative motion in the final
state. The transition matrix element < i|Hd|f > should be calculated with the
initial and final wavefunctions of the relative motion of the atoms, which behave
at large interatomic separations as (1/

√
V ) exp(iki,fr), where V is the volume

of the system.
Consider for simplicity bosonic atoms with electron spin 1/2 and omit the

effect of nuclear spins. For example, this is justified if ∆E is related to the
change in the Zeeman energy and is much larger than the energy of hyperfine
interaction. Let us discuss the process (1.43) in which A1 is the lower Zeeman
internal atomic state, let say spin-↓, and A2 is the upper Zeeman state spin-↑.
Then we have µ̂1 = 2µBŜ1, µ̂2 = 2µBŜ2, and ∆E = 2µBB, with B being the
magnetic field and Ŝ1, Ŝ1 the spin operators of the atoms.

Let us then assume that the relative kinetic energy in the final state, ~
2k2

f/m =

∆E, is still much smaller than the typical atomic energy ~
2/mR2

e. In this case
inelastic transitions occur at interatomic distances k−1

f ≫ Re and the transition
matrix element < i|Hd|f > can be found simply using plane waves for the initial
and final wavefunctions. Putting ki = 0 we have

< i|H |f >=

∫

d3r H̃d(r) exp(ikfr), (1.48)

and the matrix element over the spin variables H̃D(r) is easily obtained taking
into account that the relaxation transitions change the internal state A2 from
spin-↑ tp spin-↓ and do not change the internal stateA1 (spin-↓). The interaction
Hamiltonian (1.45) leads to

H̃d(r) = −
√

24π

5

µ2
B

r3
Y21(θ, ϕ), (1.49)

where the spherical harmonic Y21(θ, ϕ) =
√

15/8π cos θ sin θ exp iϕ, and θ, ϕ
are the polar and azimuthal angles of the vector r with respect to the direction
of the magnetic field. Using the expansion (1.31) for the plane wave exp(ikfr),
completed by the known relation

Pl(cos θkr) =
4π

2l + 1

l
∑

m=−l

Ylm

(r

r

)

Y ∗
lm

(

kf

kf

)

,

from equations (1.48) and (1.49) we obtain

< i|H |f >= −4π

√

24π

5
µ2

BY
∗
21

(

kf

kf

)
∫ ∞

0

j2(x)

x
dx = 8π

√

54π

5
µ2

BY21

(

kf

kf

)

.

(1.50)
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In a thermal gas we have to symmetrize the initial wavefunction of colliding A2-
state atoms with respect to their permutation, which increases the transition
probabilitry by a factor of 2. Then equation (1.46) immediately gives

Wrel = 2αrel
N2

2V
, (1.51)

with the relaxation rate constant:

αrel =
432π

5

µ4
Bmkf

~3
(1.52)

and the final wavevector kf following from the energy conservation law (1.47).
Assuming that in the relaxation process both atoms are ejected from the

sample, for the atom loss rate we obtain:

dn

dt
= −2αreln

2. (1.53)

The atom density decreases with increasing time t as

n(t) =
1

1 + t/τrel
, (1.54)

where the quantity τrel = (2αreln(0))−1 is a characteristic relaxation time and
it determines the life-time of the gas. In many cases the relaxation rate constant
is small and the inelastic process of collisional relaxation can be neglected. For
example, in an ultracold gas of 87Rb atoms one has αrel ∼ 10−16 cm3/s, and
the relaxation time is τrel ∼ 100 s at commonly used densities n ∼ 1014 cm−3.
Note that the life-time of the order of seconds is already sufficiently large for
performing detailed investigations of ultracold gases in experiments. At the
same time, the relaxation rate constant strongly depends on a particular system
and in some cases the relaxation process is very important, for example in a gas
of chromium atoms which have a magnetic moment of 6µB.

Binary inelastic processes occuring with a fairly large probability at short
interparticle distances (strong inelastic processes) require rather involved nu-
merical calculations. An example of such a process is Penning ionization in pair
collisions of metastable triplet helium atoms: one of them goes to the ground
state and the other one gets ionized. However, for a qualitative analysis of this
type of processes, instead of a direct solution of the problem one may put a
perfectly absorbing wall at a certain (short) interparticle distance r0. The pres-
ence of this wall means that there is only an incoming spherical flux at r = r0.
In other words, once the particles approach each other at the distance r0 they
necessirily undergo the inelastic transition (see Problem 1.2).

The inelastic collisional decay of an ultracold gas is present even if all atoms
are in the lowest energy state. The reason is that the interaction potential be-
tween two atoms, U(r), in most cases supports many bound (molecular) states.
Therefore, there exists a process of three-body recombination. Namely, three
atoms collide, two of them form a bound molecular state, and the third one
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Figure 1.6: The process of three-body recombination. Brown lines indicate
bound molecular states in the interaction potential U(r) (blue curve). Red
balls show three colliding atoms: the two atoms connected with the black arrow
collide with each other and form a bound molecular state, and the third one
should be inside a sphere of radius ∼ Re around them in order to carry away
the binding energy.

carries away the binding energy ǫ (see Fig. 1.6). This is one of the very few
cases where one consideres three-body interactions in ultracold gases.

In order to obtain a dimensional estimate for the rate of three-body recombi-
nation we follow the ideas of the Thompson model developed for the formation
of neutral atoms in electron-electron-ion collisions (J.J. Thomson, Phil,. Mag.,
47, 337 (1924)). We assume that two atoms collide and form a bound molec-
ular state, and for carrying away the binding energy the third atom should be
inside a sphere of radius ∼ Re around them. The probability that it is there
is approximately equal to (nR3

e), where n is the atom density. Then the rate
of three-body recombination, i.e. the number of recombination events per unit
time, is roughly the rate of two-body collisions multiplied by (nR3

e):

Wrec ∼ σṽ(nR3
e)
N2

V
, (1.55)

and a more detailed analysis shows that we should put ṽ of the order of the
velocity of particles in the outgoing channel of the recombination process. Since
the binding energy of the formed molecular state is ǫ ∼ ~

2/mR2
e, we have

ṽ ∼ ~/mRe. Then, writing the number of recombination events per unit time

17



in the form:

Wrec = αrec
N3

V 2
, (1.56)

from Eq. (1.55) we obtain an estimate for the recombination rate constant αrec:

αrec ∼ σṽR3
e ∼ 4π~

m
R2

e, (1.57)

where we implicitly assumed that σ ∼ πR2
e. The binding energy ǫ is much larger

than any other energy scale in the system. Therefore, the molecule formed in
the recombination process and the third atom acquire a high kinetic energy and
are ejected from the gas sample. Thus, in each recombination event the gas
looses three atoms, and the rate of recombination determines the life-time of
the gas.

The decrease of the atom density due to three-body recombination is gov-
erned by the equation:

dn

dt
= −αrecn

3, (1.58)

and a characteristic recombination time is τrec ∼ (αrecn
2)−1. For most ultracold

gases , αrec ranges from 10−28 to 10−30 cm6/s and the recombination life-time of
the gas, τrec, is of the order of seconds or tens of seconds at commonly achieved
densities n ∼ 1014 cm−3.

In the forthcoming lectures we will omit both the three-body recombination
and collisional relaxation, having in mind that they can be made rather slow
by decreasing density or selecting proper internal atomic states. Therefore, we
will use the Hamiltonian of the many-body bosonic system, which for identical
bosons in first quantization can be written as

H = − ~
2

2m

∑

α

∆rα
+

1

2

∑

α6=β

U(rα − rβ), (1.59)

where particles are labeled by indeces α and β. Note that Eq. (1.59) assumes
the weakly interacting regime where one can also omit many-body elastic inter-
actions between particles.

Problems 1

1.1 Consider the interaction potential U(r) which has a deep potential well and
Van der Waals tail as shown in Fig. 1.2. The zero-energy relative motion of
atoms in the region of the well is quasiclassical (WKB) and it remains WKB
at distances (r ≪ Re) where the interaction potential acquires the Van der
Waals shape U(r) = −C6/r

6. Express the s-wave scattering length through
the characteristic radius of the potential, Re = (mC6/~

2)1/4, and the WKB
phase Φ =

∫∞
R0

√

m|U(r))|/~2 dr. (G.F. Gribakin and V.V. Flambaum, Phys.

Rev. A, 48, 546 (1993); G.V. Shlyapnikov, J.T.M. Walraven, and E.L. Surkov,
Hyperfine Interactions, 76, 31 (1993)).

,
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The wavefunction of the s-wave relative motion with wave vector k obeys
Eq. (1.9):

−~
2

m

[

d2

dr2
+

1

r

d

dr

]

ψ(r) + U(r)ψ(r) =
~

2k2

m
ψ(r).

In the ultracold limit, kRe ≪ 1, at distances r ≪ k−1 we may put k = 0 in this
Schroedinger equation.

In the inner region, r ≪ Re, the relative motion is quasiclassical and we
have the WKB expression for the wavefunction:

ψ ∝ 1

r
√

p(r)
sin

(

1

~

∫ r

R0

p(r′)dr′ +
π

4

)

, (1.60)

where p(r) =
√

m|U(r)| is the classical momentum of the motion. At distances
where the interaction potential acquires the Van der Waals form U(r) = −C6/r

6,
but the motion is still quasiclassical, we have p(r) = ~R2

e/r
3 and equation (1.60)

can be written as

ψ ∝
√
r sin

(

R2
e

2r2
− π

4
− Φ

)

, (1.61)

with Φ =
∫∞

R0

[p(r)/~]dr being the WKB phase.

On the other hand, for the Van der Waals potential, Eq. (1.9) with k = 0
becomes

−~
2

m

[

d2

dr2
+

1

r

d

dr

]

ψ(r) − C6

r6
ψ(r) = 0. (1.62)

Representing the wavefunction as ψ(r) = r−1/2φ(r) and turning to a new vari-
able y = R2

e/2r
2 we reduce Eq. (1.62) to the Bessel equation:

d2φ

dr2
+

1

r

dφ

dr
+

(

1 − 1

16r2

)

φ = 0.

The solution of this equation is expressed through the Bessel functions with
indeces 1/4 and −1/4:

φ ∝ [J−1/4(y) +AJ1/4(y)], (1.63)

and the coefficient A should be obtained by matching ψ ∝ r−1/2φ with ψ (1.61)
at distances r ≪ Re (y ≫ 1) where the motion is quasiclassical. For y ≫ 1 we
have

J1/4(y) =

√

2

πy
cos

(

y − 3π

8

)

; y ≫ 1.

J−1/4(y) =

√

2

πy
cos
(

y − π

8

)

; y ≫ 1.

Then, using φ(y) from Eq. (1.63) the wavefunction of the relative motion be-
comes

ψ ∝
√
r
{

(1 +A) cos
π

8
cos
(

y − π

4

)

+ (1 −A) sin
π

8
sin
(

y − π

4

)}

. (1.64)
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Rewriting Eq. (1.63) in the form:

ψ ∝
√
r
{

cos Φ sin
(

y − π

4

)

− sin Φ cos
(

y − π

4

)}

, (1.65)

and equalizing logarithmic derivatives ψ′/ψ of wavefunctions (1.64) and (1.65)
we obtain:

A = −cos
(

Φ − π
8

)

cos
(

Φ + π
8

) . (1.66)

We now consider the solution (1.63) in the limit of r ≫ Re (y ≪ 1). For
y ≪ 1 we have

J1/4(y) =
(y

2

)1/4 1

Γ(5/4)
=

(

Re

2r

)1/2
1

Γ(5/4)
; y ≪ 1.

J−1/4(y) =

(

2

y

)1/4
1

Γ(3/4)
=

(

2r

Re

)1/2
1

Γ(3/4)
; y ≪ 1.

Thus, in the interval of distances where k−1 ≫ r ≫ Re, the wavefunction
ψ = r−1/2φ(r) acquires an asymptotic form:

ψ ∝
(

1 +
ARe

2r

Γ(3/4)

Γ(5/4)

)

. (1.67)

At the same time, in this range of distances we may drop both U(r) and ~
2k2/m

in Eq. (1.9). The solution of the resulting equation of the free motion at zero
energy is given by Eq. (1.13):

ψ ∝
(

1 − a

r

)

This is how we introduced the scattering length a, showing later that it is
related to the s-wave scattering phase shift and scattering amplitude in the
limit of k → 0. Comparing Eq. (1.67) with Eq. (1.13) we see that

a = −ARe

2

Γ(3/4)

Γ(5/4)
.

Then, using equation (1.66) for the coefficient A, we obtain the final expression
for the scattering length in terms of Re and the WKB phase Φ:

a =
ReΓ(3/4)

2Γ(5/4)

cos
(

Φ − π
8

)

cos
(

Φ + π
8

) . (1.68)

The scattering length depends on Φ as shown in Fig .1.7. It is zero for Φ =
5π/8+πj, where j is a non-negative integer, and reaches ±∞ for Φ = 3π/8+πj.
In the latter case there appears a new bound state in the potential U(r). For
5π/8+πj < Φ < 11π/8+πj we have a > 0, and for 3π/8+πj < φ < 5π/8+πj
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Figure 1.7: The scattering length a as a function of the WKB phase Φ.

the scattering length is negative. Thus, positive values of a are met in a wider
interval of Φ (by a factor of 3) than negative values.

1.2 Consider the same interaction potential U(r) as in Problem 1.1, but put a
perfectly absorbing wall at a distance r = r0 (see Fig. 1.9). The term perfectly
absorbing means that at r → r0 there is only an incoming flux and the wavefunc-
tion behaves as ψ ∝ exp[−ip0(r − r0)/~], with p0 =

√

m|U(r0)|. This assumes
the validity of the WKB approximation for r → r0. Calculate the scattering
amplitude and the rate constant of inelastic losses in the limit of k → 0.

Lecture 2. Second quantization. Bose-Einstein

condensation in an ideal gas

2.1 Second quantization. Main relations

Let us now introduce a method of second quantization for a many-body system
of bosons. Consider N identical spinless bosons in a very large (but finite) vol-
ume V and assume first that they do not interact with each other. In free space
quantum numbers of individual particles are their wavevectors k1, k2, ...kN .
We then write the many-body wavefunction of the system as

Ψ ∝
∑

P

ψk1
(r1)ψk2

(r2) ....ψkN
(rN ). (2.1)
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Figure 1.8: The scattering potential U(r) with a perfectly absorbing wall at
r = r0.

The single-particle wavefunction is ψki
(ri) = (1/

√
V ) exp(kiri), and the sum in

Eq. (2.1) is taken over all possible permutations of the bosons. Note that some
of the values ki can be equal to each other.

For two particles in two different momentum states, k1 and k2, we have

Ψ(r1, r2) =
1√
2V

[exp(ik1r1 + ik2r2) + exp(ik2r1 + ik1r2)] . (2.2)

In the case of N particles we can write:

Ψ =

(

N1!N2! ...

N !

)1/2
∑

P ′

ψk1
(r1)ψk2

(r2) .... (2.3)

HereNi is the number of bosons in the state with the wavevector ki, and the sum
is taken only over the permutations of different wavevectors ki. One certainly
has

∑

i

Ni = N. (2.4)

In the presence of interaction between particles, Ψ (2.3) is not a stationary eigen-
state, since the momenta of individual particles are not conserved. Nevertheless,
we can still use the wavefunctions (2.3) as a set of basic functions.

We now consider an operator of the form

Ĥ(1) =
∑

α

ĥ(1)
α , (2.5)

with the operator ĥ
(1)
α acting only on a single particle α. This can be, for

example, an external potential acting on individual particles. Let us find matrix
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elements of the operator Ĥ(1) between the states described by the wavefunctions

(2.3). Since each of ĥ
(1)
α acts only on a single particle, non-zero matrix elements

can only exist between the states with the same N1, N2, ... or between the states
in which one of these numbers increases by 1 and another one decreases by 1.

For example, return to the case of two particles and consider the transition
between the state

1√
2

[ψ1(r1)ψ2(r2) + ψ2(r1)ψ1(r2)] (N1 = 1; N2 = 1)

and the state
ψ1(r1)ψ1(r2) (N1 = 2; N2 = 0).

Then, with the normalization condition
∫

d3r|ψ1,2(r)|2 = 1, we have:

〈N2 = 1, N1 = 1|Ĥ(1)|N2 = 0, N1 = 2〉 =
√

2h
(1)
12 , (2.6)

where

h
(1)
12 =

∫

ψ∗
1(r)ĥ(1)(r)ψ2(r)d

3r. (2.7)

In a general case of N particles, using Eq. (2.3) we find:

〈Ni, Nk − 1|Ĥ(1)|Ni − 1, Nk〉 = h
(1)
ik

√

NiNk. (2.8)

For the diagonal matrix element we have:

H̄(1) ≡ 〈N1, N2, ...Ni, ...|Ĥ(1)|N1, N2, ...Ni, ...〉 =
∑

i

h
(1)
ii Ni. (2.9)

Let us now consider operators âi ≡ âki
which act not on the particle coordi-

nates but on the occupation numbers, decreasing the occupation number of the
state with a given ki by 1:

âi|N1, N2, ...Ni ...〉 =
√

Ni|N1, N2, ...Ni − 1, ...〉. (2.10)

The operators âi are called annihilation operators of particles, since an operator
âi annihilates a particle in the state i (the state with the wavevector ki). On
the basis of Eq. (2.10) we have for the corresponding matrix element:

〈Ni − 1|âi|Ni〉 =
√

Ni. (2.11)

In a similar way, we introduce operators â†i called creation operators of particles:

â†i |N1, N2, ...Ni ...〉 =
√

Ni + 1|N1, N2, ...Ni + 1, ...〉. (2.12)

The operator â†i creates a particle in the state i, and the corresponding matrix
element is

〈Ni + 1 |â†i |Ni〉 =
√

Ni + 1. (2.13)
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The product â†i âi does not change the occupation numbers Ni. It has only
diagonal matrix elements and can be written as

â†i âi = Ni. (2.14)

Similarly, we can write
âiâ

†
i = Ni + 1, (2.15)

and there is a commutation relation

âiâ
†
i − â†i âi = 1. (2.16)

Other commutation relations read:

âiâk − âkâi = 0 (2.17)

âiâ
†
k − â†kâi = 0; i 6= k (2.18)

So, in a compact form we can write:

âiâ
†
k − â†kâi = δik. (2.19)

One can easily check that all matrix elements of the operator

Ĥ(1) =
∑

i,k

h
(1)
ik â

†
i âk. (2.20)

coincide with matrix elements of the operator Ĥ(1) (2.5). Thus, one can always
write (2.5) in the form of (2.20) which is called the secondly quantized form.

This result is straightforwardly generalized to the case of the operator

Ĥ(2) =
1

2

∑

α,β

ĥ
(2)
α,β , (2.21)

with ĥ
(2)
α,β acting on the coordinates of two particles, α and β. This type of

operator describes pair interactions between particles. The secondly quantized
form of this operator is

Ĥ(2) =
1

2

∑

i,k,l,m

h
(2)lm
ik â†kâ

†
i âlâm, (2.22)

with

h
(2)lm
ik =

∫

ψ∗
i (r1)ψ

∗
k(r2)h

(2)(r1, r2)ψl(r1)ψm(r2)d
3r1d

3r2. (2.23)
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2.2 Secondly quantized Hamiltonian in terms of momentum-

space operators

We now return to the Hamiltonian (1.59) which describes particles in free space
and write it in the secondly quantized form. The operator of the kinetic energy
of particles is

K̂ = − ~
2

2m

∑

α

∆rα
, (2.24)

and each Laplacian term of the sum can be treated as the operator ĥ
(1)
α (rα). It

has only diagonal matrix elements and we have :

∑

k

Kkk =
∑

k

~
2k2

2m
Nk. (2.25)

Then, according to Eq. (2.20) one can write the kinetic energy operator K̂ as

K̂ =
∑

k

~
2k2

2m
â†kâk. (2.26)

In order to write the secondly quantized form for the operator of the energy
of interaction between particles,

P̂ =
1

2

∑

α6=β

U(rα − rβ), (2.27)

we use Eqs. (2.22) and (2.23) and the fact that in free space the basic set of
wavefunctions is ψki

(r) = (1/
√
V ) exp(ikir). This yields:

P̂ =
1

2

∑

k1,k2,k3,k4

U34
12 â

†
k1
â†k2

âk3
âk4

, (2.28)

where

U34
12 =

1

V 2

∫

d3r1d
3r2 U(r1 − r2) exp[i(−k1r1 − k2r2 + k3r1 + k4r2)]. (2.29)

Turning to the variables r = r1 − r2 and R = (r1 + r2)/2 we reduce Eq. (2.29)
to the form

U34
12 =

1

V 2

∫

d3rd3R U(r) exp[i(k3+k4−k1−k2)R)+i(k3+k2−k1−k4)r/2)]. (2.30)

We then immediately see that there is a momentum conservation law:

k1 + k2 = k3 + k4, (2.31)

and obtain

U34
12 =

1

V

∫

d3r U(r) exp[i(k3 − k1)r]. (2.32)
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For the interaction potential U(r) satisfying the condition |U(r)| ≪ ~
2/mr2

at distances where the potential acts, we may use the Born approximation for
calculating the scattering amplitude f . In the limit of particle momenta tending
to zero we have:

f = −a = − m

4π~2

∫

U(r) d3r. (2.33)

Then, using equations (2.28), (2.32), and (2.33), in this (ultracold) limit we
write the secondly quantized operator of the interaction energy as

P̂ =
g

2V

∑

k1,k2,k3

â†k1
â†k2

âk3
âk1+k2−k3

, (2.34)

where g = 4π~
2a/m is the coupling constant introduced in Lecture 1.

Actually, one can also write Eq. (2.34) for the interaction potential U(r)
which does not satisfy the condition of the Born approximation. This is because
the interaction between two particles can lead to transitions:

k3,k4 ⇒ k1,k2;

k3,k4 ⇒ k′
1,k

′
2 ⇒ k1,k2;

k3,k4 ⇒ k′′
1 ,k

′′
2 ⇒ k′

1,k
′
2 ⇒ k1,k2;

etc. This is equivalent to the summation of all vacuum ”diagrams” and eventu-
ally leads to Eq. (2.34) if the scattering amplitude is momentum independent.

We can also act differently since we saw that the interaction energy for
two particles is ǫint = g/V . We replace the potential U(r) by a potential
Ueff (r) which satisfies the condition of the Born approximation and, at the same
time, leads to the same scattering length a. Thus, assuming that the scattering
amplitude is momentum independent and using Eqs. (2.26) and (2.34), we have
the following secondly quantized form of the Hamiltonian (1.59):

Ĥ =
∑

k

~
2k2

2m
â†kâk +

g

2V

∑

k1,k2,k3

â†k1
â†k2

âk3
âk1+k2−k3

. (2.35)

2.3 Secondly quantized Hamiltonian in terms of coordinate-

space operators

Another form of second quantization is based on the use of field operators in
the coordinate space, ψ̂(r) and ψ̂†(r). They are related to the annihilation and

creation operators, âk and â†k by

ψ̂(r) =
∑

k

ψk(r)âk, (2.36)

ψ̂†(r) =
∑

k

ψ∗
k(r)â†k, (2.37)

with ψk(r) = (1/
√
V ) exp(ikr) being a basic set of single-particle eigenfunctions.

The operator ψ̂(r) annihilates a particle at the point r, and the operator ψ†(r)
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creates a particle at this point. Using commutation relations (2.17) and (2.19),
from Eqs. (2.36) and (2.37) we obtain the following commutation relations:

ψ̂(r)ψ̂†(r′) − ψ̂†(r′)ψ̂(r) = δ(r − r′), (2.38)

ψ̂(r)ψ̂(r′) − ψ̂(r′)ψ̂(r) = 0. (2.39)

Using equations (2.36) and (2.37) and the completeness theorem

∑

i

ψ∗
i (r)ψi(r

′) = δ(r − r′),

we straightforwardly express the operator Ĥ(1) (2.20) in terms of the field op-

erators ψ̂(r) and ψ̂†(r):

Ĥ(1) =
∑

i,k

h
(1)
i,k â

†
i âk =

∫

d3r ψ̂†(r)ĥ(1)(r)ψ̂(r). (2.40)

Accordingly, the operator of the kinetic energy of particles given by Eq. (2.24)
can be written as

K̂ =

∫

d3r

[

− ~
2

2m
ψ̂†(r)∆rψ̂(r)

]

. (2.41)

In a similar way we can write the secondly quantized form in terms of ψ̂(r)

and ψ̂†(r) for the operator Ĥ(2) (2.21):

Ĥ(2) =
1

2

∫

d3r ψ̂†(r1)ψ̂
†(r2)ĥ

(2)(r1, r2)ψ̂(r1)ψ̂(r2) (2.42)

and represent the operator of the energy of interaction between particles, P̂
(2.34) as

P̂ =
g

2

∫

d3r ψ̂†(r)ψ̂†(r)ψ̂(r)ψ̂(r). (2.43)

In case there is an external potential V (r) acting on single particles, we may

use equation (2.40) with ĥ(1)(r) = V (r) and write the secondly quantized form
for the energy of interaction of particles with this external field as

V̂ =

∫

d3r ψ̂†(r)V (r)ψ̂(r). (2.44)

We thus arrive at the following secondly quantized form of the Hamiltonian
Ĥ = K̂ + V̂ + P̂ in terms of the field operators ψ̂(r) and ψ̂†(r):

Ĥ=

∫

d3r

[

− ~
2

2m
ψ̂†(r)∆rψ̂(r) + ψ̂†(r)V (r)ψ̂(r) +

g

2
ψ̂†(r)ψ̂†(r)ψ̂(r)ψ̂(r)

]

. (2.45)

We will use the secondly quantized Hamiltonian in the form (2.45) or in the
form (2.35) throughout the entire lecturing course.
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2.4 Bose-Einstein condensation in an ideal gas. The role

of the density of states

We first discuss an ideal Bose gas and introduce the phenomenon of Bose-
Einstein condensation. Consider a three-dimensional (3D) Bose gas in free space
at equilibrium at a finite temperature T . Then the Hamiltonian (2.35) contains
only the kinetic energy term and reads:

Ĥ =
∑

k

~
2k2

2m
â†kâk.

The equilibrium occupation numbers of the single-particle states with a given
wavevector k are

Nk = 〈â†kâk〉 =
1

exp
(

Ek−µ
T

)

− 1
, (2.46)

where the symbol 〈〉 means statistical average, Ek = ~
2k2/2m is the kinetic

energy of a particle with wavevector k, and µ ≤ 0 is the chemical potential.
Let us establish a relation between µ and the total number of particles, N ,

at a given T . We have:

N =
∑

k

Nk =

∫

V d3k

(2π)3
1

exp
(

Ek−µ
T

)

− 1
. (2.47)

The chemical potential decreases with T and becomes zero at a critical temper-
ature

Tc =
3.31~

2

m
n2/3, (2.48)

with n = N/V being the gas density (see Fig. 2.1). The critical temperature is
obtained straightforwardly from Eq. (2.47) at µ = 0:

n =
N

V
=

∫ ∞

0

4πk2dk

(2π)3
1

exp
(

Ek

Tc

)

− 1
,

and equation (2.47) does not have a solution for T < Tc. Note that at T = Tc the
gas is already quantum degenerate, and the corresponding degeneracy parameter
is

nΛ3
Tc

= 2.62. (2.49)

The way to resolve the situation at T < Tc has been revealed by Bose and
Einstein in 1924. The idea is that at T < Tc a macroscopic number of particles
goes to a single quantum state. In free space this is the state with momentum
~k = 0. Accordingly, for the total number of particles we have:

N = N(k = 0) +N(k > 0),
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Tc

T

µ

Figure 2.1: The temperature dependence of the chemical potential for the uni-
form 3D ideal Bose gas (brown cureve). The brown point shows the critical
temperature of Bose-Einstein condensation, Tc.

where particles with finite momenta obey the Bose distribution relation (2.46)
at µ = 0. The total number of such particles is

N(k > 0) =

∫ ∞

0

V 4πk2dk

(2π)3
1

exp
(

Ek

T

)

− 1
= N

(

T

Tc

)3/2

. (2.50)

The (macroscopic) number of particles in the state with k = 0 is then given by

N0 ≡ N(k = 0) = N

[

1 −
(

T

Tc

)3/2
]

. (2.51)

These particles are usually called Bose-condensed, and the part of the gas formed
by them is called Bose-Einstein condensate. In some sense, the phenomenon of
Bose-Einstein condensation can be treated as ”condensation in the momentum
space”. Note that in an ideal Bose gas at T = 0 all particles are in the conden-
sate, which is clearly seen from Eq. (2.51).

Let us now consider a two-dimensional (2D) Bose gas in free space and show
that in this case the phenomenon of Bose-Einstein condensation is absent. The
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relation between N and µ now reads:

N =

∫ ∞

0

A 2πkdk

(2π)2
1

exp
(

Ek−µ
T

)

− 1
, (2.52)

where A is the surface area. Then, a straightforward calculation yields:

µ = −T ln

[

1

1 − exp(−nΛ2
T

]

, (2.53)

with n = N/A being the 2D density. Equation (2.53) is valid at any T and n.
For nΛ2

T ≪ 1 we recover the classical result

µ = −T ln

[

1

nΛ2
T

]

,

whereas in the deeply quantum degenerate regime (nΛ2
T ≫ 1) we have

µ = −T exp(−nΛ2
T ).

We thus see that the chemical potential continuously decreases with temper-
ature and always remains finite (see Fig. 2.2), and there is no Bose-Einstein
condensation.

In order to understand the difference between the 3D and 2D cases we in-
troduce the (energy) density of states:

ν(E) =

∫

δ(E − E(k))
V ddk

(2π)d
, (2.54)

where d is the dimension of the system, and E(k) = ~
2k2/2m. The quantity

ν(E) represents the number of states per unit energy interval, and equation
(2.47) can be represented in the form:

N =

∫ ∞

0

ν(E)dE

exp
(

E−µ
T

)

− 1
. (2.55)

In the 3D case we have:

ν(E) =

(

mV

2π2~2

)(

2mE

~2

)1/2

∝
√
E, (2.56)

whereas in 2d the density of states is energy independent:

ν(E) =
mA

2π~2
. (2.57)

The key reason for the emergence of Bose-Einstein condensation is that for
ν(E) decreasing with E, below a certain critical temperature one can not dis-
tribute a given number of particles according to the Bose distribution function.
This is what is happening in the 3D ideal Bose gas in free space.
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T

µ

Figure 2.2: The temperature dependence of the chemical potential for the 2D
ideal uniform Bose gas (blue curve).

Problems 2

2.1. Consider a 2D ideal Bose gas in a harmonic potential V (r) = mω2r2/2. Use
a quasiclasssical approach and show that there is a phenomenon of Bose-Einstein
condensation (BEC). Calculate the BEC transition temperature.

The (quasi)classical approach assumes that the particle energy can be written
as

E =
~

2k2

2m
+
mω2r2

2
. (2.58)

Then for the energy density of states instead of Eq. (2.54) we have:

ν(E) =

∫

δ(E − E(k, r))
d2k

(2π)2
d2r, (2.59)

where E(k, r) is given by Eq. (2.58). Turning to new variables

y =
~

2k2

2m
− mω2r2

2
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and
Ẽ = E(k, r),

we have the limits of integration from −Ẽ to Ẽ for y and from 0 to ∞ for Ẽ.
Taking into account that

d2rd2k

(2π)2
=
dẼdy

2~2ω2
,

from Eq. (2.59) we obtain

ν(E) =
1

2~2ω2

∫ ∞

0

dẼ δ(E − Ẽ)

∫ Ẽ

−Ẽ

dy =
E

~2ω2
∝ E. (2.60)

Then, Eq. (2.55) takes the form:

N =

∫ ∞

0

E

~2ω2

dE

exp
(

E−µ
T

)

− 1
, (2.61)

and we find that the chemical potential decreases with temperature and reaches
zero at a certain critical temperature. The latter follows from Eq. (2.61) with
µ = 0:

N =

(

Tc

~ω

)2 ∞
∑

j=0

1

(j + 1)2
≈ 1.23

(

Tc

~ω

)2

and is given by
Tc ≈ 0.9

√
N~ω. (2.62)

For T < Tc equation (2.61) does not have a solution. So, we have the phe-
nomenon of BEC, i.e at temperatures below Tc (2.62) a macroscopic number of
particles goes to the ground state of the potential V (r). In order to calculate
the number of non-condensed particles we put µ = 0 in Eq. (2.61). This yields

N(E > 0) ≡ N ′ = N

(

T

Tc

)2

, (2.63)

and for the number of particles in the condensate we have:

N0 = N

[

1 −
(

T

Tc

)2
]

. (2.64)

2.2 Consider a 1D ideal Bose gas in an external potential V (x) = α|x|q and use
the quasiclasssical approach. Find for which q, not necessirily integer, one has
the phenomenon of BEC. Calculate the BEC transition temperature Tc and the
condensed fraction of particles at T below Tc.
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Lecture 3. Bose-Einstein condensation in a weakly

interacting gas. Gross-Pitaevskii equation

3.1 Gross-Pitaevskii equation for the condensate wave-

function

We now discuss Bose-Einstein condensation (BEC) of interacting ultracold bosons.
We will assume that the gas is in the weakly interacting regime and character-
istic particle momenta satisfy the condition (1.26) so that the criterion of weak
interactions is given by Eq. (1.25). Since in an ideal 3D Bose gas at T = 0
all particles are in the condensate, for the weakly interacting Bose gas almost
all particles will be Bose-condensed at T = 0. In free space these are particles
with k = 0. In this Lecture we restrict ourselves to the case of T = 0, and the
situation at finite temperatures will be discussed later. Let us introduce the
field operator for Bose-condensed particles, ψ̂0(r). As the condensate contains

a macroscopic number of particles (N0 → 0), the matrix element of ψ̂†
0 cor-

responding to the creation of a condensed particle can be put equal to ψ∗
0(r),

where |ψ0(r)|2 = n0(r) with n0(r) being the condensate density. For example,

in free space where we have ψ̂0 = â†0/
√
V . The matrix element of â†0 is equal

to
√
N0 + 1 and we omit unity compared to N0. Since the matrix element of

ψ̂0 corresponding to the annihilation of a condensed particle is ψ0(r), this is

equivalent to regarding ψ̂0(r) as a c-number. In other words, we assume that

there is an average value of ψ̂0(r), equal to ψ0(r):

〈ψ̂0(r)〉 = ψ0(r). (3.1)

Let us now turn to the Heisenberg representation, where an operator Â(r)
of the Schroedinger representation is transformed to:

Â(r, t) = exp(iĤt/~)Â(r) exp(−iĤt/~), (3.2)

so that there is the Heisenberg equation of motion:

i~
∂Â(r, t)

∂t
= [ÂĤ ] ≡ (ÂĤ − ĤÂ). (3.3)

The operator Â in the Schroedinger picture does not explicitly depend on time
t. The time dependence of average values of physical quantities arises only
through the time dependence of the wavefunctions. The Heisenberg represen-
tation transfers the time dependence from the wavefunctions to the operators.
Note that the Heisenberg and Schroedinger representations are identical for the
operator of any conserved quantity, i.e. for an operator that commutes with the
Hamiltonian. In partricular, this is the case for the Hamiltonian itself and for
the particle number operator.

Consider now Â(r, t) = Ψ̂(r, t), where we use the notation Ψ̂ for the field

operator in the Heisenberg representation, while still keeping the notation ψ̂ for
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the Schroedinger-picture field operator. Then we rewrite Eq. (3.3) in the form
of a non-linear equation for the field operator:

i~
∂Ψ̂

∂t
=

(

− ~
2

2m
∆r + V (r) + gΨ̂†Ψ̂

)

Ψ̂. (3.4)

Let us now represent the field operator Ψ̂ as a sum of the condensate part,
c-number Ψ0(r, t), and a non-condensed part Ψ̂′(r, t):

Ψ̂(r, t) = Ψ0(r, t) + Ψ̂′(r, t). (3.5)

To zero order we omit the (small) non-condensed part Ψ′ and get an equation
for the condensate wavefunction:

i~
∂Ψ0

∂t
=

(

− ~
2

2m
∆r + V (r) + g|Ψ0|2

)

Ψ0. (3.6)

This is the Gross-Pitaevskii equation for the condensate wavefunction obtained
by Gross and by Pitaevskii in 1961.

The stationary solution of Eq. (3.6) has the form:

Ψ0(r, t) = ψ0(r) exp(−iµt/~), (3.7)

where

µ =
∂E

∂N
(3.8)

is the chemical potential, and the Schroedinger-picture condensate wavefunction
ψ0(r) is governed by the time-independent Gross-Pitaevskii equation:

(

− ~
2

2m
∆r + V (r) + g|ψ0|2 − µ

)

ψ0 = 0. (3.9)

The time dependence of the Heisenberg-picture condensate wavefunction
Ψ0(r, t) given by Eq. (3.7) is easy to obtain. Let us recall that the relation
〈Ψ̂0〉 = Ψ0, which is Eq. (3.1) rewritten in the Heisenberg representation (as-
suming that 〈Ψ̂′〉 = 0), is introduced only in the sense that the condensate with
N0 particles is equivalent to the condensate with (N0 − 1) particles, aside from
corrections of the order of 1/N0 (N0 ≫ 1). Actually, acting with the operator
Ψ̂0 on the state with N0 particles we get the state with (N0 − 1) particles:

Ψ̂0|N0〉 = Ψ0|N0 − 1〉. (3.10)

However, the time dependence of the wavefunctions of the stationary states with
N0 and (N0 − 1) particles is given by

Ψ(N0) ∝ exp(−iE(N0)t/~) (3.11)

Ψ(N0 − 1) ∝ exp(−iE(N0 − 1)t/~). (3.12)

This means that transferring the time dependence from the wavefunctions to
the operators and writing 〈Ψ̂0〉 = Ψ0, we have to write the time dependence of
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Ψ0 as Ψ0 ∝ exp(−µt/~), with µ = E(N0) − E(N0 − 1) = ∂E/∂N0 assuming
N0 → ∞. We thus arrive at Eq. (3.7).

For a uniform condensate (V (r) = 0) the ground state solution is

Ψ0 =
√
n0 exp(−iµt/~), (3.13)

where the chemical potential is given by the relation

µ = n0g. (3.14)

This is because the kinetic energy (Laplacian) term in Eq. (3.9) can be omitted,
since ψ0 = const. Note that for the ground state BEC the Laplacian term is
important only in the presence of an external potential V (r). For V (r) = 0,
omitting the Laplacian term and putting |ψ0|2 = n0 in the Gross-Pitaevskii
equation (3.9) we get Eq. (3.14). Then, substituting ψ0 =

√
n0 into Eq. (3.7)

we obtain Eq. (3.13).

3.2 Density-phase representation. Collapsing condensates

Formally, equations (3.13) and (3.14) are valid for both repulsive (g > 0) and
attractive (g < 0) interaction between particles. However, in reality these results
are correct only for g > 0. The reason is that for g < 0 the solution (3.13) is
unstable and in 3D (also in 2D) one has the phenomenon of collapse. Let us put
g < 0 and consider Eq. (3.6) in free space. Writing the condensate wavefunction
in the form Ψ0(r, t) exp(−iµt/~), where µ = n0g is the chemical potential of the
stationary state at an unperturbed constant density n0, we have:

i~
∂Ψ0

∂t
= − ~

2

2m
∆rΨ0 + g|Ψ0|2Ψ0 − µΨ0. (3.15)

In the presence of perturbations, we turn to the density-phase representation
and write

Ψ0 =
√
n exp(iφ), (3.16)

where the density n and phase φ are real. We now assume that n = n0 + δn,
where δn is a small perturbation in the density, and the derivatives of φ are also
small. Keeping only the terms that are linear in δn and derivatives of φ we have

i~Ψ̇0 =

(

−~φ̇+ i
~δṅ

2n0

)

Ψ0,

∆rΨ0 =

(

∆rδn

2n0
+ i∆rφ

)

Ψ0,

g|Ψ0|2Ψ0 − µΨ0 = gδnΨ0.

Substituting these expressions into Eq. (3.15) and equalizing real parts and
imaginary parts we obtain:

~δṅ = −~
2n0

m
∆rφ (3.17)

−~φ̇ = − ~
2

2m
∆r

(

δn

2n0

)

+ gδn. (3.18)
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Equations (3.17) and (3.18) represent the continuity and Euler equations of the
hydrodynamic approach.

We then consider a perturbation of the density (and phase) that has a long
length and time scale so that the Fourier component is

δn(k) ∝ cos(kr − ωt) (3.19)

with very small k and ω. Accordingly, the term (~2/2m)∆r(δn/2n0) in the right
hand side of the Euler equation (3.18) will be much smaller than gδn and can
be omitted. This transforms Eq. (3.18) to

−~φ̇ = gδn. (3.20)

Taking the time derivative in this equation and substituting δṅ from Eq. (3.17)
we obtain an equation for δn:

δn̈ =
n0g

m
∆rδn. (3.21)

This gives a relation between ω and k:

ω2 =
n0g

m
k2. (3.22)

For negative g, assuming real k we obtain negative ω2 and, hence, imaginary
frequencies:

ω = ±ik
(

n0|g|
m

)1/2

. (3.23)

According to Eq. (3.19) this means that δn will grow exponentially:

δn ∝ exp

(
√

n0|g|
m

kt

)

. (3.24)

This is nothing else than collapse. In a given part of space where an extremely
small perturbation of the density appears, its amplitude starts to grow expo-
nentially (see Fig.3.1) and the condensate eventually collapses to a droplet.

3.3 Stable condensates. Healing length

We thus see that a stable BEC in free space exists only for repulsive interaction
between particles (g > 0). Let us introduce a characteristic length scale for
a weakly interacting BEC with g > 0. Consider a condensate in a potential
V (x) that depends only on the coordinate x (not on y and z) and represents an
infinite wall at x = 0 so that the condensate exists only in the half-space x > 0
(see Fig.3.2). Being a continuous function of x, the condensate wavefunction ψ0

vanishes at x = 0.
We now solve Eq. (3.9) and find the wavefunction ψ0 of the ground state

BEC. First of all, ψ0 does not depend on y and z. We thus rewrite Eq. (3.9) as

− ~
2

2m

d2ψ0

dx2
+ g|ψ0|2ψ0 − µψ0 = 0 (3.25)
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n
0

Figure 3.1: Spatial density profile of a collapsing condensate. A change of color
from blue to red corresponds to growing peak density with increasing time.
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Figure 3.2: External potential depending only on the coordinate x and repre-
senting an infinite wall at x = 0. The condensate exists at x > 0.

and put the boundary condition

ψ0(0) = 0. (3.26)

Setting ψ0 to be real we multiply Eq. (3.25) by dψ0/dx and integrate over dx.
This yields

− ~
2

4m

(

dψ0(x)

dx

)2

+
g

4
ψ4

0(x) −
µ

2
ψ2

0(x) = C, (3.27)
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where C is the integration constant. Since dψ0/dx = 0 at x→ ∞, we have

C =
g

4
n2

0 −
µ

2
n0,

with n0 being the condensate density at x→ ∞. On the other hand, for x→ ∞
we also have d2ψ0/dx

2 = 0 and, hence, Eq. (3.25) gives ψ0(∞) =
√
n0 = const

and µ = n0g. This reduces the expression for the integration constant C to

C = −1

4
n2

0g = −1

4
µn0. (3.28)

From Eq. (3.27) we then obtain:

dψ0(x)

dx
= ±

√

m

~2

(

µ√
g
−√

gψ2
0(x)

)

= ±
√

mg

~2
n0

(

1 − ψ2
0(x)

n0

)

. (3.29)

The solution of Eq. (3.29) is

ψ0(x) = ±√
n0 tanh

(

x

ξ

)

, (3.30)

where the quantity

ξ =
~√
mn0g

(3.31)

is called the healing length. It is a characteristic distance from the wall at which
the condensate wavefunction acquires its asymptotic value (see Fig.3.3).

3.4 Bose-Einstein condensation in an external harmonic

potential

Let us now consider Bose-Einstein condensation of particles in a spherical har-
monic potential given by

V (r) =
mω2r2

2
. (3.32)

For finding the ground state condensate wavefunction we should solve Eq. (3.9)
which now takes the form:

− ~
2

2m
∆rψ0 +

mω2r2

2
ψ0 + g|ψ0|2ψ0 − µψ0 = 0. (3.33)

For an ideal gas BEC (g = 0) the ground state solution is simply the ground
state wavefunction of a harmonic oscillator:

ψ0 =

√
N0

π3/4l
3/2
h

exp

(

− r2

2l2h

)

, (3.34)

where

lh =

(

~

mω

)1/2

(3.35)
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ψ
0

ξ x0

Figure 3.3: Ground state wavefunction ψ0 versus x for the condensate in the
potential V (x) representing an infinite wall at x = 0 in the y,z plane.

is the harmonic oscillator length. The solution (3.34) has orbital angular mo-
mentum l = 0, and the chemical potential is µ = 3~ω/2. The energy per particle
in the first excited state is higher by ~ω. So, if there is a small interaction be-
tween particles and at the maximum density we have

nmax|g| ≪ ~ω, (3.36)

then the condensate wavefunction is still given by Eq. (3.34) irrespective of the
sign of g.

Consider now g > 0 and assume that in the central part of the sample, where
the density is the largest, we have

nmaxg ≫ ~ω. (3.37)

This is the so-called Thomas-Fermi limit. It is then reasonable to assume that
the kinetic energy term can be omitted in the central part of the gas. Equation
(3.33) then becomes an algebraic equation:

g|ψ0|2 = µ− mω2r2

2
. (3.38)

Thus, the condensate wavefunction has the shape of an inverted parabola (see
Fig.3.4):

ψ0 =

√

µ

g

(

1 − r2

R2
TF

)

θ(RTF − r), (3.39)
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where the Thomas-Fermi radius of the condensate is given by

RTF =

(

2µ

mω2

)1/2

. (3.40)

Equation (3.40) contains the theta function, which is equal to unity at positive
values of the argument and to zero at a negative argument. This means that
ψ0 = 0 for any distance r from the origin larger than RTF so that in the
Thomas-Fermi approximation RTF is really the radius of the BEC.

R
TF

ψ
0

V(r)

r

Figure 3.4: Thomas-Fermi ground state solution for the condensate wavefunc-
tion ψ0(r) in the spherical harmonic potential V (r) = mω2r2/2

The normalization condition for ψ0 is

∫ RT F

0

|ψ0(r)|2d3r = N0 (3.41)

and it gives a relation between the chemical potential µ and the number of
particles N0. Using ψ0 (3.39) in Eq. (3.41) we obtain:

N0 =
8π

15

µR3
TF

g
,

and with RTF from Eq. (3.40) this leads to

µ =

(

N0g
15

16
√

2π

)2/5

(mω2)3/5. (3.42)
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So, due to the spatial inhomogeneity we have µ ∝ N
2/5
0 , in contrast to µ ∝ N0

for a uniform condensate.
The maximum density is at r = 0:

nmax = ψ2
0(0) =

µ

g
(3.43)

so that µ = nmaxg. The healing length at maximum density is ξ = ~/
√
mnmaxg

and owing to the Thomas-Fermi condition (3.37) it is much smaller than the
harmonic oscillator length:

ξ

lh
=

(

~ω

nmaxg

)1/2

≪ 1. (3.44)

The inequalities (3.37) and (3.44) indicate that the discrete structute of the
energy levels of the harmonic potential (3.32) is smeared out by the interparticle
interaction.

Let us now estimate the omitted kinetic energy term of Eq. (3.33). Using
the obtained Thomas-Fermi solution (3.39) we have

K̃ = − ~
2

2m
ψ0

(

d2

dr2
+

2

r

d

dr

)

ψ0 = nmax
~

2ω2

µ

(3 − 2r2/R2
TF )

(1 − r2/R2
TF )

. (3.45)

On the other hand, the term of the interparticle interaction is

P̃ = µψ2
0 = µ

(

1 − r2

R2
TF

)

, (3.46)

and we obtain the ratio

K̃

P̃
=

(

~ω

2nmaxg

)2
(3 − 2r2/R2

TF )

(1 − r2/R2
TF )2

. (3.47)

We see that under the condition of the Thomas-Fermi regime given by Eq. (3.37)
the kinetic energy term is much smaller than the interaction term at any r <
RTF , except near the border of the trapped condensate. The Thomas-Fermi
solution (3.39) is violated at distances from the border which are of the order
of ∼ RTF (~ω/4nmaxg) ≪ RTF . This is not a problem as in the major part of
the sample this solution is valid. Therefore, it is widely used in the analysis of
trapped Bose-Einstein condensates.

Problems 3

3.1 Consider a condensate with g < 0 in a spherical harmonic potential V (r) =
mω2r2/2. Estimate a critical value of |g| above which the condensate undergoes
a collapse.
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Let us write the energy functional:

E =

∫

d3r

{

− ~
2

2m
ψ∗

0∆rψ0 +
mω2

2
|ψ0|2 +

1

2
g|ψ0|4

}

. (3.48)

Suppose that ψ0 has a Gaussian shape with a size L which will be a variational
parameter:

ψ0 =

√
N0

π3/4L3/2
exp

(

− r2

2L2

)

. (3.49)

The calculation of the integrals in Eq. (3.48) is straightforward:

∫

d3r − ~
2

2m
ψ0

(

d2

dr2
+

2

r

d

dr

)

ψ0 =
3

4

~
2

mL2
N0

∫

d3r
mω2r2

2
ψ2

0 =
3

4
mω2L2N0

∫

d3r
1

2
gψ4

0 = − |g|N2
0

2(2π)3/2L3
.

We thus have:

E =
3

4

~
2

mL2
N0 +

3

4
mω2L2N0 −

|g|
2(2π)3/2L3

N2
0 , (3.50)

where the first term in the right hand side of Eq. (3.50) originates from the ki-
netic energy of the condensate, the second term from the interaction of particles
with the external harmonic potential, and the third term from the attractive
interparticle interaction.

We now turn to a dimensionless energy ε = E/N0~ω and dimensionless size
κ = L/lh, where lh = (~/mω)1/2 is the harmonic oscillator length introduced in
section 3.4. In terms of ε and κ equation (3.50) reads:

ε =
3

4κ2
+

3κ2

4
− η√

2πκ3
. (3.51)

Here we also took into account that |g| = 4π~
2|a|/m and introduced the param-

eter

η =
N0|a|
lh

. (3.52)

The dependence ε(κ) will be now analyzed at different values of η.
For η ≪ 1 the interaction between particles described by the last term in

Eq. (3.51) is not important at κ & 1. It becomes crucial only for κ ≪ 1, where
the energy becomes more and more negative with decreasing size (see Fig.3.5).
This indicates the presence of collapse. It is energetically favorable for the gas to
get smaller and smaller size. However, the situation is more peculiar. At small
κ the energy is increasing with the size and reaches maximum at κmax ∼ η.
Then, for larger κ it decreases with increasing κ, reaches minimum at κ = κmin
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(at small η the dimensionless size κmin is close to 1), and grows at larger κ (see
Fig.3.5). This growth is provided by the interaction of particles with the external
harmonic potential, described by the second term in Eq. (3.51). Let the system
be initially prepared in the local minimum, i.e. with κ = κmin and, hence, with
the size L = κminlh. Then, in order to get to the region with κ < κmax and
collapse, the system should undergo a macroscopc quantum tunneling through
the potential barrier. The height of the barrier is large (∼ 1/η) and its width
is ∼ 1 so that the tunneling probability is vanishingly small. We thus conclude
that the trapped Bose-Einstein condensate with g < 0 is stable at η ≪ 1.

κκ

ε

κ max min

Figure 3.5: Dimensionless energy ε versus dimensionless size κ for a trapped
condensate with g < 0 and η ≪ 1.

For η ≫ 1 the kinetic energy term, i.e. the term proportional to κ2 in
Eq. (3.51), is not important and we have a monotonic dependence ε(κ) depicted
in Fig.3.6. The energy is decreasing with the size at any κ, and the system is
absolutely unstable (collapsing).

For η approaching 1 from below we still have a non-monotonic curve ε(κ)
like in Fig3.5. The local minimum and the local maximum will be much more
shallow, but the system can still be considered as stable similarly to the case of
η ≪ 1. Under a continuous increase in η the minimum and maximum become
more shallow and eventually disappear. The non-monotonic curve ε(κ) then
changes to a monotonic one like in Fig.3.6, and the system becomes unstable.

Let us now find a critical value of η at which the minimum and maximum
disappear, that is the value of η at the border of stability. The positions of the
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ε

κκ∼ η

Figure 3.6: The dependence ε(κ) for η ≫ 1.

minimum and maximum are determined by the condition:

dε

dκ
= − 3

2κ3
+

3κ

2
+

3η√
2πκ4

= 0. (3.53)

For the minimum one has the second derivative d2ε/dκ2 > 0 and for the max-
imum d2ε/dκ2 < 0. Getting more shallow the local minimum and maximum
approach each other with increasing η. They merge and become a saddle point
(see Fig.3.7) when η is such that at their location one has

d2ε

dκ2
=

9

2κ4
+

3

2
− 12η√

2πκ5
= 0. (3.54)

Multiplying Eq. (3.54) by κ and substracting it from Eq. (3.53) we obtain a
relation between κ and η at the critical point:

κc =
5

2

ηc√
2π
. (3.55)

From Eq. (3.53) we then get the critical value of η:

ηc =
2

5

(

4π2

5

)1/4

≈ 0.68. (3.56)
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ε

κκ
c

Figure 3.7: The dependence ε(κ) at the border of stability, η = ηc.

Using Eq. (3.52) we then obtain the critical value of the interaction strength
(scattering length):

|ac| ≈ 0.68
lH
N0

. (3.57)

In other words, for a negatve a such that |a| < |ac| the trapped condensate is
stable.

We can also raise the problem differently and obtain a critical number of
particles at a fixed negative scattering length. This yields

Nc ≈ 0.68
lh
|a| . (3.58)

For N0 < Nc the BEC is stable, whereas for N0 > Nc it collapses. This has
been observed in lithium experiments at Rice.

3.2 Consider a two-dimensional Bose-Einstein condensate in a circularly sym-
metrical potential V (r) = mω2r2/2. For repulsive interaction between particles
(g > 0) find the ground state solution for ψ0 and the spatial density profile in
the Thomas-Fermi regime. For g < 0 estimate a critical number of particles
above which the condensate collapses.
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Lecture 4. Dynamics of trapped Bose-Einstein con-

densates. Scaling approach

4.1 Exact scaling approach for a two-dimensional evolu-

tion of a trapped condensate

In this Lecture we will discuss dynamical properties of trapped Bose-Einstein
condensates. Namely, we will analyze how the condensate responds to external
perturbations, irrespective of whether they are large or small. Let us assume
that initially the condensate is in a stationary state described by the stationary
Gross-Pitaevskii equation (3.9) so that the Heisenberg-picture time-dependent
condensate wavefunction is expressed through the Schroedinger-picture station-
ary wavefunction ψ0(r) by Eq. (3.7). Suppose that the external potential V (r) is
a harmonic potential in the x, y plane, V (r) = mω2r2/2 where r2 = x2+y2. This
corresponds to a purely two-dimensional problem, or to the three-dimensional
problem in the geometry of an ideal cylinder where the motion in the z-direction
is free (see Fig.4.1).

x

y

z

Figure 4.1: The geometry of an ideal cylinder for a trapped condensate.

In both cases the condensate wavefunction depends only on the coordinates
x and y, not on z. Then, at a time t = 0 one starts to vary the frequency ω which
becomes now a function of time, ω(t). The condensate starts to evolve although
its wavefunction Ψ0(r, t) remains independent of the coordinate z. The evolution
is then described by the time-dependent Gross-Pitaevskii equation (3.6)

i~
∂Ψ0(r, t)

∂t
=

(

− ~
2

2m
∆r +

mω(t)r2

2
+ g|Ψ0(r, t)|2

)

Ψ0(r, t), (4.1)
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where r = {x, y}, and ∆r is the two-dimensional Laplacian:

∆r =
∂2

∂x2
+

∂2

∂y2
. (4.2)

Frequency variations change the time and distance scales, and we now turn
to rescaled coordinates ρ = r/b(t) and rescaled time τ(t). The condensate
wavefunction will be represented in the form:

Ψ0(r, t) =
χ0(ρ, τ)

b(t)
exp{iΦ(r, t)}, (4.3)

with the dynamical phase given by

Φ(r, t) =
mr2

2~

ḃ(t)

b(t)
. (4.4)

The scaling parameter b(t) and the rescaled time τ(t) are certain functions of t
and they will be determined later, as well as the function χ0(ρ, τ).

We now substitute Ψ0 (4.3) into equation (4.1) and obtain:

i~

{

− ḃ(t)

b2(t)
− ḃ(t)

b3(t)
(r∇ρ) +

1

b(t)

dτ

dt

∂

∂τ
+ i

mr2

2~

(

b̈(t)

b2(t)
− ḃ2(t)

b3(t)

)}

χ0(ρ, τ) =

− ~
2

2m

{

1

b3(t)
∆ρ + i

2m

~

ḃ(t)

b2(t)
− mr2

~2

ḃ2(t)

b3(t)
+ i

2m

~

ḃ(t)

b3(t)
(r∇ρ)

}

χ0(ρ, τ) +

mω2(t)r2

2b(t)
χ0(ρ, τ) +

g

b3(t)
|χ0(ρ, τ)|2χ0(ρ, τ).

The first and second terms and the second part of the fourth term in the left
hand side of this equation and the second, third, and fourth terms in the curly
brackets in the right hand side cancel each other. We thus transform Eq. (4.1)
to

i~

b(t)

dτ

dt

∂χ0(ρ,τ)

∂τ
=

{

− ~
2

2m

1

b3(t)
∆ρ+

m

2
[b̈(t)+ω2(t)b(t)]ρ2+

g|χ0(ρ,t)|2
b3(t)

}

χ0(ρ,τ).

(4.5)
The rescaled time τ(t) and the scaling parameter b(t) will be selected such that

dτ

dt
=

1

b2(t)
⇒ τ =

∫ t dt′

b2(t′)
, (4.6)

and b(t) satisfies the scaling equation

b̈(t) + ω2(t)b(t) =
ω2

0

b3(t)
, (4.7)

with initial conditions
b(0) = 1; ḃ(0) = 0 (4.8)
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and ω0 = ω(0) being the initial frequency. Equation (4.5) then becomes

i~
∂χ0(ρ, τ)

∂τ
=

(

− ~
2

2m
∆ρ +

mω2
0ρ

2

2
+ g|χ0(ρ, τ)|2

)

χ0(ρ, τ). (4.9)

We assume that the dependence of χ0 on τ is given by

χ0(ρ, τ) = χ̄0(ρ) exp(−iµτ/~), (4.10)

where µ is the initial chemical potential. This transforms Eq. (4.9) into an
equation for the stationary wavefunction χ̄0(ρ):

(

− ~
2

2m
∆ρ +

mω2
0ρ

2

2
+ g|χ̄0(ρ)|2 − µ

)

χ̄0(ρ) = 0. (4.11)

This is the same equation as the one for the initial stationary condensate wave-
function ψ0(r), but in the rescaled coordinate variables ρ = r/b(t). The nor-
malization condition reads:

∫

|χ̄0(ρ)|2d2ρ = N0. (4.12)

Thus, we can say that

χ̄0(ρ) = Ψ0(r = ρ; 0) = ψ0(ρ) (4.13)

and write Eq. (4.3) as

Ψ0(r, t) =
1

b(t)
ψ0

(

r

b(t)

)

exp

{

i
mr2

2~

ḃ(t)

b(t)
− i

µτ(t)

~

}

. (4.14)

The evolving condensate acquires a dynamical phase, and the density profile is
rescaled. Once we know the initial solution Ψ0(r, 0), we obtain the solution at
any time t. Note that the shape of |Ψ0| does not change whatever it is initially.

The discussed scaling approach has been introduced for a single particle in
a time-dependent harmonic potential (A.M. Perelomov and V.S. Popov, Sov.
Phys. JETP 30, 910 (1970)) and then proposed for interacting Bose-Einstein
condensates in the 2D and ideal cylinder geometries (Yu. Kagan, E.L. Surkov,
and G.V. Shlyapnikov, Phys. Rev. A 54, R1753 (1996); L.P. Pitaevskii and A.
Rosch, Phys. Rev. A 55, R853 (1997)).

We now return to the scaling equation (4.7) and consider the case where ω is
put equal to zero at t = 0, i.e. the trapping potential V (r) is abruptly switched
off. Then, for t > 0 the scaling equation takes the form:

b̈ =
ω2

0

b3
. (4.15)

Multiplying both sides of equation (4.15) by ḃ and integrating we have;

ḃ2

2
= − ω2

0

2b2
+ C, (4.16)
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where from the initial conditions (4.8) we obtain the integration constant C =
ω2

0/2. The integration is then straightforward;

db

dt
= ω0

√

1 − 1

b2

and, hence,

b(t) =
√

1 + ω2
0t

2. (4.17)

Accordingly, Eq. (4.6) gives

τ(t) =
1

ω0
arctanω0t. (4.18)

The condensate expands and the initial interaction energy is transferred to the
kinetic energy of the expansion. The interaction between particles is important
in the initial stages of the expansion. At t≫ ω−1

0 the density is already so small
that the condensate enters the regime of free expansion. In this regime we have
b(t) = ω0t.

Suppose that the initial condensate is in the Thomas-Fermi regime in x, y
directions, and ψ0(r) =

√

nm(1 − r2/R2
TF ), where nm is the initial maximum

density and RTF =
√

2µ/mω2
0 the initial Thomas-Fermi radius. Then, accord-

ing to Eq. (4.14) we have

|Ψ0(r, t)|2 =
nm

b2(t)

(

1 − r2

b2(t)R2
TF

)

. (4.19)

Equation (4.19) shows that the Thomas-Fermi size of the condensate increases
as RTF (t) = RTF b(t). At free expansion, where one has b(t) = ω0t, the velocity
of expansion is given by

v =
d

dt
RTF (t) = RTFω0 =

√

2µ/m =
√

2 cs.

Within a numerical coefficient, the velocity of expansion coincides with the
velocity of sound in the initial condensate, cs =

√

µ/m (this quantity will be
introduced in the next Lecture).

4.2 Scaling approach for evolving 3D trapped condensates

We now discuss the evolution of a 3D condensate under variations of the fre-
quency of the confining spherically symmetrical harmonic potential. So, the
initial condensate wavefunction obeys Eq. (3.9), and its evolution under vari-
ations of the frequency ω follows from Eq. (3.6). Instead of equation (4.3) we
now write

Ψ0(r, t) =
1

b3/2(t)
χ0(ρ, τ(t)) exp{iΦ(r, t)}, (4.20)
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with the same expressions for ρ and Φ(r, t), so that the normalization condition
∫

|Ψ0(r, t)|2d3r = N0 is transformed to
∫

|χ(ρ, τ(t))|2d3ρ = N0. Instead of
Eq. (4.5) we then get:

i~

b(t)

dτ

dt

∂χ0

∂τ
=

{

− ~
2

2mb3(t)
∆ρ +

m

2
[b̈+ ω(t)b]ρ2 +

g|χ0|2
b4(t)

}

χ0. (4.21)

Representing the function χ0(ρ, τ(t)) as

χ0(ρ, τ(t)) = χ̄0(ρ, τ(t)) exp(−iµτ(t)), (4.22)

we transform Eq. (4.21) to

i~

b(t)

dτ

dt

∂χ̄0

∂τ
=

{

− ~
2

2mb3(t)
∆ρ+

m

2
[b̈(t)+ω2(t)b(t)]ρ2+

g|χ̄0|2
b4(t)

− µ

b(t)

dτ

dt

}

χ̄0. (4.23)

In the limit of g → 0 we again set τ =
∫ t
dt′/b2(t′), assume that b(t) obeys the

scaling equation (4.7), and put χ̄0 independent of τ . Then Eq. (4.23) reduces to
the initial equation for the stationary condensate wavefunction, but in terms of
the rescaled coordinate variables ρ. This means that the scaling transformation
for an ideal gas is the same as in the case of 2D BEC or BEC in the geometry
of an ideal cylinder. The wavefunction of the evolving condensate is given by
equation (4.20).

The situation is drastically different for 3D condensates in the Thomas-Fermi
regime. In this limit the ratio of the Laplacian term related to the inhomogeneity
in the density profile, to the interaction term is initially (~ω0/µ)2 ≪ 1 and it
becomes b(t)(~ω0/µ)2 in the course of the evolution. As long as

(

~ω0

µ

)2

b(t) ≪ 1 (4.24)

one can drop the Laplacian term in Eq. (4.23). Then, putting χ̄0 independent
of τ we obtain:

m

2
[b̈(t) + ω2(t)b(t)]ρ2 +

g|χ̄0|2
b4(t)

− µ

b(t)

dτ

dt
= 0. (4.25)

We then have to set

τ =

∫ t dt′

b3(t′)
(4.26)

and write the scaling equation as

b̈(t) + ω2(t)b(t) =
ω2

0

b4(t)
. (4.27)

Equation (4.25) now becomes

mω2
0ρ

2

2
+ g|χ̄0|2 − µ = 0, (4.28)
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i.e. is the same as the initial equation for the Thomas-Fermi condensate, but in
terms of rescaled coordinates. Initially we have ψ0 =

√

µ/g(1 − r2/R2
TF ) and

Eq. (4.28) gives

χ̄0 =

√

µ

g

(

1 − ρ2

R2
TF

)

= ψ0(ρ). (4.29)

The time-dependent condensate wavefunction Ψ0(r, t) then follows from Eqs. (4.22)
and (4.20).

In the case of expansion (ω(t) = 0), Eq. (4.27) reads:

b̈ =
ω2

0

b4
. (4.30)

Multiplying both sides of this equation by ḃ(t) and integrating we have:

ḃ2(t)

2
= − ω2

0

3b2(t)
+
ω2

0

3
, (4.31)

where we took into account the initial conditions (4.8). At large times where
b ≫ 1, one can drop the first term in the right hand side of Eq. (4.30). This
gives

b(t) =

√

2

3
ω0t. (4.32)

We thus see that the condition b ≫ 1 is equivalent to t ≫ ω−1
0 and Eq. (4.32)

is valid in the regime of free expansion.
Note that for 3D Thomas-Fermi condensates the scaling solution is only an

approximation. It has been proposed and used for the analysis of experiments
with evolving 3D Bose-Einstein condensates (Yu. Kagan, E.L. Surkov, and
G.V. Shlyapnikov, Phys. Rev. A 54, R1753 (1996); Y. Castin and R. Dum,
Phys. Rev. Lett. 77, 5315 (1996)).

4.3 Fundamental frequencies of oscillating condensates

When the trapping potential is not switched off completely, the condensate
oscillates. Let us assume that ω(t) = ω0 − δω, where |δω| ≪ ω0. Then b(t) is
close to unity and can be represented in the form b(t) = 1 + f(t), with |f | ≪ 1.
For a spherically symmetrical harmonic potential equation (4.27) now reads:

f̈ + (ω2
0 − 2δωω0 + δω2)(1 + f) = ω2

0(1 − 4f + 20f2 + ...),

where the symbol ... stands for higher powers of f . Keeping only terms that are
linear in f or in δω we obtain an equation:

f̈ + 5ω2
0f = 2δωω0, (4.33)

with initial conditions
f(0) = 0; ḟ(0) = 0. (4.34)
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The solution of Eq. (4.33) is

f(t) =
2δω

5ω0
{1 − cos(

√
5ω0t)}. (4.35)

We thus see that the condensate undergoes small oscillations with frequency

Ω3D =
√

5ω0. (4.36)

These oscillations do not change the Thomas-Fermi shape of the density profile
of the oscillating condensate. Therefore, the related oscillation mode is called
’breathing mode” and the frequency Ω3D is often identified as fundamental
frequency.

For 2D trapped condensates or condensates in the geometry of an ideal
cylinder, where the scaling parameter obeys Eq. (4.7), substituting b = 1 + f
and ω(t) = ω0 − δω into this equation and linearizing the resulting equation
with respect to f and δω, we obtain:

f̈ + 4ω2
0f = 2δωω0, (4.37)

again with initial conditions (4.34). From the solution of Eq. (4.37), which reads

f(t) =
δω

2ω0
{1 − cos(2ω0t)}, (4.38)

we deduce the fundamental frequency of breathing oscillations:

Ω2D = 2ω0. (4.39)

Problems 4

4.1 Consider a Bose-Einstein condensate in the Thomas-Fermi regime in a cylin-
drical harmonic trap (ωx = ωy = ωρ 6= ωz):

V (z, ρ) =
m

2
(ω2

ρρ
2 + ω2

zz
2); ρ2 = x2 + y2. (4.40)

Obtain the Thomas-Fermi solution for the ground state and the scaling solu-
tion for Ψ0(r, t) under arbitrary variations of ωρ and ωz. For the case of free
expansion obtain the aspect ratio of the expanding condensate at t → ∞ for
an initially sigar-shaped condensate where ωρ ≫ ωz and, hence, the axial (z)
size is much larger than the radial (ρ) size (Y. Castin and R. Dum, Phys. Rev.
Lett. 77, 5315 (1996)).

The solution for the ground state condensate wavefunction follows from the sta-
tionary Gross-Pitaevskii equation (3.9), and the corresponding time-dependent
form of the wavefunction is given by Eq. (3.7). In the Thomas-Fermi regime we
drop the kinetic energy terms in Eq. (3.9), which yields:

m

2
(ω2

ρρ
2 + ω2

zz
2) + g|ψ0|2 − µ = 0. (4.41)
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We then obtain the inverted-parabola solution:

ψ0 =

√

µ

g

(

1 − ρ2

R2
ρ

− z2

R2
z

)

(4.42)

for ρ and z at which the argument of the square root is positive, and zero
otherwise. The radial (ρ) and axial (z) Thomas-Fermi radiai are given by

Rρ =

√

2µ

mω2
ρ

, (4.43)

Rz =

√

2µ

mω2
z

, . (4.44)

The presence of θ-functions in Eq. (4.42), which are equal to 1 at positive argu-
ments and to zero at negative ones, indicates that the condensate wavefunction
is exactly zero at ρ ≥ Rρ and |z| ≥ Rz. The chemical potential is µ = nmaxg,
where nmax is the maximum density achieved at z = 0, ρ = 0. The relation be-
tween µ and the number of particles in the condensate, N0, is easily established
from the normalization condition

∫

|ψ0|2d2ρdz = N0.
The evolution of the condensate wavefunction Ψ0(ρ, z, t) under temporal

variations of ωρ and ωz is described by the Gross-Pitaevskii equation (3.6) which
we rewrite here for the cylindrically symmetrical potential V (z, ρ) (4.40):

i~
∂Ψ0

∂t
=

{

− ~
2

2m
(∆ρ + ∆z) +

m

2
[ω2

ρ(t)ρ2 + ω2
z(t)z2] + g|Ψ0|2

}

Ψ0. (4.45)

We then search for the scaling solution in the form:

Ψ0(ρ, z, t) =
1

√

V(t)
χ0(uρ, uz, τ) exp{iΦ(ρ, z, t)}, (4.46)

where uρ = ρ/bρ(t), uz = z/bz(t), and V(t) = b2ρ(t)bz(t) is the dimensionless
volume. The dynamical phase Φ is now taken to be

Φ(ρ, z, t) =
m

2~

(

ḃρ(t)

bρ(t)
ρ2 +

ḃz(t)

bz(t)
z2

)

, (4.47)

and the scaling parameters bρ(t), bz(t) are assumed to obey the scaling equations

b̈ρ(t) + ω2
ρ(t)bρ(t) =

ω2
0ρ

bρ(t)V(t)
; (4.48)

b̈z(t) + ω2
z(t)bz(t) =

ω2
0z

bz(t)V(t)
, (4.49)

with initial conditions

bρ(0) = bz(0) = 1; (4.50)

ḃρ(0) = ḃz(0) = 0, (4.51)
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and with ω0ρ = ωρ(0), ω0z = ωz(0) being the initial frequencies. Then, taking
the rescaled time as

τ =

∫ t dt′

V(t′)
, (4.52)

we transform Eq. (4.45) to

i~
∂χ0

∂τ
=

{

−~
2V(t)

2m

(

1

b2ρ(t)
∆uρ

+
1

b2z(t)
∆uz

)

+
m

2
(ω2

0ρu
2
ρ+ω

2
0zu

2
z)+g|χ0|2

}

χ0. (4.53)

In the Thomas-Fermi regime we omit the Laplacian terms in Eq. (4.53).
Therefore, assuming that the dependence of χ0 on τ is given by

χ0(uρ, uz, τ) = χ̄0(uρ, uz) exp(−iµτ/~), (4.54)

with χ̄0 independent of τ , we reduce Eq. (4.53) to the initial equation (4.41) for
ground state BEC in which one should replace ψ0 by χ̄0, and ρ, z by uρ, uz.
This means that we may put χ̄0 = ψ0(uρ, uz) so that the scaling solution (4.46)
reads:

Ψ0(ρ, z, t) =
1

V(t)
ψ0

(

ρ

bρ(t)
,

z

bz(t)

)

exp{iΦ(ρ, z, t) − iµτ(t)/~}, (4.55)

with the dynamical phase Φ following from Eq. (4.47) and condensate wave-
function given by

ψ0

(

ρ

bρ(t)
,

z

bz(t)

)

=

√

µ

g

(

1 − ρ2

b2ρ(t)R
2
ρ

− z2

b2z(t)R
2
z

)

(4.56)

for positive arguments of the square root, and equal to zero otherwise.
Let us now consider the case of expansion where both frequencies are abruptly

put equal to zero at t = 0 and the scaling equations (4.48) and (4.49) take the
form

b̈ρ =
ω2

0ρ

b3ρbz
; (4.57)

b̈z =
ω2

0z

b2zb
2
ρ

. (4.58)

For Eqs. (4.57) and (4.58) we see that the condensate initially elongated in the
z-direction (ω0ρ ≫ ω0z and, hence Rρ(0) ≪ Rz(0)) expands much faster in
the radial direction. This is a consequence of the fact that it is confined much
tighter radially than axially, i.e because ωρ ≫ ωz. Therefore, not at very large
times (let say at t < t0 which is still much larger than ω−1

0ρ and will be identified

later) we may put bz = 1 in Eq. (4.57). This immediately gives b2ρ = 1 + ω2
0ρt

2

like in the case of two-dimensional expansion discussed in subsection 4.1. Then,
substituting the obtained bρ(t) and bz = 1 into Eq. (4.58) and integrating we
obtain

ḃz =
ω2

0z

ω0ρ
arctanω0ρt. (4.59)
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Thus, at times in the range ω−1
0ρ ≪ t < t0 we have

ḃz =
πω2

0z

2ω0ρ
. (4.60)

This procedure is justified by the fact that bz is still close to unity when the
radial expansion speeds up and becomes free.

We now select the time t0 such that ω−1
ρ ≪ t0 ≪ ω0ρω

−2
0z . One then clearly

sees from Eq. (4.57) that the contribution of times t > t0 to ḃρ is small:

ḃρ(∞) − ḃρ(t0) <

∫ ∞

t0

ω2
0ρ

b3ρ(t)
dt ≈ 1

2ω0ρt20
≪ ω0ρ.

In spite of the fact that bz is close to unity at t ∼ t0, the axial expansion is also
free at these times. The contribution of times t > t0 to ḃz is much smaller than
the result of Eq. (4.60):

ḃz(∞) − ḃz(t0) <

∫ ∞

t0

ω2
0z

b2ρ(t)
dt ≈ ω2

0z

ω2
0ρt0

≪ ω2
0z

ω0ρ
.

We thus have:

bρ = ω0ρt; t→ ∞ (4.61)

bz =
πω2

0z

2ω0ρ
t; t→ ∞ (4.62)

The axial and radial sizes of the expanding Thomas-Fermi condensate follow
from Eqs. (4.43), (4.44) and (4.56) and are given by

Rz(t) =

(

2µ

mω2
0z

)

bz(t), (4.63)

Rρ(t) =

(

2µ

mω2
0ρ

)

bρ(t). (4.64)

The aspect ratio, i.e. the ratio of the axial to radial size is

A =
Rz(t)

Rρ(t)
=
ω0ρbz(t)

ω0zbρ(t)
. (4.65)

So, initially we have

A(0) =
ω0ρ

ω0z
≫ 1. (4.66)

⁀For t→ ∞ equations (4.61) and (4.62) lead to

A(∞) =
πω0z

2ω0ρ
≪ 1. (4.67)
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We thus see that an initially sigar-shaped condensate expands much faster in
the radial direction and eventually becomes a pancake. This is quite different
from the expansion of a collisionless thermal gas. Being initially elongated in
one direction, such a thermal gas eventually becomes a sphere. The asymmetry
of free expansion was one of the key arguments on support of the existence of
BEC in the first experiments at JILA and MIT.

4.2 Consider a spherical Thomas-Fermi condensate and find a scaling evolution
of this condensate after an abrupt change of the coupling constant g, still keeping
it positive (Yu. Kagan, E.L. Surkov, and G.V. Shlyapnikov, Phys. Rev. Lett.
79, 2604 (1997)).

Lecture 5. Elementary excitations of a Bose-condensed

gas. Quantum fluctuations and correlation prop-

erties

5.1 Bogoliubov transformation. Excitation spectrum of a

uniform condensate

We now arrive at the discussion of elementary excitations. These are excited
states of a Bose-condensed system, where only a small fraction of particles is
excited out of the condensate. We will find the energies and eigenfunctions of
these states, which will allow us to describe a response of the Bose-condensed
system to any type of small external perturbations.

Let us consider a Bose-condensed weakly interacting gas in an external po-
tential V (r) and start with the non-linear Schroedinger equation (3.4) for the
field operator Ψ̂. Then, according to Eq. (3.5), we represent Ψ̂ as a sum of the
condensate wavefunction Ψ0 and a (small) non-condensed part Ψ̂′ and substi-
tute this expression into equation (3.4). To zero order in Ψ̂′, i.e. omitting the
non-condensed part, we obtain the Gross-Pitaevskii equation (3.6). To linear
order in Ψ̂′ we find an equation:

i~
∂Ψ′

∂t
=

(

− ~
2

2m
∆r + V (r) + 2g|Ψ0|2 − µ

)

Ψ′ + gψ2
0Ψ

′†, (5.1)

where we shifted the phase of the field operator by −iµt/~ introducing a re-
placement Ψ0 → Ψ0 exp(−iµt/~), Ψ̂′ → Ψ̂′ exp(−iµt/~) so that the condensate
wavefunction Ψ0 for a stationary state is now time independent. Note that
equation (5.1) can also be obtained as a Heisenberg equation of motion from
the Hamiltonian

ĤB=

∫

d3r

{

Ψ̂′†
[

− ~
2

2m
∆r+V (r)+2g|Ψ0|2 − µ

]

Ψ̂′+
g

2
(Ψ2

0Ψ̂
′†2+Ψ∗2

0 Ψ̂′2)

}

. (5.2)
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The Hamiltonian ĤB follows directly from the initial Hamiltonian of the weakly
interacting Bose gas, Ĥ − µN̂ , where Ĥ is given by Eq. (2.45). In order not to
consider explicitly the fact that the number of particles is constant, we turn to
the Hamiltonian Ĥ−µN̂ , where N̂ =

∫

Ψ̂†Ψ̂d3r is the operator of the number of

particles. We thus substitute Ψ̂ = Ψ0 + Ψ̂′ into Ĥ − µN̂ . Then, the terms that
are linear in Ψ̂′ and Ψ̂′† vanish due to the stationary Gross-Pitaevskii equation
(3.9). Omitting terms that are cubic and fourth-order in Ψ′, Ψ̂′† we thus obtain
Ĥ − µN̂ = H0 + ĤB, where H0 contains only Ψ0 and Ψ∗

0 and is zero-order in
Ψ̂′ and Ψ̂′†.

We now write Ψ̃′ in the form:

Ψ′ =
∑

ν

uν(r)b̂ν exp(−iǫνt/~) − v∗ν(r)b̂†ν exp(iǫνt/~), (5.3)

where the index ν labels quantum states of elementary excitations, b̂ν , b̂
†
ν are

operators of the excitations, ǫν are their eigenenergies, and uν , vν their eigen-
functions. The operators b̂ν , b̂

†
ν obey the usual commutation relations:

b̂ν b̂
†
ν′ − b̂†ν′ b̂ν = δνν′ ; (5.4)

b̂ν b̂ν′ − b̂ν′ b̂ν = 0, (5.5)

and the functions uν , vν are normalized by the condition:
∫

(uνu
∗
ν′ − vνv

∗
ν′)d3r = δνν′ . (5.6)

Taking a commutator of both sides of Eq. (5.1) with b̂†ν and repeating this

procedure for the commutator with b̂ν we arrive at a set of coupled equations:
(

− ~
2

2m
∆r + V (r) + 2g|Ψ0|2 − µ

)

uν − gΨ2
0vν = ǫνuν (5.7)

(

− ~
2

2m
∆r + V (r) + 2g|Ψ0|2 − µ

)

vν − gΨ∗2
0 uν = −ǫνvν (5.8)

Equation (5.3) is called the Bogoliubov transformation, and equations (5.7)
and (5.8) are usually called Bogoliubov-de Gennes equations for elementary
excitations. These equations give the eigenfunctions and eigenenergies of the
excitations. Using equations (5.3), (5.7), and (5.8) one reduces the bilinear
Bogoliubov Hamiltonian ĤB to a diagonal form:

ĤB =
∑

ν

ǫν b̂
†
ν b̂ν . (5.9)

In the uniform case we may put ψ0 =
√
n0 and, taking into account that the

index ν is now the excitation wavevector k, write the excitation wavefunctions
in the form:

uν =
uk√
V

exp(ikr) (5.10)

vν =
vk√
V

exp(ikr), (5.11)
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where V is the system volume, and uk, vk are coordinate independent. The
Bogoliubov-de Gennes equations (5.7) and (5.8) are then transformed to

(

~
2k2

2m
+ 2n0g − µ

)

uk − n0gvk = ǫkuk; (5.12)

(

~
2k2

2m
+ 2n0g − µ

)

vk − n0guk = −ǫkvk. (5.13)

To zero order we may put n0 = n and µ = ng, which reduces Eqs. (5.12) and
(5.13) to

(Ek + ng)uk − ngvk = ǫkuk; (5.14)

(Ek + ng)vk − nguk = −ǫkvk, (5.15)

with Ek = ~
2k2/2m. Equations (5.14) and (5.15) give the excitation spectrum

ǫk =
√

E2
k + 2ngEk. (5.16)

Since the normalization condition (5.6) yields |uk|2 − |vk|2 = 1, we obtain

uk =
1

2

(

√

ǫk
Ek

+

√

Ek

ǫk

)

, (5.17)

vk =
1

2

(

√

ǫk
Ek

−
√

Ek

ǫk

)

. (5.18)

(5.19)

Equations (5.14) and (5.15) also give negative energies ǫk = −
√

E2
k + 2ngEk.

However, for such negative-energy excitations the norm (|uk|2−|vk|2) turns out
to be negative, and hence they should be omitted.

We can also establish a relation between the excitation operators b̂k, b̂
†
k

and particle operators âk, â
†
k. The Schroedinger operator of non-condensed

particles ψ̂′ =
∑

k(1/V)âk exp(ikr), according to Eq. (5.3) can be rewritten as

ψ̂′ =
∑

k(1/V)[ukb̂k exp(ikr) − vk b̂
†
k exp(−ikr)]. We then find

âk = ukb̂k − vk b̂
†
−k, (5.20)

â†k = ukb̂
†
k − vk b̂−k. (5.21)

The excitation spectrum ǫk (5.16) is displayed in Fig.5.1. Low-momentum
excitations represent collective waves, i.e. particles moving back and forth. The
collective nature of the excitations is due to the interactions. For k ≪ ξ−1 =√
mng/~, which corresponds to energies ǫk ≪ µ, the excitations are phonons or

sound waves with the dispersion relation

ǫk = ~csk, (5.22)
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phonons

single particles

µ

ε

k

k

Figure 5.1: Excitation spectrum of a uniform condensate.

where the quantity

cs =

√

ng

m
(5.23)

is the velocity of sound. For k ≫ ξ−1, i.e. at energies ǫk ≫ µ, excitations are
single particles since their energy greatly exceeds the interaction per particle
ng. In this case Eq. (5.16) gives

ǫk =
~

2k2

2m
+ ng. (5.24)

The presence of the term ng in Eq. (5.24) shows that high-energy particles
interact with the condensate.

5.2 Non-condensed fraction. One-body density matrix

and long-range order

We can now calculate the fraction of non-condensed particles and verify that it
is small as has been assumed apriori. The density of non-condensed particles is
given by

n′ = 〈Ψ̂′†(r, t)Ψ̂′(r, t)〉. (5.25)

In the uniform case, using Eqs. (5.3), (5.10), and (5.11) we have:

Ψ̂′(r, t)=

[

∑

k

ukb̂k√
V

exp(ikr−iǫkt/~)− vk b̂
†
k√
V

exp(−ikr+iǫkt/~)

]

exp(−iµt/~), (5.26)
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which leads to

〈Ψ̂′†(r, t)Ψ̂′(r, t)〉 =
1

V
∑

k,k′

[

u∗k′uk exp{i(k− k′)r + i(ǫk′ − ǫk)t/~}〈b̂†k′ b̂k〉

+v∗k′vk exp{i(k′ − k)r + i(ǫk − ǫk′)t/~}〈b̂k′ b̂†k〉
−u∗k′vk exp{−i(k′ + k)r + i(ǫk + ǫk′)t/~}〈b̂†k′ b̂

†
k〉

−v∗k′uk exp{i(k′ + k)r − (ǫk + ǫk′)t/~}〈b̂kb̂k〉
]

. (5.27)

Using commutation relations (5.4) and (5.5) the expectation values of the exci-
tation operators are

〈b̂†
k′ b̂k〉 = δk′kNk (5.28)

〈b̂k′ b̂†k〉 = δk′k(1 +Nk) (5.29)

〈b̂k′ b̂k〉 = 〈b̂†k′ b̂
†
k〉 = 0, (5.30)

where Nk are the occupation numbers for the excitations given by the usual
Bose distribution function

Nk =
1

exp(ǫk/T )− 1
. (5.31)

At T = 0 we haveNk = 0 since we are in the ground state and excitations are
not present. Then, setting 〈b̂k′ b̂†k〉 = δk′k and putting the rest of the expectation
values equal to zero, from Eqs. (5.25) and (5.27) we obtain:

n′ =
1

V
∑

k

v2
k. (5.32)

Replacing the sum over k by an integral:

∑

k

⇒
∫ Vd3k

(2π)3
,

and using Eq. (5.18) we represent Eq. (5.32) in the form

n′ =

∫ ∞

0

1

4

(

√

ǫk
Ek

−
√

Ek

ǫk

)2
4πk2dk

(2π)3
. (5.33)

We then substitute the Bogoliubov dispersion relation (5.16) for ǫk and obtain:

n′=

∫ ∞

0

(

ǫk
Ek

+
Ek

ǫk
− 2

)

k2dk

8π2
=

(

2m

~2

)3/2∫ ∞

0

{

√

E + 2ng−
√
E− ng√

E + 2ng

}

dE

8π2

so that the integration leads to the non-condensed fraction

n′

n
=

8

3
√
π

(na3)1/2. (5.34)
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As we assumed apriori that the non-condensed fraction is small we now see
that the small parameter of the Bogoliubov theory for a weakly interacting
Bose-condensed gas at T = 0 is

(na3)1/2 ≪ 1. (5.35)

We now calculate the one-body density matrix

g1(r, r
′, t, t′) = 〈Ψ̂†(r, t)Ψ̂(r′, t′)〉 (5.36)

at equal times, t = t′, so that g1 is independent of t and we may put t = t′ = 0.
In the uniform case g1 depends only on the difference |r − r′| and we may put
r′ = 0. Representing the field operator as a sum of the condensate wavefunction
and the non-condensed part as given by Eq. (3.5) and taking into account that
|Ψ0(r, t)| =

√
n0 where n0 is the condensate density, we thus have

g1(r) = n0 + 〈Ψ̂′†(r, 0)Ψ̂′(0, 0)〉. (5.37)

For the second term in the right hand side of this equation, repeating the pro-
cedure that gave Eq. (5.32) we obtain:

〈Ψ̂′†(r, 0)Ψ̂′(0, 0)〉 =

∫

d3k

(2π)3
v2

k exp(ikr). (5.38)

Using Eq. (5.18) and turning to the integration variable x = kξ, where
ξ = ~/

√
mng is the healing length, we have:

g1(r) = n0 +
1

8π2

∫ ∞

0

(

ǫk
Ek

+
Ek

ǫk
− 2

)

sinkr

kr
k2dk

= n0 +
1

4π2ξ2r

∫ ∞

0

sin[x(r/ξ)]

{

√

x2 + 4 − x− 2√
x2 + 4

}

dx.

Integrating in parts we then get an expansion in powers of 1/r. For r → ∞,
keeping only the leading term of the expansion and substituting g = 4π~

2a/m
where a is the scattering length, we obtain

g1(r) = n0 +
1

4π2ξ3

(

ξ

r

)2

= n0 +
2√
π
n(na3)1/2

(

ξ

r

)2

; r → ∞. (5.39)

The dependence g1(r) is shown in Fig.5.2. It is important that g1 is tending
to a constant value for r → ∞. This type of behavior is called (off-diagonal)
long-range order. It means that there will be a delta-functional term n0δ(k) in
the momentum distribution given by the formula

∫

d3r g1(r) exp(−ikr), which
reflects the fact that a macroscopic number of particles (with density n0) is in
the zero-momentum state.
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Figure 5.2: One-body density matrix g1(r).

5.3 Quantum fluctuations of the density and phase

Let us now introduce the density-phase formalism in terms of field operators and
discuss quantum (T = 0) fluctuations of the density and phase. In Lecture 3 we
already introduced the density-phase representation, but this has been done for
the condensate wavefunction Ψ0 where the density (n0) and phase are classical
quantities. We then used this representation in the Gross-Pitaevskii equation
for Ψ0, which is a classical-field equation. The term ”classical” is used here in
the sense that the related quantities are not operators. In quantum theory we
start with physical quantities represented by operators. For example, discussing
the density and phase fluctuations we introduce the field operators in the form:

Ψ̂(r, t) = exp{iφ̂(r, t)}
√

n̂(r, t) (5.40)

Ψ̂†(r, t) =
√

n̂(r, t) exp{−iφ̂(r, t)}, (5.41)

where n̂(r, t) and φ̂(r, t) are the density and phase operators. Commutation
relations for these operators are obtained straightforwardly from the commu-
tation relations for Ψ̂, Ψ̂† which at equal times are given by Eqs. (2.38) and
(2.39). This leads to the commutation relation

[n̂(r, t)φ̂(r′, t)] = iδ(r− r′). (5.42)

Assuming small fluctuations of the density we may put n̂ = n0 in the expres-
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sion for the operator of the flux of particles. Then the flux operator becomes;

ĵ =
~

2mi

{

Ψ̂†∇Ψ̂ − Ψ̂∇Ψ̂†
}

=
~n0

m
∇φ̂. (5.43)

We can now write the continuity equation of the hydrodynamic approach, ṅ+
divj = 0, in terms of the density and phase operators. Writing n̂ = n0 + δn̂
where δn̂ is the operator of the density fluctuations, for a stationary state (n0

is time independent) we have:

∂δn̂

∂t
= −divĵ = − ~

m
∇n0∇φ− ~n0

m
∆φ̂. (5.44)

The formalism where one uses the field operators in the form given by Eqs. (5.40)
and (5.41) is called the density-phase formalism. It is adequate if the density
fluctuations are small and is often used in low-dimensional systems. Having in
mind the use of this formalism later in the course we now show that the density
fluctuations are really small in the 3D case. For brevity, we consider the uniform
case.

The operator of the density fluctuations is given by

δn̂(r, t) = n̂(r, t) − n̄(r, t) = Ψ̂†(r, t)Ψ̂(r, t) − 〈Ψ̂†(r, t)Ψ̂(r, t)〉. (5.45)

Putting the mean density n̄ equal to the condensate density n0 and writing
Ψ̂ = Ψ0 + Ψ̂′, we divide the system of excitations in the non-condensed fraction
Ψ̂′ into two parts: the low-energy part with momenta k < ξ−1 =

√
mng/~

and energies ǫk < ng, and the high-energy part with ǫk > ng. Considering the
low-energy part we confine ourselves to the first order in Ψ̂′ and obtain

δn̂(r, t) = Ψ0(r, t)Ψ̂
′†(r, t) + Ψ∗

0(r, t)Ψ̂
′(r, t). (5.46)

For a uniform Bose-condensed gas, using Eqs. (5.3), (5.10), (5.11), (5.17), and
(5.18), we have

δn̂(r, t) =
√
n0

∑

k

(

Ek

ǫk

)1/2

b̂k exp(ikr − iǫkt/~) + h.c. (5.47)

Using Eq. (5.47) the mean square (relative) density fluctuations at T = 0 are
given by

〈δn̂(r, t)δn̂(r′, t)〉
n2

0

=
1

n0V

|k|<ξ−1

∑

k

Ek

ǫk
exp(ik[r − r′])

=
1

n0

∫

|k|<ξ−1

d3k

(2π)3

(

Ek

ǫk

)

exp(ik[r − r′]) =
1

n0

∫ ∞

ξ−1

k2dk

2π2

(

Ek

ǫk

)

sink|r − r′|
k|r − r′| .

The main contribution to the integral comes from momenta k ∼ ξ−1 and we
find:

〈δn̂(r, t)δn̂(r′, t)〉
n2

0

. (nξ)−3 ∼ (na3)1/2. (5.48)
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The high-energy part represents single particles with energies larger than ng,
and the related contribution to the density fluctuations does not exceed the den-
sity of this part. The latter is smaller than n0(na

3)1/2 so that the contribution
to 〈δn̂(r, t)δn̂(r′, t)〉/n2

0 is small compared to (na3)1/2.
Relying on Eqs. (5.44) and (5.47) one can write the secondly quantized

expression for the phase operator φ̂. It reads:

φ̂(r, t) =
1

2
√
n0V

∑

k

(

ǫk
Ek

)1/2

b̂k exp(ikr − iǫkt/~) + h.c. (5.49)

It is then straightforward to show that the mean square fluctuations of the phase
are small in 3D.

5.4 Quantum fluctuations and ground state energy

We now calculate the ground state energy of a Bose-condensed gas including
corrections originating from quantum fluctuations. So, we again consider T =
0 and recall that the Bogoliubov approach corresponds to diagonalizing the
bilinear Hamiltonian ĤB (5.2). Let us now rewrite the total Hamiltonian Ĥ =
H0 + ĤB (omitting the term associated with the chemical potential in ĤB) for
the uniform case:

Ĥ=

∫

d3r

{

g

2
|Ψ0|4+Ψ̂′†

[

− ~
2

2m
∆r+2g|Ψ0|2

]

Ψ̂′+
g

2
(Ψ2

0Ψ̂
′†2+Ψ∗2

0 Ψ̂′2)

}

. (5.50)

To zero order the ground state energy is given by the first term in the right
hand side of Eq. (5.50) and is equal to E = gn2

0V = gN2
0/2V . Dealing only with

this order we usually replace the number of Bose-condensed particles N0 by the
total number of particles N .

The other terms in the right hand side of Eq. (5.50) provide corrections
to the ground state energy, which is equal to their expectation value at zero
occupation numbers of the excitations. This is the so-called correction due to
quantum fluctuations. We should also take into account the difference between
the condensate density n0 and the total density n in the first term and write
|Ψ0|4 = n2 − 2nΨ′†Ψ′. Then, in the largest term, (g/2)n2, in the integrand of
Eq. (5.50) we should renormalize the coupling constant g and include the second
order correction to this quantity. This is equivalent to the replacement

g ⇒ g

(

1 +
4πa

V

)

∑

k

1

k2
.

In the uniform case the quantum numbers ν of the excitations are momenta
k, and the functions uν , vν in the Bogoliubov transformation (5.3) are given
by equations (5.10), (5.11), (5.17), and (5.18). Using Eq. (5.3) we reduce the
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Hamiltonian (5.50) to

Ĥ =
g

2
n2V +

∫ Vd3k

(2π)3

{

ǫk b̂
†
kb̂k +

[

v2
k(Ek + ng) − ukvkng +

mg2n2

2~2k2

]}

=
N2g

2V +

∫

d3k

(2π)3

{

ǫkb̂
†
kb̂k +

[

ǫk − Ek − ng

2
+

(ng)2

4Ek

]}

. (5.51)

At T = 0 the expectation value 〈b̂†kb̂k〉 is equal to zero, and Eq. (5.51) leads to
the ground state energy

E = 〈Ĥ〉 =
N2g

2V

(

1 +
128

15

√

Na3

πV

)

. (5.52)

The chemical potential then is

µ =
∂E

∂N
= ng

(

1 +
32

3

√

na3

π

)

. (5.53)

We thus see that at T = 0 all important quantities that should be small for
the validity of the perturbative approach (non-condensed fraction, fluctuations
of the density, correction to the ground state energy) are proportional to the
small parameter √

na3 ≪ 1. (5.54)

This parameter is, therefore, crucial for the theory of a weakly interacting Bose
gas. We will see later in the course how the situation can change at finite
temperatures.

Problems 5

5.1 Find the spectrum of low-energy (ǫν ≪ µ) excitations with orbital angular
momentum l = 0 for a Thomas-Fermi Bose-Einstein condensate in a spherical
harmonic potential V (r) = mω2r2/2 (S. Stringari, Phys. Rev. Lett. 77, 2360
(1996)).

We first rewrite the Bogoliubov-de Gennes equations (5.7) and (5.8) in terms of
the functions f±

ν = uν ± vν . Assuming that the (Schroedinger-picture) conden-
sate wavefunction ψ0 is real and taking into account that the orbital angular
momentum of the excitations is zero, we have

− ~
2

2m

(

d2

dr2
+

2

r

d

dr
+
mω2r2

2
+ gψ2

0(r) − µ

)

f+
ν = ǫνf

−
ν ; (5.55)

− ~
2

2m

(

d2

dr2
+

2

r

d

dr
+
mω2r2

2
+ 3gψ2

0(r) − µ

)

f−
ν = ǫνf

+
ν . (5.56)
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Using the Gross-Pitaevskii equation

− ~
2

2m

(

d2

dr2
+

2

r

d

dr

)

ψ0(r) +
mω2r2

2
ψ0(r) + gψ0(r)

3 − µψ0(r) = 0

we rewrite Eq. (5.55) as

− ~
2

2m

(

d2

dr2
+

2

r

d

dr

)

f+
ν +

~
2

2m

f+
ν

ψ0(r)

(

d2

dr2
+

2

r

d

dr

)

ψ0(r) = ǫνf
−
ν . (5.57)

We then substitute f−
ν following from Eq. (5.57) into Eq. (5.56) and recall that

in the Thomas-Fermi regime one has a small parameter

~ω

µ
≪ 1. (5.58)

Considering excitations with energies ǫν that can be greater than ~ω but are
still much smaller than µ, we may omit the term (−~

2/2m)∆f−
ν in the result-

ing equation, since this term is small at least as (ǫν/µ)2 compared to other
terms. Substituting the Thomas-Fermi expression for the condensate wave-
function: ψ2

0 = (µ/g)(1 − r2/R2
TF ) for r ≤ RTF and zero otherwise, where

RTF = (2µ/mω2)1/2 is the Thomas-Fermi radius, at r ≤ RTF we eventually
transform Eq. (5.56) to

~
2µ

m

(

1 − r2

R2
TF

)

[

−
(

d2

dr2
+

2

r

d

dr

)

f+
ν +

f+
ν

√

1 − r2/R2
TF

×
(

d2

dr2
+

2

r

d

dr

)

√

1 − r2/R2
TF

]

= ǫ2νf
+
ν . (5.59)

Turning to a dimensionless coordinate y = r/RTF and dimensionless excitation
energies ǫ̃ν = ǫν/~ω we rewrite Eq. (5.59) as

(1 − y2)

{

−
(

d2

dy2
+

2

y

d

dy

)

f+
ν +

f+
ν

√

1 − y2

(

d2

dy2
+

2

y

d

dy

)

√

1 − y2

}

= ǫ̃2νf
+
ν

and introducing the function Wν = f+
ν /
√

(1 − y2) we transform this equation
to

(1 − y2)

(

d2

dy2
+

2

y

d

dy

)

Wν − 2y
dWν

dy
+ 2ǫ̃2νWν = 0. (5.60)

In terms of the dimensionless coordinate x = y2 equation (5.60) becomes

x(1 − x)
d2Wν

dx2
+

(

3

2
− 5

2
x

)

dWν

dx
+
ǫ̃2ν
2
Wν = 0. (5.61)

Let us also keep in mind that since Eq. (5.59) was written for 0 ≤ r ≤ RTF ,
equation (5.61) is valid for 0 ≤ x ≤ 1. The function Wν is proportional to the
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fluctuations of the density and phase due to the excitation mode ν. So, it should
be regular at x = 0 and finite at x→ 1.

Equation (5.61) is the well-known hypergeometrical equation which is usually
written in the form:

x(1 − x)W ′′
xx + [γ − (α + β + 1)x]W ′

x − αβW = 0 (5.62)

and has two linearly independent solutions. The one which is regular at x = 0
reads

W = F (α, β, γ, x) = 1 +
αβ

γ
x+

α(α+ 1)β(β + 1)

γ(γ + 1)

x2

2!
+ ...

=

∞
∑

n=0

Γ(α+ n)Γ(β + n)Γ(γ)

Γ(α)Γ(β)Γ(γ + n)

xn

n!
, (5.63)

asssuming that γ is not a negative integer. The series of expansion in Eq. (5.63)
is convergent at x → 1 if α + β1‘ < γ or for any relation between (α + β) and
γ if either α or β is equal to −j where j is a positive integer. In the latter case
the hypergeometrical function F is reduced to a polynomial.

In our case α+ β = γ = 3/2, and we have to have α = −j and β = j + 3/2
or vice versa β = −j and α = j + 3/2. Then the relation αβ = −ǫ̃2ν/2 becomes
a quadratic equation

j2 +
3

2
j −

ǫ̃2j
2

= 0, (5.64)

where we put the excitation quantum number ν equal to the positive integer j.
Equation (5.64) gives the values of the excitation energy ǫ̃j =

√

2j2 + 3j, and
restoring the dimensions we have the spectrum of low-energy excitations with
orbital angular momentum l = 0:

ǫj = ~ω
√

2j2 + 3j. (5.65)

Since j is a positive integer, the excitation spectrum is discrete. This is a
consequence of a finite size of the system. For j = 1 we have ǫj =

√
5~ω,

i.e. we recover the breathing mode obtained in Lecture 4 from the scaling
approach. It is important that the spectrum of low-energy excitations does not
explicitly depend on the interaction between particles. This is a consequence
of the harmonicity of the confining potential in combination with the Thomas-
Fermi density profile.

As we already said, if α or β is a negative integer, then the hypergeometrical
function is reduced to a polynomial. In our case we have

Wj(x) = F

(

−j, j +
3

2
,
3

2
, x

)

= P
(1/2,0)
j (1 − 2y2), (5.66)

where P
(1/2,0)
j are Jacobi polynomials. Omitting the small kinetic energy term

in Eq. (5.56) we see that f−
ν = [ǫν/2µ(1 − y2)]f+

ν . Thus, the wavefunctions f±
j
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of the excitations can be represented in the form:

f±
j = C

[

2µ(1 − y2)

ǫj

]±1/2

P
(1/2,0)
j (1 − 2y2). (5.67)

The absolute value of the coefficient C follows from the normalization condition
(5.6).

5.2 Find the lowest excitations for a Thomas-Fermi condensate in a cylindrical
harmonic potential V = m(ω2

zz
2 + ω2

ρρ
2)/2.

Lecture 6. Bose-condensed gas at a finite temper-

ature. Superfluidity

6.1 Non-condensed fraction and the one-body density ma-

trix at finite temperatures

In this Lecture we discuss the influence of finite temperatures on the properties
of a Bose-condensed gas and introduce the phenomenon of superfluidity. Let us
assume that the gas temperature T is well below the BEC transition temperature
Tc and most of the particles are in the condensate. We then calculate the density
of non-condensed particles, n′ = 〈Ψ′†(r, t)Ψ′(r, t)〉, in a similar way as at T = 0.
So, we consider a uniform Bose-condensed gas and use equations from (5.25) to
(5.31). Then, at a finite T where Nk 6= 0, Eq. (5.27) gives

n′ =
1

V
∑

k

[v2
k + (u2

k + v2
k)Nk]. (6.1)

The first term in the right hand side of Eq. (6.1) is the zero-temperature non-
condensed density n′(T = 0), i.e. the contribution to the non-condensed fraction
from quantum fluctuations. It has been calculated in Lecture 5 and is given
by Eq. (5.34). The second term represents the contribution of the so-called
thermal fluctuations and we denote it as n′

T . The total fraction of non-condensed
particles is given by

n′

n
=
n′(T = 0)

n
+
n′

T

n
. (6.2)

Using equations (5.17), (5.18), and (5.31) we have the following expression for
the thermal contribution to the non-condensed density:

n′
T =

1

V
∑

k

(u2
k + v2

k)Nk =

∫ ∞

0

4πk2dk

(2π)3

(

ǫk
2Ek

+
Ek

2ǫk

)

1

exp(ǫk/T ) − 1
. (6.3)

At temperatures T ≪ µ = ng the main contribution to the integral in
Eq. (6.3) comes from excitations of the phonon branch where ǫk = ~csk, and
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from Eq. (6.3) we obtain:

n′
T =

∫ ∞

0

k2dk

4π2

(

2mcs
~k

+
~k

2csm

)

1

exp(~csk/T )− 1
. (6.4)

The second term in the round brackets is not important, and the contribution
of the first one reads:

n′
T =

mT 2

2π2~3cs

∫ ∞

0

xdx

expx− 1
=

mT 2

12~3cs
. (6.5)

Recalling that the sound velocity is cs =
√

ng/m and the coupling constant g is
expressed through the scattering length and density as g = 4π~

2na/m, we find:

n′
T

n
=

2

3
√
π

(na3)1/2

(

πT

ng

)2

; T ≪ ng. (6.6)

Comparing the result of Eq. (6.6) with the zero-temperature non-condensed
density n′(T = 0) following from Eq. (5.34) we see that at temperatures T ≪ ng
the thermal contribution n′

T is small and can be omitted when calculating the
total non-condensed fraction (6.2).

The situation is quite different at temperatures T ≫ ng, where the main con-
tribution to n′

T (6.3) comes from single-particle excitations which have energies
ǫk ≫ ng. Then (ǫk/Ek + Ek/ǫk) ≈ 2 and from Eq. (6.3) we obtain:

n′
T ≈

(

mT

2π~2

)3/2

ζ(3/2); T ≫ ng, (6.7)

where ζ(3/2) is the Riemann Zeta function given by

ζ(3/2) =
∞
∑

j=1

1

j3/2
≈ 2.61.

The obtained n′
T is nothing else than the density of non-condensed particles in

an ideal gas, which according to Eq. (2.50) can be expressed as n′ = n(T/Tc)
3/2

with Tc being the temperature of Bose-Einstein condensation. One can easily
check that n′

T of Eq. (6.7) greatly exceeds the zero-temperature contribution
n′(T = 0) (5.34). So, for T ≫ ng, but still T ≪ Tc, we have the ideal-gas
result for the density of non-condensed particles and, hence, for the total non-
condensed fraction (6.2). This means that one can use the ideal gas model for
finding n′ at temperatures comparable with Tc.

In a similar way as at T = 0, we calculate the one-body density matrix g1(r)
which is given by Eq. (5.37). At finite temperatures, repeating the procedure
that gives n′, for the uniform Bose-condensed gas we have

〈Ψ̂′†(r, 0)Ψ̂′(0, 0)〉=
∫

d3k

(2π)3
v2

k exp(ikr) +

∫

d3k

(2π)3
(u2

k+v2
k)Nk exp(ikr). (6.8)
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The first term is the zero temperature contribution calculated in Lecture 5 and
given by Eq. (5.39), and the second term is the thermal contribution which we
denote as 〈Ψ̂′†(r, 0)Ψ̂′(0, 0)〉T . Like in the calculation of n′

T , using Eqs. (5.17),
(5.18), and (5.31) the thermal contribution to the density matrix is written as

〈Ψ̂′†(r, 0)Ψ̂′(0, 0)〉T =

∫ ∞

0

k2dk

4π2

(

ǫk
Ek

+
Ek

ǫk

)

exp(ikr)

exp(ǫk/T ) − 1
.

For r → ∞, momenta k ∼ 1/r which provide the main contribution to the
integral are very small so that ǫk = ~csk ≫ Ek = ~

2k2/2m and we can omit
the second term in the round brackets. We also have ǫk ≪ T and expand the
exponent in powers of ǫk/T . This yields

〈Ψ̂′†(r, 0)Ψ̂′(0, 0)〉T =
mT

2π2~2

∫ ∞

0

sin kr

kr
dk =

mT

4π~2

1

r
. (6.9)

The thermal contribution (6.9) decays as 1/r at r → ∞ and it exceeds the zero
temperature contribution which is represented by the first term in the right hand
side of Eq. (6.8) and decays as 1/r2. Thus, for the one-body density matrix from
Eqs. (5.37) and (6.9) we have:

g1(r) = n0 +
Λ2

T

2r
; r → ∞, (6.10)

where ΛT = (2π~
2/mT )1/2 is the thermal de Broglie wavelength. Qualitatively,

the behavior of the finite-temperature density matrix (6.10) is the same as the
one shown in Fig.5.2 for the case of T = 0, and one clearly sees the presence
of the long-range order. However, at finite temperatures the density matrix
approaches its asymptotic value n0 much slower than at T = 0.

6.2 Landau criterion of superfluidity. Superfluid and nor-

mal density

We now turn to transport properties at finite temperatures. Let us first consider
a Bose-condensed gas (Bose liquid) moving with velocity v in a capillary at
T → 0. So, in the reference frame where the liquid is at rest, the walls of
the capillary move with velocity −v. Imagine that there appears an excitation
with momentum p and energy ǫp in the liquid (in this subsection p is the true
momentum, not the wavevector k = p/~ used previously in the course and
called momentum) . Then, in the reference frame where the liquid is at rest, its
energy becomes equal to ǫp and the momentum to p. Let us now go back to the
reference frame where the walls are at rest and the liquid moves with velocity
v. In this frame, the energy of the liquid will be

E = ǫp + pv +
Mv2

2
. (6.11)

The last term in Eq. (6.11) is the initial kinetic energy of the liquid. So, the
term ǫp + pv is the excitation energy in the reference frame where the liquid is

70



moving with velocity v. In order to have ǫp + pv < 0 and get a spontaneous
creation of excitations, which will provide friction, one should at least have

ǫp − pv < 0 → v >
ǫp
p
. (6.12)

Otherwise, the liquid moves without friction. In this case it is called superfluid.
The minimum value of ǫp/p is called the critical velocity vc. So, according to

Eq. (6.12) the Bose liquid (gas) is superfluid if its velocity satisfies the inequality

v < vc = min

{

ǫp
p

}

. (6.13)

This condition is called the Landau criterion of superfluidity. For a weakly
interacting Bose-condensed gas we have ǫp =

√

(p2/2m)2 + ngp2/m as given
by Eq. (5.16) and displayed in Fig5.1. We thus have vc = min{ǫp/p} = cs =
√

ng/m so that the weakly interacting Bose-condensed gas is superfluid at ve-
locities smaller than the velocity of sound.

For an ideal Bose gas one has ǫp = p2/2m → ǫp/p = p/2m and the critical
velocity vc (6.13) is zero. Thus, the ideal Bose gas is not superfluid, and we see
that interactions are crucial for the phenomenon of superfluidity.

Let us now consider low but finite temperatures. Then the liquid contains
excitations which we will treat as a ”gas of quasiparticles” not interacting with
each other but interacting with the walls of the capillary. Imagine that the
gas of these quasiparticles moves with velocity v with respect to the liquid.
The distribution function for the moving gas is obtained from the distribution
function of the gas at rest by replacing the quasiparticle energy ǫp with (ǫp−pv),
where p is the quasiparticle momentum. Hence, the total momentum of the gas
of quasiparticles per unit volume is given by

P =

∫

pN(ǫp − pv)
d3p

(2π~)3
. (6.14)

Assuming that the velocity v is small we expand the distribution functionN(ǫp−
pv) in powers of v. The integration of the zero order term gives zero, and the
integration of the linear term yields

P = −
∫

p(pv)
dN(ǫp)

dǫp

d3p

(2π~)3
= −v

3

∫

dN(ǫp)

dǫp
p2 d3p

(2π~)3
, (6.15)

where we averaged over the directions of p. We thus see that the motion of the
gas of quasiparticles is accompanied by a transfer of a mass. The transferred
mass per unit volume is ρn = P/v and is called normal density. This is because
the gas of quasiparticles collides with the walls, exchanges energy with them,
and eventually ceases to move. In this respect the situation is similar to that in
an ordinary thermal gas.

So, the Bose-condensed gas (liquid) behaves itself at T > 0 as if it consists
of two components: ”normal” and ”superfluid”. The total mass density is ρ =
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ρn + ρs, where ρs is called superfluid density. The expression for the normal
density ρn follows from equation (6.15):

ρn =
P

v
= −1

3

∫

dN(ǫp)

dǫp
p2 d3p

(2π~)3
. (6.16)

At T = 0 we have N(ǫp) = 0 and ρn = 0 so that the whole liquid is superfluid
and ρs = ρ. This shows that ρn does not coincide with the non-condensed
density, and ρs does not coincide with the density of the condensate. This is
clearly seen from the calculation of ρn at T ≪ µ = ng, where one can put
ǫp = pcs. On the basis of Eq. (6.16), integrating in parts and using Eq. (5.31)
for the distribution function N(ǫp) we find:

ρn =
2

3π2~3cs

∫ ∞

0

N(ǫp)p
3dp =

2π2
~

45cs

(

T

~cs

)4

. (6.17)

The normal density behaves as ρn ∝ T 4, whereas we found earlier that the non-
condensed density at such temperatures contains a temperature-independent
term n′(T = 0) ∝ n(na3)1/2 originating from quantum fluctuations, and the
term n′

T ∝ T 2 related to thermal fluctuations.
At temperatures T ≫ µ = ng one may put ǫp = p2/2m. Then, after

integrating in parts, Eq. (6.16) gives

ρn = m

∫

N(ǫp)
d3p

(2π~)3
= m

(

mT

2π~2

)3/2

ζ(3/2), (6.18)

and ρn/m coincides with the non-condensed density n′
T (6.7). For obtaining the

difference between n′ and ρn/m at T ≫ ng one should calculate higher order
corrections to both quantities.

6.3 Beyond Bogoliubov. Beliaev damping of elementary

excitations

Let us now discuss how accurate is the picture of Bogoliubov elementary excita-
tions that we obtained by diagonalizing a bilinear (in Ψ̂′) Hamiltonian ĤB (5.2).
So, we substituted Ψ̂ = Ψ0 + Ψ̂′ into the total Hamiltonian Ĥ (2.45) and kept
the terms independent of Ψ̂′ and quadratic in Ψ̂′ (linear terms vanish due to
the Gross-Pitaevskii equation). After diagonalizing the resulting Hamiltonian
ĤB, it takes the form (5.9). However, we omitted the terms that are qubic and
fourth-power in Ψ̂′. At temperatures T ≪ Tc where the non-condensed fraction
is small, the fourth-power terms are much less important than the qubic terms
and will also be omitted here. The qubic terms give the following contribution
to the Hamiltonian:

Ĥ(3)=

∫

g{Ψ∗
0(r,t)Ψ̂

′†(r,t)Ψ̂′(r,t)Ψ̂′(r,t)+Ψ0(r,t)Ψ̂
′†(r,t)Ψ̂′†(r,t)Ψ̂′(r,t)}d3r. (6.19)
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So, after making the Bogoliubov procedure we actually have the Hamiltonian

Ĥ = E0 +
∑

ν

ǫν b̂
†
ν b̂ν + Ĥ(3). (6.20)

The Hamiltonian term Ĥ(3) describes the interaction of elementary excitations
with each other. Using the Bogoliubov transformation (5.3) and assuming that
Ψ0 = ψ0(r) exp(−iµt/~) with ψ0(r) being real, it takes the form:

Ĥ(3) = g

∫

d3rψ0(r)
∑

ν1,ν2,ν3

{u∗ν1
b̂†ν1

exp(iǫν1
t/~) − vν1

b̂ν1
exp(−iǫν1

t/~)}

×{(u∗ν2
− v∗ν2

)b̂†ν2
exp(iǫν2

t/~) + (uν2
− vν2

)b̂ν2
exp(−iǫν2

t/~)}
×{uν3

b̂ν3
exp(−iǫν3

t/~) − v∗ν3
b̂†ν3

exp(iǫν3
t/~)}. (6.21)

The Hamiltonian Ĥ(3) is qubic in the operators b̂ν , which leads to a shift of
the eigenenergies of the excitations and to their damping. We will discuss the
damping rates and, hence, omit the terms creating or annihilating three exci-
tations as such processes do not satisfy the energy conservation law and do not
contribute to these rates.

Let us discuss the uniform case, where ψ0(r) =
√
n0, the index ν is the

particle momentum k, and the functions uν , vν are given by Eqs. (5.10), (5.11),
(5.17), and (5.18). Then, integrating over d3r we rewrite equation (6.21) as

Ĥ(3) =
g
√
n0

2
√
V
∑

k,p

{3f−
p f

−
|p−k|f

−
k + f+

p f
+
|p−k|f

−
k + f+

p f
−
|p−k|f

+
k − f−

p f
+
|p−k|f

+
k }

×b̂†kb̂
†
p−kb̂p exp[i(ǫp − ǫk − ǫ|p−k|)t/~] + h.c. (6.22)

where the functions f±
k are given by

f±
k = uk ± vk =

(

ǫk
Ek

)±1/2

. (6.23)

We now consider T = 0 and calculate the damping rate for a phonon with
momentum p which was created ”by hands” in the system. In the phonon
branch of the Bogoliubov spectrum one has ǫp = ~csp, and from the form of the

Hamiltonian Ĥ(3) (6.22) we conclude that the phonon can decay into two other
phonons with lower energies and momenta (see Fig.6.1). Besides the momentum
conservation, one has the energy conservation law:

ǫp = ǫ|p−k| + ǫk (6.24)

and we see that in the phonon branch of the spectrum the vectors p, k, and
p−k are practically parallel to each other. Indeed, writing the phonon dispersion
relation for each of the phonons shown in Fig.6.1 we obtain p = k + |p − k| or

p2 + k2 − 2pk = p2 + k2 − 2pk cos θ, (6.25)
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p

p

k

k_

Figure 6.1: Diagram for the decay of a phonon with momentum p into two other
phonons. The red wiggle line indicates that the phonon-phonon interaction
occurs through the condensate as is seen from the Hamiltonian (6.22).

where θ is the angle between the vectors p and k. Equation (6.25) shows that
cos θ = 1, and writing the dispersion relation more exactly one finds that cos θ
is slightly smaller than unity.

The damping rate will be calculated assuming that Ĥ(3) is small and using
the Fermi golden rule. In the Heisenberg picture one should write the following
expression for the damping rate:

Γp =
1

~2

∑

f

∫ +∞

−∞
Hif (0)Hif (t)dt, (6.26)

where the indices i and f label initial and final states of the transition, and
Hif (t) = 〈i|Ĥ(3)|f〉 are the transition matrix elements. In our case the initial
state is the ground state BEC gas plus a phonon with momentum p, and in
the final state instead of this phonon we have two phonons, with momenta k

and p − k, respectively. Using Eq. (6.22) for Ĥ(3) and integrating over dt in
Eq. (6.26) we immediately get

Γp =
2π

~

∑

k

|〈k, p− k|Ĥ(3)(0)|p〉|2δ(ǫp − ǫk − ǫ|p−k|), (6.27)

where Ĥ(3)(0) is given by Eq. (6.22) with t = 0 so that Eq. (6.27) represents
the Fermi golden rule in the Schroedinger picture. We also notice that due to
the energy conservation law the contribution of three last terms in the curly
brackets in Eq. (6.22) is equal to the contribution of the first term. This is
easily established recalling that the free particle energy Ek is expressed through
the Bogoliubov energy ǫk (5.16) as Ek =

√

ǫ2k + ng − ng, and in the phonon
branch where ǫk ≪ ng we have Ek = ǫ2k/2ng − ǫ4k/8n

3g3. Then, taking into
account that occupation numbers for excitations with momenta k and p − k

are zero at T = 0 (the phonon with momentum p was created ”by hands”), we
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obtain:

Γp =
2π

~
× 9ng2

∫ ∞

0

2πk2dk

(2π)3

∫ 1

−1

d cos θ
EpEkE|p−k|
ǫpǫkǫ|p−k|

δ(ǫp − ǫk − ǫ|p−k|). (6.28)

Taking into account that one may put Ek = ǫ2k/2ng for any momentum in the

integrand of Eq. (6.28) and substituting |p − k| =
√

p2 + k2 − 2pk cos θ, after
integrating over d cos θ we find:

Γp =
9

16π

g

~

(

~cs
ng

)2 ∫ p

0

k2(p− k)2dk. (6.29)

We now have to divide the final result by a factor of 2 in order to avoid double
counting of phonon pairs with momenta k and p− k. The final result reads:

Γp =
3g

320π~

(

~cs
ng

)2

p5 =
3

320π

~

mn
p5. (6.30)

Since we consider the phonon branch of the spectrum where ǫp = ~csp ≪
µ = ng, recalling that g = 4π~

2a/m, we can rewrite Eq. (6.30) in the form

Gp =
3
√
π

40
(na3)1/2

(

ǫp
ng

)4
ǫp
~
. (6.31)

The discussed damping mechanism is called Beliaev damping. It is rather slow at
T → 0. Even close to the border of the phonon branch, i.e. for ǫp approaching
ng, a characteristic damping time Γ−1

p is of the order of seconds at densities

n ≈ 2 × 1014 cm−3 typical for experiments with 87Rb where a ≈ 50 Å.

6.4 Landau damping. Small parameter of the theory at

finite temperatures

At finite temperatures one has a more important damping mechanism, the so-
called Landau damping which we will discuss for phonons in the uniform case.
According to this mechanism, a phonon (created ”by hands”) interacts with a
thermal excitation, both get annihilated, and an excitation with a higher energy
is created (see Fig.6.2). Using again the Fermi golden rule we assume that the
number of phonons (created ”by hands”) with momentum p is Np and that the
occupation numbers of thermal excitations are given by the Bose distribution
relation (5.31). Then, in a similar way as in the derivation of Eq. (6.27), we
obtain

dNp

dt
= −2πNp

~

∫

d3k

(2π)3
{|〈p + k|Ĥ(3)|p,k〉|2 − |〈p,k|Ĥ(3)|p + k〉|2}

δ(ǫ|p+k| − ǫp − ǫk). (6.32)

We consider for simplicity temperatures T ≫ µ = ng and present the result
without derivation which is transferred to the section of Problems. The damping
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rate Γp is obtained from Eq. (6.32) as

Γp = − 1

Np

dNp

dt
, (6.33)

and the expression for this quantity reads:

Γp =
ǫp
~

3π3/2

4

T

ng
(na3)1/2. (6.34)

p

k

p + k

Figure 6.2: Diagram for the Landau dampuing of a phonon with momentum
p. The red wiggle line indicates that the phonon-phonon interaction occurs
through the condensate.

The perturbation theory for a Bose-condensed gas assumes that Bogoliubov
quasiparticles are good elementary excitations and the qubic Hamiltonian term
Ĥ(3) leads to small energy shifts and damping rates. So, we should have the
inequality ~Γp ≪ ǫp. According to Eq. (6.33), at T ≫ ng this requires the
condition

T

ng
(na3)1/2 ≪ 1, (6.35)

which is much stronger than the inequality (na3)1/2 ≪ 1 obtained in Lecture 5
for T → 0.

We should also make here an important remark. The treatment of damping
that we have done requires the relaxation time τrel of thermal excitations to be
slow. One should at least have

ǫp
~

≫ 1

τrel
. (6.36)

In this case we may assume that the phonons (created ”by hands”) do not
disturb the thermal distribution in the cloud. This is usually identified as the
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collisionless regime. For the Landau damping the most important are thermal
excitations with energies ∼ µ. Their relaxation rate according to Eq. (6.34) is

Γµ = τ−1
rel ∼ T

~
(na3)1/2. (6.37)

So, the collisionless regime that we actually consider here is realized for excita-
tions with energies

ǫp ≫ T (na3)1/2. (6.38)

Problems 6

6.1 Calculate the rate of Landau damping for a phonon with momentum p in
a uniform finite-temperature Bose-condensed gas. Assume that T ≫ µ and the
thermal cloud is in the collisionless regime.

According to equations (6.32) and (6.33), the rate of Landau damping is given
by

Γp =
2π

~

∫

d3k

(2π)3
{|〈p+k|Ĥ(3)|p,k〉|2−|〈p,k|Ĥ(3)|p+k〉|2}δ(ǫ|p+k|−ǫp−ǫk). (6.39)

The transition matrix elements can be expressed as

〈p + k|Ĥ(3)|p,k〉 =
√

(Nk(N|p+k| + 1)Hint, (6.40)

〈p,k|Ĥ(3)|p+k〉 =
√

(Nk + 1)N|p+k|Hint, (6.41)

where

Hint =
g
√
n

2
√
V
{3f−

p f
−
|p+k|f

−
k +f+

p f
+
|p+k|f

−
k +f−

p f
+
|p+k|f

+
k −f+

p f
−
|p+k|f

+
k }. (6.42)

Thus, Eq. (6.39) is transformed to

Γp =
2π

~

∫ Vd3k

(2π)3
|Hint|2(Nk −N|p+k|)δ(ǫ|p+k| − ǫp − ǫk). (6.43)

The energy conservation law reads:

ǫ|p+k| = ǫp + ǫk. (6.44)

Taking into account Eq. (6.44) the calculation of Hint yields

Hint =
g
√
n

2
√
V

{

3

(

E|p+k|EpEk

ǫ|p+k|ǫpǫk

)1/2

+

(

ǫ|p+k|ǫpEk

E|p+k|Epǫk

)1/2

+

(

ǫ|p+k|ǫkEp

E|p+k|Ekǫp

)1/2

−
(

ǫpǫkE|p+k|
EpEkǫ|p+k|

)1/2
}

=
g
√
n

2
√
V

{

(

3Ek

ǫk
+
ǫk
Ek

)(

Ep

ǫp

)1/2

+
ǫpEk − ǫpǫk∂Ek/∂ǫk

Ekǫk

(

ǫp
Ep

)1/2
}

. (6.45)
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Here, assuming that p ≪ k we put E|p+k| = Ek and ǫ|p+k| = ǫk in the terms

proportional to (Ep/ǫp)
1/2. In the terms proportional to (ǫp/Ep)

1/2 we use
Eq. (6.44) for ǫ|p+k| and put

E|p+k| = Ek + ǫp
∂Ek

∂ǫk
.

Since Ek =
√

ǫ2k + µ2 − µ with µ = ng, we have

∂Ek

∂ǫk
=

ǫk
√

ǫ2k + µ2
=

ǫk
Ek + µ

.

Then, taking into account that ǫp, Ep ≪ µ, Eq. (6.45) is reduced to

Hint=
g
√
n

2
√
V

(

Ep

ǫp

)1/2{(
3Ek

ǫk
+
ǫk
Ek

)

− 2µ2

ǫk(Ek+µ)

}

=g

√

n

V

(

Ep

ǫp

)1/2
Ek

ǫk

(

2+
µ

Ek+µ

)

. (6.46)

The equilibrium occupation numbers depend only on the energies of the
excitations. Hence, for p≪ k we can write

N|p+k| = Nk +
∂Nk

∂ǫk
ǫp. (6.47)

Substituting Hint (6.46) and N|p+k| (6.47) into Eq. (6.43) and integrating over
the angle between k and p we obtain

Γp =
ng2

2π~

Ep

p

∫ ∞

0

k2dk
mǫk

~2k(Ek + µ)

E2
k

ǫ2k

(

2 +
µ

Ek + µ

)2(

−∂Nk

∂ǫk

)

. (6.48)

The main contribution to the integral in Eq. (6.48) comes from excitations
with energies ǫk ∼ µ. Thus, considering temperatures T ≫ µ we can write
Nk = T/ǫk and, hence, ∂Nk/∂ǫk = −T/ǫ2k. Then, turning to a dimensionless
variable x = µ/ǫk Eq. (6.48) is transformed to

Γp =
mg2nT

4πµ~3cs

ǫp
~

∫ ∞

0

dx

1 + x2

(

√

1 + x2 − x
)2
(

2 +
x√

1 + x2

)2

, (6.49)

and with g = 4π~
2a/m and µ = ng we eventually obtain:

Γp =
3π3/2

4

ǫp
~

T

ng
(na3)1/2. (6.50)

This is equation (6.34) given in Lecture 6 without derivation. So, in order to have
the inequality ~Γp ≪ ǫp, which is necessary for the applicability of the perturba-
tion theory, at T ≫ ng we should have a small parameter (T/ng)(na3)1/2 ≪ 1
as given by Eq. (6.35).

6.2 An impurity particle is moving in a weakly interacting Bose-condensed gas
with an initial velocity v. The gas is at T = 0. The impurity can create
excitations and loose its energy. Calculate how the kinetic energy of the impurity
decreases with time.
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Lecture 7. Vortices in Bose-condensed gases

7.1 Vortices in rotating and non-rotating superfluids. Cir-

culation

In this Lecture we discuss macroscopically excited Bose-condensed states - vor-
tices, that is the states with an orbital angular momentum. First, we give several
qualitative arguments. Let us consider a vessel with a Bose liquid and rotate it
with an angular velocity (frequency) Ω (see Fig.7.1). Only the normal compo-
nent starts to rotate with the vessel due to friction. The superfluid component
stays at rest. So, at T = 0 where the whole liquid is superfluid, nothing happens
and the liquid does not move.

Ω

z

Figure 7.1: Rotating vessel with a superfluid.

However, at sufficiently large Ω this state becomes energetically unfavorable.
The condition of equilibrium is that the energy in the rotating frame,

Erot = E − LzΩ, (7.1)

is minimum, where E and Lz are the energy and orbital angular momentum in
the lab frame. It is the term −LzΩ < 0 that can induce a superfluid motion at
large Ω. This looks as a violation of the irrotational character of the superfluid
motion expressed by

curlvs = 0. (7.2)

Excitations are density waves and there can be nothing else than Eq. (7.2). One
should have in mind that the condition (7.2) is violated only at (microscopically)
narrow lines which have measure zero and are called ”vortex lines”. Around
these lines a superfluid undergoes a ”potential rotation”.

Let us calculate the circulation of the superfluid velocity around a vortex
line:

∮

vsdl =

∮

~

m
∇S dl =

2π~

m
s. (7.3)
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The quantity S is given by

S(r, t) =
1

~

[

mvr −
(

1

2
mv2 + µ

)

t

]

, (7.4)

where one may put v = vs. Note that the expression

Ψ̂(r − vt, t) exp{iS(r, t)}

gives a Galilean transformation for the field operator (and Ψ0). So, in the refer-
ence frame where the fluid moves with velocity v, the condensate wavefunction
becomes

Ψ0 =
√
n0 exp(iS).

Hence, the superfluid velocity is

vs =
~

m
∇S,

and in order to have Ψ0 single valued one should have integer s. Thus, the
circulation is quantized in units of ~/m.

Consider now a straight vortex line along the symmetry axis z of the vessel
in Fig.7.1. The streamlines of vs are circles in planes perpendicular to z. From
Eq. (7.3) we have

vs = s
~

mr
, (7.5)

where r is the distance from the line. Note that vs (7.5) is quite different from
the velocity v = Ωr associated with a rapid rotation.

The angular momentum of the fluid is easily calculated:

Lz =

∫

ρsvsrd
3r = πsR2L~ρs

m
, (7.6)

with R and L being the radius and length of the vessel. The energy associated
with the vortex line is dominated by the kinetic energy and is given by

Ev =

∫

1

2
ρsv

2
sd

3r = πρss
2L
(

~

m

)2

ln

(R
rc

)

, (7.7)

where rc is the size of the vortex core representing the low-distance cut-off for
the integration over dr in Eq. (7.7).

The critical value Ωc above which the vortex state becomes energetically
favorable follows from the condition

Erot = Ev − ΩcLz = 0. (7.8)

Using Eqs. (7.6) and (7.7) this gives

Ωc =
Ev

Lz
=

~

mR2
ln

(R
rc

)

(7.9)
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for |s| = 1. Note that the states with |s| > 1 are unstable. For the same Ω the
state with two single-charged vortices (|s| = 1) has lower energy than the state
with one double-charged vortex (vortex with |s| = 2).

For a large rotation frequency, Ω ≫ Ωc, one can estimate the equilibrium
number of vortices per unit area minimizing the energy. According to Eq. (7.3)
we have

∮

vsdl = 2πNv
~

m
, (7.10)

where Nv is the number of vortices inside a contour around the surface area A.
On the other hand, for a large Nv we may use the relations for a rotating rigid
body. The rotation of a rigid body leads to vs = Ωr and |curlvs| = 2Ω. So, one
has

∮

vsdl = 2ΩA, which gives the number of vortices per unit area

nv =
Nv

A
=
mΩ

π~
. (7.11)

7.2 Gross-Pitaevskii equation for the vortex state

We now turn to the description of the vortex state on the basis of the Gross-
Pitaevskii equation and consider a single vortex with |s| = 1 in free space,
assuming that the vortex line is a straight linwe along the z-axis. Since we
search for the solution with orbital angular momentum l = 1, the condensate
wavefunction has the form

ψ0 =
√
n0f(r) exp(iφ), (7.12)

with the function f depending only on the distance r =
√

x2 + y2 from the
vortex line, and φ being the angle around it. In our case the Laplacian takes
the form

∆r =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂φ2
,

and using Eq. (7.12) the stationary Gross-Pitaevskii equation (3.9) is trans-
formed to the following equation for the function f :

− ~
2

2m

(

d2

dr2
+

1

r

d

dr
− 1

r2

)

f + n0g|f |2f − µf = 0. (7.13)

Putting µ = n0g and introducing a dimensionless coordinate r̃ = r/
√

2ξ, with
ξ = ~/

√
mµ being the healing length, we have:

d2f

dr̃2
+

1

r̃

df

dr̃
− f

r̃2
− f3 + f = 0, (7.14)

where we assume that f is real. For r̃ → 0 and r̃ → ∞ we obtain

f ∝ r̃, r̃ → 0; (7.15)

f ∝
(

1 − 1

2r̃2

)

, r̃ → ∞. (7.16)
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The numerically calculated function f(r̃) is displayed in Fig.7.2. One clearly
sees that the radius of the vortex core is rc ∼ ξ so that substituting µ = n0g
and g = 4π~

2a/m we have rc ∼ 1/
√
n0a. Recalling that n0a

3 ≪ 1 we find

rc ≫ n
−1/3
0 , i.e. there are many particles inside the vortex core. This is the

condition that is necessary for the validity of the Gross-Pitaevskii equation at
r . rc.

f(r)

r
~

~

1

0.5

1 2 3 4 5 6

Figure 7.2: The function f(r̃).

The vortex state is a macroscopically excited BEC state, i.e. all particles
are in the same excited quantum state. It has a topological quantum number,
circulation, so that it can not decay in the bulk. The vortex can only decay
when going to the border of the system.

7.3 Excitations of the vortex state. Fundamental modes

Let us now discuss elementary excitations around the vortex state. The Bogoliubov-
de Gennes equations for the vortex in free space are given by Eqs. (5.7) and (5.8)
with V (r) = 0 and they read:

(

− ~
2

2m
∆r + 2g|ψ0|2 − µ

)

uν − gψ2
0vν = ǫνuν (7.17)

(

− ~
2

2m
∆r + 2g|ψ0|2 − µ

)

vν − gψ∗2
0 uν = −ǫνvν (7.18)
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Far from the vortex line we may put ψ0 =
√
n0 exp(iφ) and omit all centrifugal

terms (the terms proportional to 1/r2). Then, setting

uν = ũν exp(iφ) (7.19)

vν = ṽν exp(−iφ), (7.20)

where ũν, ṽν can also depend on φ, we get equations for the excitation modes
ũν , ṽν rotationg together with the superfluid. The excitation energies and wave-
functions will be the same as without a vortex.

However, on approach to the vortex line the situation changes. Due to
the absence of translational invariance the momentum k is no longer a good
quantum number. The excitation incident on the vortex with momentum k can
be scattered with a different momentum k′. We will discuss this issue in the
problem section.

Let us now consider the behavior of excitations near the vortex line and,
moreover, analyze excitations related to the motion of the vortex line. In order
to gain insight into the problem it is convinient to find first the so-called fun-
damental modes, that is the modes with ǫν = 0. Assuming that the functions
u, v are independent of the coordinate z along the straight vortex line we write
the Bogoliubov-de Gennes equations (7.17) and (7.18) for these modes as

− ~
2

2m

(

∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂φ2

)

uν + 2g|ψ0||2uν − gψ2
0vν − µuν = 0;(7.21)

− ~
2

2m

(

∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂φ2

)

vν + 2g|ψ0|2vν − gψ∗2
0 uν − µvν = 0.(7.22)

An obvious fundamental mode is the one with u =
√
n0 exp(iφ) = ψ0 and v =√

n0 exp(−iφ) = ψ0 exp(−2iφ), and it trivially reproduces ψ0. The fundamental
mode that will be of interest for us is the mode with

u =
1√
4πL

(

f

r
+
∂f

∂r

)

, (7.23)

v =
1√
4πL

(

f

r
− ∂f

∂r

)

exp(−2iφ), (7.24)

where the function f is expressed through the condensate wavefunction by
Eq. (7.12) and obeys the Gross-Pitaevskii equation (7.13), and L is the length of
the vortex line in the z-direction. One can easily check that the u, v-functions
of Eqs. (7.23) and (7.24) satisfy the normalization condition (5.6) and the
Bogoliubov-de Gennes equations (7.21) and (7.22). Indeed, substituting u (7.23)

83



and v (7.24) into equations (7.21) and (7.22) we represent them in the form

[

− ~
2

2m

(

d3f

dr3
+

1

r

d2f

dr2
− 2

df

dr
+ 2

f

r3

)

+ 3n0gf
2 df

dr
− µ

df

dr

]

+

[

− ~
2

2m

(

1

r

d2f

dr2
+

1

r2
df

dr
− f

r3

)

+ n0g
f3

r
− µ

f

r

]

= 0. (7.25)

[

~
2

2m

(

d3f

dr3
+

1

r

d2f

dr2
− 2

df

dr
+ 2

f

r3

)

− 3n0gf
2 df

dr
+ µ

df

dr

]

+

[

− ~
2

2m

(

1

r

d2f

dr2
+

1

r2
df

dr
− f

r3

)

+ n0g
f3

r
− µ

f

r

]

= 0. (7.26)

The first term in square brackets in each of the obtained equations is nothing
else than equation (7.13) differentiated with respect to r, and the second term
is the same Eq. (7.13) divided by r. Thus, equalities (7.25) and (7.26) are
automatically satisfied.

Going back to Eqs. (7.19) and (7.20) we see that the Bogoliubov functions
(7.23) and (7.24) of the fundamental mode under consideration, in the reference
frame rotating with the superfluid are {ũ, ṽ} ∝ exp(−iφ). Thus, this mode
describes a rotation in the direction opposite to the rotation direction of the
superfluid.

It is worth noting that there is another fundamental mode:

u = C

(

f

r
− ∂f

∂r

)

exp(2iφ),

v = C

(

f

r
+
∂f

∂r

)

,

with C being a normalization constant. This mode describes a rotation in the
same direction in which the superfluid rotates. However, the norm

∫

(|u|2 −
|v|2)d3r for this mode is negative and it has to be omitted.

7.4 Kelvin modes and vortex contrast

We now try to understand the physical meaning of the obtained fundamental
mode. Let us assume that the motion in the z-direction is also excited and

uν = ūq exp(iqz) (7.27)

vν = v̄q exp(iqz − 2iφ). (7.28)

Then, instead of Eqs. (7.21) and (7.22) we have

− ~
2

2m

(

∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂φ2

)

ūq+2n0gf
2ūq−gn0f

2v̄q−µūq =

(

ǫq−
~

2q2

2m

)

ūq;(7.29)

− ~
2

2m

(

∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂φ2

)

v̄q+2n0gf
2v̄q−n0gf

2ūq−µv̄q=

(

−ǫq−
~

2q2

2m

)

v̄q.(7.30)
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We will consider low wavevectors q satisfying the inequality qξ ≪ 1. Then, at
distances r ≪ q−1 we can omit the terms proportional to (±ǫq − ~

2q2/2m). We
then return to Eqs. (7.21) and (7.22), and the solution is given by Eqs. (7.23)
and (7.24).

At distances where r ≫ ξ, we may use the asymptotoc expression f =
(1 − ξ2/4r2) given by Eq. (7.16). Then, putting µ = n0g and ξ = ~

√
mn0g

, and turning to the functions f±
q = ūq ± v̄q, equations (7.29) and 7.30) are

transformed to

− ~
2

2m

(

d2

dr2
+

1

r

d

dr
− 1

r2
− q2

)

f+
q =

(

ǫq +
~

2

mr2

)

f−
q ; (7.31)

− ~
2

2m

(

d2

dr2
+

1

r

d

dr
+

1

r2
− q2 + 2n0g

)

f−
q =

(

ǫq +
~

2

mr2

)

f+
q . (7.32)

Equations (7.31) and (7.32) are valid at any distance r ≫ ξ, including distances
where q−1 ≫ r ≫ ξ and the functions f+, f− follow from Eqs. (7.23) and
(7.24). Using f = (1 − ξ2/4r2) of Eq. (7.16), equations (7.23) and (7.24) give
|f−| ≪ |f+| and this relation is also expected to be valid at larger r. Then,
omitting the terms proportional to f−

q in Eq. (7.31) we reduce it to the Bessel
equation and obtain

f+
q =

1√
πL

qK1(qr), (7.33)

where K1 is the decaying Bessel function. The normalization coefficient in
Eq. (7.33) is chosen such that in the interval of distances q−1 ≫ r ≫ ξ equation
(7.33) yields f+

q = 1/
√
πLr, which coincides with the result following from

Eqs. (7.23) and (7.24).
We then notice that the leading terms in Eq. (7.32) are 2n0gf

−
q , ǫf+

q , and
(~2/mr2)f+

q . We thus find

f−
q =

1

2

(

ǫq
n0g

+
ξ2

r2

)

f+
q . (7.34)

One can easily check that the main contribution to the normalization integral

∫

(|ūq|2 − |v̄q|2)d3r =

∫

f+
q f

−
q d

3r = 1

comes from distances r ≪ q−1 and the (small) q-dependent contribution of larger
distances practically does not change the normalization coefficient obtained for
the fundamental mode.

Note that K1(qr) ∝ exp(−qr) at r → ∞. So, the modes that we are study-
ing decay exponentially at large distances from the vortex core. These modes
describe oscillations of the vortex line, which takes the form of a spiral rotating
in the direction opposite to the rotation of the superfluid (see Fig.7.3). Such
oscillations are called Kelvin modes or kelvons. They have been discovered by
Kelvin (W. Thompson) for classical vortices. The fundamental mode discussed
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ε

Figure 7.3: Vortex line (black curve) undergoing Kelvin oscillations and rotating
with frequency ǫ/~ in the direction opposite to the rotation of the superfluid.

in the previous subsection represents an extreme case of q → 0 and undergoes
a power law decay at r → ∞.

For obtaining the dispersion relation for kelvons we return to Eqs. (7.27),
(7.28), (7.29) and (7.30) and, putting µ = n0g, consider them at distances
r ≪ q−1 where the functions ūq and v̄q follow from Eqs. (7.23) and (7.24) and
are given by

ūq =
1

4πL

(

f

r
+
df

dr

)

; v̄q =
1

4πL

(

f

r
− df

dr

)

.

We then multiply Eq. (7.29) by ūq, and Eq. (7.30) by v̄q. Integrating the
resulting equations over d3r we add them to each other. With above written ūq

and v̄q, the left hand sides of Eqs. (7.29) and (7.30) give zero, and we obtain:

ǫq

∫

(ū2
q − v̄2

q)d3r =
~

2q2

2m

∫

(ū2
q + v̄2

q )d3r. (7.35)

Considering distances r ≪ q−1 we have to put the limits of integration 0 and
∼ q−1. Then the integral in the left hand side of Eq. (7.35) is practically equal
to the normalization integral and, hence, equals unity. For the integral in the
right hand side, we may replace the lower limit of integration by ∼ ξ and then

86



take ūq = v̄q = (
√

4πLr)−1. This gives with logarithmic accuracy:

ǫq =
~

2q2

2m
ln

(

1

qξ

)

. (7.36)

The average density profile near the vortex line is influenced by quantum and
thermal fluctuations due to kelvons. The density averaged over the z-direction
is given by

〈n〉 = |ψ0|2 + 〈ψ̂′†ψ̂′〉, (7.37)

where
ψ̂′ =

∑

q

[ūq(r) exp(iqz)b̂q − v̄q(r) exp(−iqz + 2iφ)b̂†q], (7.38)

with b̂q, b̂
†
q being the creation and annihilation operators of kelvons. We thus

obtain:

〈n〉 = |ψ0|2 +

∫ ∞

−∞

dq

2π
[(ū2

q + v̄2
q )Nq + v̄2

q ], (7.39)

where Nq = [exp(ǫq/T ) − 1]−1 are equilibrium occupation numbers for the
kelvons. We thus see that the average density at the vortex core 〈n(0)〉 6= 0,
and the vortex contrast

Cv =
〈n(0)〉
n0

(7.40)

has a non-zero value. The calculation of the vortex contrast due to kelvons is
transferred to the problem section.

Problems 7

7.1 Consider a streaight vortex line in a BEC in the trapping geometry of an
ideal cylinder (see Fig.7.1). The z-direction is free, and in the x, y-plane one
has a harmonic confining potential V (r) = mω2r2/2, where r2 = x2 +y2. Write
the condensate wavefunction in the Thomas-Fermi regime assuming that the
trap is not rotating. Find an eigenfrequency and wavefunction of an excitation
corresponding to the rotation of the vortex line around the z-axis.

As we are looking for the solution of the stationary Gross-Pitaevskii equation
with orbital angular momentum 1, we write this equation in the form:

− ~
2

2m

(

d2

dr2
+

1

r

d

dr
− 1

r2

)

ψ0 +
mω2r2

2
ψ0 + g|ψ0|2ψ0 − µψ0 = 0. (7.41)

In the Thomas-Fermi regime the radius of the trapped BEC in the x, y-plane
is RTF =

√

2µ/mω2. The chemical potential is µ ≈ nmaxg, with nmax being
the maximum density, and the Thomas-Fermi radius is RTF ≫ ξ where ξ =

87



√

~2/mµ is the size of the vortex core. In this case one can write an approximate
solution of Eq. (7.41) as

ψ0 =

√

µ

g
ψTF (r)f(r/ξ) exp(iφ), (7.42)

where the function f(r/ξ) is determined by Eq. (7.14) and

ψTF =

√

1 − r2

R2
TF

(7.43)

for r < RTF and zero otherwise. The density profile corresponding to the
solution (7.42) is displayed in Fig.7.4.

R
TF

V(r)

r

ψ
0

2

Figure 7.4: Density profile for the vortex state in a trapped condensate.

The mode that we have to find is analogous to the fundamental mode dis-
cussed in this Lecture. In this mode the vortex line rotates countercklockwise
with respect to the BEC (which itself rotates clockwise). So, we have

u(r) = ū; v(r) = v̄ exp(−2iφ),

and the Bogoliubov-de Gennes equations for the functions ū, v̄ read:

− ~
2

2m

(

d2

dr2
+

1

r

d

dr

)

ū+ 2g|ψ0|2ū− g|ψ0|2v̄ +
mω2r2

2
ū− µū = ǫū, (7.44)

− ~
2

2m

(

d2

dr2
+

1

r

d

dr
− 4

r2

)

v̄ + 2g|ψ0|2v̄ − g|ψ2
0ū+

mω2r2

2
v̄ − µv̄ = −ǫv̄. (7.45)

We now use a perturbative approach. First of all, in the absence of trapping
the solutions of Eqs. (7.44) and (7.45) are given by equations (7.23) and (7.24)
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and we assume that to zero order they locally remain the same for a trapped
condensate. So, they should be simply multiplied by ψTF , and we thus have

ū =
1√
4πL

(

f

r
+
∂f

∂r

)

ψTF , (7.46)

v̄ =
1√
4πL

(

f

r
− ∂f

∂r

)

ψTF . (7.47)

Using the Gross-Pitaevskii equation (7.41) we rewrite equations (7.44) and
(7.45) in the form:

~
2

2m

[

1

ψ0

(

d2ψ0

dr2
+

1

r

dψ0

dr

)

+
1

r2

]

ū+ gψ2
0(ū− v̄) = ǫū, (7.48)

~
2

2m

[

1

ψ0

(

d2ψ0

dr2
+

1

r

dψ0

dr

)

+
4

r2

]

v̄ − gψ2
0(ū− v̄) = −ǫv̄. (7.49)

Substituting the zero order solutions (7.46) and (7.47) and the condensate wave-
function (7.42) into Eqs. (7.48) and (7.49), we multiply the sum of the two
equations by (ū+ v̄) and integrate over d3r. This yields

2~
2

m

∫ ∞

0

f2

r2

{

d2ψTF

dr2
+

1

r

dψTF

dr
+

2

f

dψTF

dr

df

dr

}

d3r

4πL = ǫ. (7.50)

The main contribution to the integral in the left hand side of Eq. (7.50) comes
from distances where ξ ≪ r ≪ R. We then put f ≈ 1 and ψ′′

TF = (1/r)ψ′
TF =

(1/R2
TF ) and find

ǫ = − 4~
2

mR2
TF

∫

2πrdr

4πr2
, (7.51)

where the lower limit of integration should be put equal to ξ, and the upper
limit to RTF . This gives with logarithmic accuracy:

ǫ = − 2~
2

mR2
TF

ln

(

RTF

ξ

)

= −~
2ω2

µ
ln

(

RTF

ξ

)

. (7.52)

Thus, the obtained eigenfrequency is negative. This indicates the presence
of thermodynamic (energetic) instability, as one may expect in a non-rotating
trap where the vortex state is not the ground state.

7.2 Consider a straight vortex line in an ideal cylinder of length L. Assume that
the line is fixed at the edges. Find a quantization rule for kelvons and calculate
the density profile taking into account quantum and thermal fluctuations due
to kelvons.
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Lecture 8. True and phase-fluctuating condensates

in 2D Bose gases

8.1 Coupling constant for the interaction between parti-

cles

In this Lecture we discuss BEC in weakly interacting two-dimensional (2D) Bose
gases and introduce the notion of phase-fluctuating condensates, or quasicon-
densdates. As well as in the 3D case, we have the Hamiltonian (2.45) and the
non-linear Heisenberg equation of motion for the field operator, (3.4). We will
consider later the criterion of the weakly interacting regime, which contains the
coupling constant g. Let us first discuss what is g in the 2D case.

This question is, in general, beyond the scope of this lecturing course. We
consider the situation where a 3D gas is strongly confined by a harmonic poten-
tial V0(z) = mω2

0z
2/2 in one direction (z). Then, if it is confined to zero point

oscillations, and the wavefunction of the particle motion in the z-direction is

ψz =
1

π1/4l
1/2
0

exp

(

− z2

2l20

)

, (8.1)

with l0 = (~/mω0)
1/2 being the harmonic oscillator length for the tight con-

finement. Since only one mode of the motion in the z-direction is occupied, the
field operator can be represented as

ψ̂(z, r) = ψ̂(r)ψz(z), (8.2)

where r = {x, y}. Substituting ψ̂ (8.2) into the three-dimensional Hamiltonian
(2.45) and integrating over dz we obtain an effective 2D Hamiltonian

Ĥ =

∫ ∞

−∞
dz
{

ψ2
z

∫

d2r

(

− ~
2

2m
ψ̂†(r)∆rψ̂(r) + ψ̂†(r)V (r)ψ̂(r)

)

(8.3)

+
g3D

2
ψ4

z

∫

d2rψ̂†(r)ψ̂†(r)ψ̂(r)ψ̂(r)
}

=

∫

d2rψ̂†(r)

{

− ~
2

2m
∆r + V (r) +

g

2
ψ̂†(r)ψ̂(r)

}

ψ̂(r), (8.4)

where g3D = 4π~
2a/m and the coupling constant g is given by

g =
g3D√
2πl0

=
2
√

2π~
2a

ml0
. (8.5)

The quantity V (r) in Eq. (8.4) is an external shallow potential in the r-plane. So,
the 2D Hamiltonian has the form (2.45) with the coupling constant determined
by Eq. (8.5). Including the term

ψ̂†(r)ψz

(

− ~
2

2m

d2

dz2
+

1

2
mω2

0z
2

)

ψ̂(r)ψz
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in the 3D Hamiltonian in Eq. (8.3) simply shifts the chemical potential by ~ω0/2.
Note that since we used a 3D Hamiltonian for deriving the efffective two-

dimensional Hamiltonian (8.4), the validity of this result requires the condition
|a| ≪ l0.

8.2 Bose-Einstein condensation at zero temperature. Small

parameter of the theory

Let us now consider a 2D weakly interacting gas of bosons repulsively interacting
with each other and described by the Hamiltonian (8.4), at T = 0. Assuming
that most of the particles are in the condensate we act in the same way as in
the 3D case. We write Ψ̂ = Ψ0 + Ψ̂′ and obtain the Gross-Pitaevskii equation
(3.6) for the Heisenberg-picture condensate wavefunction Ψ0 and the stationary
Gross-Pitaevskii equation (3.9) for the Schroedinger-picture wavefunction ψ0.
Then, using the Bogoliubov transformation (5.3) we arrive at the Bogoliubov-
de Gennes equations (5.7) and (5.8) for the excitations. In the uniform case we
have ψ0 =

√
n0, and the u, v functions of the excitations are given by Eqs. (5.10),

(5.11), (5.17), and (5.18) with the excitation eigenenergy ǫk (5.16). Accordingly,
the density of non-condensed particles at T = 0 is given by equation (5.32). The
only difference is that now k is the two-dimensional vector. So, for the non-
condensed density we obtain:

n′ = 〈ψ̂′†(r)ψ̂′(r)〉 =
∑

k

v2
k =

∫

1

4

(

ǫk
Ek

+
Ek

ǫk
− 2

)

d2k

(2π)2
=

mg

4π~2
n. (8.6)

We thus see two important consequences. First of all, equation (8.6) is
consistent with the apriori assumption that there is a true BEC in the 2D Bose
gas at zero temperature. Second, the requirement of the weakly interacting
regime, n′ ≪ n, shows that the small parameter of the theory for this regime is

mg

4π~2
≪ 1. (8.7)

Using the coupling constant g from Eq. (8.5) we find that in the 2D regime
obtained by tightly confining the motion of particles in one direction the small
parameter (8.7) takes the form

a

l0
≪ 1. (8.8)

The calculation of the one-body density matrix in the uniform case shows
qualitatively the same picture as displayed in Fig.5.3 for the 3D case. It is
tending to n0 at r → ∞, i.e. there is a long-range order. Rewriting equations
(5.37) and (5.38) in terms of Schroedinger-picture field operators and bearing
in mind that k is now a two-dimensional vector, we obtain

g1(r) = n0 + 〈ψ̂′†(r)ψ̂′(0)〉 = n0 +

∫

d2k

(2π)2
v2

k exp(ikr)

= n0

[

1 +
mg

2π~2
I1

(

r

ξ

)

K1

(

r

ξ

)]

, (8.9)
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where I1 and K1 are the growing and decaying Bessel functions. At distances
r ≫ ξ equation (8.9) gives

g1(r) = n0

(

1 +
mg

4π~2

ξ

r

)

, r ≫ ξ. (8.10)

Comparing Eq. (8.10) with Eq. (5.39) one sees that in 2D at zero temperature
g1(r) approaches its asymptotic value n0 much slower than in 3D.

8.3 Phase-fluctuating condensates at finite temperatures

We now turn to the case of finite temperatures. Then the non-condensed den-
sity is given by Eq. (6.1), where the vacuum (zero-temperature) contribution
V−1

∑

k v
2
k is the one of Eq. (8.6) and for the thermal contribution we have a

2D analog of Eq. (6.3):

n′
T =

∫

d2k

(2π)2
(v2

k + u2
k)Nk =

∫ ∞

0

kdk

2π

(

ǫk
2Ek

+
Ek

2ǫk

)

. (8.11)

For k → 0 the excitation energy ǫk ∝ k, and since the single particle energy
Ek ∝ k2 we have kdk/k2 in the integrand of Eq. (8.11). The integral is diver-
gent, which rules out the assumption of the presence of a true Bose-Einstein
condensate.

The origin of this infrared divergence is related to long-wave fluctuations of
the phase, which can be understood turning to the density-phase representation
and writing the field operators in the form given by equations (5.40) and (5.41),
with the commutation relation (5.42). Substituting Ψ̂(r, t) (5.40) and Ψ̂†(r, t)
(5.41) into the non-linear Schroedinger equation (3.4) and equalizing real and
imaginary parts, we get coupled continuity and Euler hydrodynamic equations
for the density and phase operators:

−~
∂
√
n̂

∂t
=

~
2

2m
∇(∇φ̂

√
n̂), (8.12)

−~
∂φ̂

∂t

√
n̂ =

~
2

2m
(∇φ̂)2

√
n̂− ~

2

2m
∆
√
n̂+ V (r)

√
n̂+ gn̂3/2. (8.13)

We now assume that fluctuations of the density are small on any distance scale.
Eq. (8.12) then shows that fluctuations of the phase gradient are also small.
Writing the density operator as n̂ = n(r)+ δn̂ and shifting the phase by −µt/~,

we linearize Eqs. (8.12) and (8.13) with respect to δn̂ and ∇φ̂ around the sta-

tionary solution n̂ = n, ∇φ̂ = 0. The zero order terms give the Gross-Pitaevskii
equation for the mean density n:

− ~
2

2m

∆
√
n√
n

+ V (r) + gn− µ = 0. (8.14)
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The first order terms provide equations for the density and phase fluctuations:

~
∂δn̂√
n∂t

=

[

− ~
2

2m
∆ + V (r) + gn− µ

]

2
√
nφ̂, (8.15)

−~
2∂

√
nφ̂

∂t
=

[

− ~
2

2m
∆ + V (r) + 3gn− µ

]

δn̂√
n
. (8.16)

Solutions of Eqs. (8.15) and (8.16) are obtained in terms of elementary excita-
tions:

δn̂ =
√

n(r)
∑

ν

f−
ν (r) exp(−iǫνt/~)b̂ν + h.c. (8.17)

φ̂ =
−i

2
√

n(r)

∑

ν

f+
ν (r) exp(−iǫνt/~)b̂ν + h.c., (8.18)

where f±
ν (r) = uν(r)± vν(r) and the functions uν , vν satisfy the Bogoliubov-de

Gennes equations (5.7) and (5.8), with |Ψ0|2 replaced by n. We thus see that
the assumption of small density fluctuations is sufficient for having the Bogoli-
ubov wavefunctions of the excitations and the Bogoliubov excitation spectrum,
irrespective of the presence or absence of a true Bose-Einstein condensate.

Let us now return to the uniform case and check that the density fluctuations
are really small in 2D. Like in 3D in Lecture 5, we divide the system of excitations
into two parts: the high-energy free-particle part with ǫk > ng, and the low-
energy phonon part with ǫk < ng, so that

δn̂ = δn̂p + δn̂f , (8.19)

φ̂ = φ̂p + φ̂f , (8.20)

where the subscript p stands for the phonon part, and f for the free-particle
part. For the free-particle branch of the spectrum we have vk → 0 and uk → 1.
Denoting the field operator of this part as Ψ̂f(r, t), for the density of ”free
particles” we have:

〈Ψ̂†
f (0, 0)Ψ̂f(0, 0)〉 ≈

∫

ǫk>ng

d2k

(2π)2
Nk < n

T

Td
ln

(

T

Td

)

,

with Td = 2π~
2n/m being the temperature of quantum degeneracy. At tem-

peratures T ≪ Td we then have 〈Ψ̂†
f (0, 0)Ψ̂f(0, 0)〉 ≪ n. As the density fluc-

tuations related to the free particle part of the spectrum are of the order of
〈Ψ̂†

f (0, 0)Ψ̂f(0, 0)〉 or smaller, we conclude that they are small. The inequality

〈Ψ̂†
f Ψ̂f〉 ≪ n shows that the high-energy fluctuations of the phase are also small.
In order to estimate the low-energy fluctuations of the density we calculate

the density-density correlation function 〈δn̂(0)δn̂(r)〉 at equal times. A straight-
forward calculation using Eq. (8.17) yields

〈δn̂(0)δn̂(r)〉
n2

=
1

n

∫

ǫk<ng

d2k

(2π)2
Ek

ǫk
(1 + 2Nk) coskr < max

{

T

Td
,
mg

4π~2

}

, (8.21)
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and at temperatures T ≪ Td these density fluctuations are also small.
We thus see that omitting small fluctuations of the density the one-body

density matrix can be found by using the field operators given by Eqs. (5.40)
and (5.41), with

√
n̂ replaced by the square root of the mean density,

√
n. Since

at T ≪ Td the high-energy part of the phase fluctuations is also small, we may
confine ourselves to the low-energy part φ̂p in the phase operator and use the
field operator in the form

Ψ̂ =
√
n exp(iφ̂p). (8.22)

For the one-body density matrix at equal times we then have:

g1(r) = 〈Ψ̂†(r, 0)Ψ̂(0, 0)〉 = n〈exp i[φ̂p(r, 0) − φ̂p(0, 0)]〉. (8.23)

Relying on the Taylor expansion of the exponent one proves directly that

〈exp i[φ̂p(r, 0) − φ̂p(0, 0)]〉 = exp{−1

2
〈[φ̂p(r, 0) − φ̂(0, 0)]2〉}.

Vacuum low-energy fluctuations of the phase are small as mg/2π~
2. How-

ever, thermal phase fluctuations grow logarithmically for r → ∞. Using Eq. (8.18)
we obtain:

〈[φ̂p(r, 0) − φ̂p(0, 0)]2〉=
∫

k<ξ−1

d2k

(2π)2
(1 − coskr)

n

ǫk
Ek

Nk =
2T

Td
ln

(

r

λT

)

, (8.24)

where λT = ξ = ~/
√
mng for T ≫ ng = µ. In the limit of very low tem-

peratures, T ≪ ng, we have λT equal to the thermal de Broglie wavelength of
the excitations, i.e. λT = ~cs/T . Accordingly, the correlation function g1(r)
undergoes a slow power law decay at large r:

g1(r) = n

(

λT

r

)T/Td

; r ≫ λT . (8.25)

This is drastically different from the 3D case. In 2D long-wave fluctuations of
the phase destroy the long-range order and true BEC.

What kind of state we get? Let us first introduce the distance lφ at which the
correlation function g1(r) significantly decreases, the so-called phase coherence
length. From Eq. (8.25) we obtain

lφ ≈ λT exp

(

Td

T

)

≫ ξ. (8.26)

Using this quantity the dependence g1(r) given by Eq. (8.25) is displayed in
Fig.8.1. Since lφ ≫ ξ, the system can be divided into blocks of size L such that
ξ ≪ L≪ lφ. Then, inside each block one has a true condensate, but the phases
of different blocks are not correlated to each other (see Fig.8.2). This state is
called phase-fluctuating Bose-Einstein condensate, or quasicondensate.
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lφ
ξ

Figure 8.1: One-body density matrix g1(r) for a 2D Bose gas at T ≪ Td.

8.4 Kosterlitz-Thouless phase transition

Equation (8.25) shows that the correlation function g1(r) obtained at T ≪ Td is
strongly different from that in a thermal 2D Bose gas. Thus, one expects that
there is a phase transition. How does it occur? It is called Kosterlitz-Thouless
transition and it occurs through the formation of bound vortex-antivortex pairs.
That is, vortices with an opposite circulation (s = 1 and s = −1) form bound
pairs.

A detailed scenario of this phase transition is beyond the scope of this lec-
turing course. Nevertheless, we will consider ”supporting arguments”. Let us
calculate the free energy

F = E − TS, (8.27)

with S being the entropy. In Lecture 7 we have found that the energy of a single
vortex is given by Eq. (7.7) and is proportional to the length of the vortex line.
In 2D there are no vortex lines, but one has vortex points. The energy of a
single-charged vortex in 2D is obtained from Eq. (7.7) by replacing the product
of the 3D superfluid density ρs/m and the length of the vortex line L by the 2D
(superfluid) density ns:

E =
π~

2

2m
ns ln

(R2

r2c

)

, (8.28)

where R is the size of the 2D gas. The entropy is given by

S = ln

(R2

r2c

)

, (8.29)
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L

lφ

Figure 8.2: Picture of the phase-fluctuating condensate. The phases of blocks
that are separated by a distance ∼ lφ or larger are not correlated with each
other.

since there are approximately R2/r2c possible positions for the vortex core. So,
for the free energy we have

F =

{

π~
2

2m
ns − T

}

ln

(R2

r2c

)

. (8.30)

We thus see that for T < Tc = π~
2ns/2m the appearance of single vortices

increases the free energy. Therefore, the probability of having single vortices
will be vanishingly small. On the other hand, for T > Tc the appearance of
single vortices decreases the free energy and they spontaneously appear in the
system. So, the temperature

Tc =
π~

2

2m
ns (8.31)

is expected to correspond to a phase transition. Note that the superfluid density
ns depends itself on temperature. A detaled analysis of the Kosterlitz-Thouless
phase transition shows that ns entering Eq. (8.31) is the superfluid density just
below the transition temperature Tc.

We now briefly discuss BEC in 2D trapped Bose gases. If a harmonically
trapped gas is in the Thomas-Fermi regime, it has a size RTF = (2ng/mω2)1/2,
where ω is the trap frequency. Then, one should compare RTF with the phase
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coherence length lφ (8.26). For lφ ≪ RTF the situation is similar to that in
an infinite system. There is a quasicondensate. However, if lφ & RTF , then
one has a true BEC. This is a finite size effect. The finite size of the system
introduced by the trapping potential provides a low-momentum cut-off for the
phase fluctuations and thus reduces them.

Note that correlation properties of a quasicondensate on a distance scale
smaller than lφ are the same as those of a true condensate. Only the properties
on a distance scale larger than lφ are different.

Problems 8

8.1 Consider a 2D finite-temperature Bose-condensed gas in a harmonic po-
tential V (r) = mω2r2/2. Assume the Thomas-Fermi regime and express the
condition of having a quasicondensate in terms of the number of particles N
and temperature T .

Using the Gross-Pitaevskii equation for the mean density (8.14) and omitting
the Laplacian term, the Thomas-Fermi density profile is given by

n(r) =
µ

g

(

1 − r2

R2
TF

)

, (8.32)

where the chemical potential is µ = nmaxg, with nmax = n(0) being the maxi-
mum density, and RTF =

√

2µ/mω2 is the Thomas-Fermi radius. The one-body
density matrix at equal times and at a distance r from the origin is

g1(r) = 〈Ψ̂†(r, 0)Ψ̂(0, 0)〉 =
√

n(r)n(0) exp

{

−1

2
〈[φ̂(r, 0) − φ̂(0, 0)]2〉

}

,

and the BEC state is a quasicondensate if the mean square fluctuations of the
phase, 〈[φ̂(r, 0)− φ̂(0, 0)]2〉, are of the order of unity or larger on a distanse scale
∼ RTF . At temperatures T ≫ µ the main contribution to these fluctuations
comes from excitations with energies much larger than ~ω. These excitations
are quasiclassical, and we have

〈[φ̂(RTF , 0) − φ̂(0, 0)]2〉 ≈
( mg

2π~2

) T

µ
ln

(

RTF

ξ(0)

)

. (8.33)

The ratio RTF /ξ(0) is

RTF

ξ(0)
=

(

2µ

mω2

)1/2
(mnmaxg)

1/2

~
=

√
2µ

~ω
. (8.34)

From the normalization condition and Eq. (8.32) we obtain the chemical pio-
tential in terms of the number of particles and the trap frequency:

N =

∫ RT F

0

n(r)2πrdr =
πµ

2g
R2

TF
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and, hence,

µ = ~ω

(

Nmg

π~2

)1/2

. (8.35)

Accordingly, Eq. (8.34) is transformed to

RTF

ξ(0)
=

(

2Nmg

π~2

)1/2

. (8.36)

Substituting this ratio and µ (8.35) into Eq. (8.33) we obtain with logarithmic
accuracy:

〈[φ̂(RTF , 0) − φ̂(0, 0)]2〉 ≈ T

2
√
N~ω

(mg

π~2

)1/2

lnN. (8.37)

Assuming a Kosterlitz-Thouless type of phase transition we should have the
transition temperature to the BEC regime

Tc ∼ ~
2

2m
nmax.

At the transition the trapped sample has a thermal size ∼ RT ∼ (T/mω2)1/2.
Hence, nmax ∼ N/R2

T ∼ mω2N/Tc. This gives Tc ∼
√
N~ω. So, the first two

multiples in Eq. (8.37) are small, just because T < Tc and mg/4π~
2 is a small

parameter of the theory. Therefore, in order to to have a quasicondensate one
should have a very large number of particles satisfying the condition

T√
N~ω

( mg

4π~2

)1/2

lnN & 1.

8.2 Calculate the one-body density matrix for a 2D Bose-condensed gas at T = 0
in a harmonic potential V (r) = mω2r2/2 assuming the Thomas-Fermi regime.

Lecture 9. Regimes of quantum degeneracy in a

weakly interacting 1D Bose gas

9.1 Coupling constant and criterion of weak interactions

in 1D

In this Lecture we consider weakly interacting one-dimensional (1D) Bose gases
and discuss the emerging regimes of quantum degeneracy. The first question is
related to the value of the coupling constant g. Let us assume that there is a
3D gas tightly confined by a harmonic potential V0(ρ) = mω2

0r
2/2 to zero point

oscillations in the x, y-directions (x2 + y2 = r2, see Fig.9.1). Then the motion
of particles in these directions is governed by the wavefunction

ψr =
1√
πl0

exp

(

− r2

2l20

)

, (9.1)
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where l0 = (~/mω0)
1/2 is the harmonic oscillator length for the tight confine-

ment. The field operator can be written in the form:

ψ̂(r, z) = ψ̂(z)ψr. (9.2)

We then act in a similar way as in the 2D case in Lecture 8. Substituting ψ̂ (9.2)
into the three-dimensional Hamiltonian (2.45) with the 3D coupling constant
g3D = 4π~

2a/m, and integrating over d2r we obtain an effective 1D Hamiltonian

Ĥ =

∫ ∞

0

2πrdr
{

ψ2
r

∫

dz

(

− ~
2

2m
ψ̂†(z)∆zψ̂(z) + ψ̂†(z)V (z)ψ̂(z)

)

(9.3)

+
g3D

2
ψ4

r

∫

dzψ̂†(z)ψ̂†(z)ψ̂(z)ψ̂(z)
}

=

∫

dzψ̂†(z)

{

− ~
2

2m
∆z + V (z) +

g

2
ψ̂†(z)ψ̂(z)

}

ψ̂(z), (9.4)

where V (z) is a shallow external potential in the z-direction, and the coupling
constant g is expressesd through l0 and the 3D scattering length a as

g =
2~

2a

ml20
. (9.5)

Adding the term

ψ̂†(z)ψr

(

− ~
2

2m
∆r +

1

2
mω2

0r
2

)

ψ̂(z)ψr

in the 3D Hamiltonian in Eq. (9.3) shifts the chemical potential by ~ω0. Strick-
tly speaking, since we started with the 3D Hamiltonian (2.45), the validity of
Eq. (9.5) requires the inequality |a| ≪ l0.

z

r

Figure 9.1: One-dimensional quantum gas obtained by tightly confining the
motion of particles in two directions

We now obtain the criterion of the weakly interacting regime in 1D in a
similar way as we did in Lecture 1 for the 3D case. Consider particles in a
segment with a length of the order of the mean interparticle separation r̄ ∼ 1/n.
On average there is only one particle in such a segment, and at T = 0 its
characteristic kinetic energy is K ≈ ~

2/mr̄2 ≈ ~
2n2/m. This is because in the
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weakly interacting regime the wavefunction of particles is not influenced by the
interaction at interparticle disatances ∼ r̄. For the same reason one should have
K ≫ I where I = n|g| is the energy of interaction per particle. So, we have

~
2n2

m
≫ ng,

which gives a small parameter of the weakly interacting regime

γ =
m|g|
~2n

≪ 1. (9.6)

Note that the criterion of the weakly interacting regime given by Eq. (9.6) shows
that the 1D gas becomes more non-ideal (strongly interacting) with decreasing
density.

9.2 QuasiBEC regime

We first consider a 1D Bose gas at T = 0 in a large segment of length L. As-
sume that there is a true condensate and calculate the density of non-condensed
particles n′ = 〈Ψ̂′†Ψ̂′〉. Writing the Bogoliubov transformation as

Ψ̂ =
∑

k<π/L

[ukb̂k exp(ikz − iǫkt/~) − vk b̂
†
k exp(ikz + iǫkt/~)],

like in 3D we obtain equations (5.16), (5.17), and (5.18) for the energy spectrum
of elementary excitations and for the functions uk, vk. We thus find the following
result for the non-condensed fraction:

n′

n
=

∫ ∞

π/L

dk

π

v2
k

n
=

√
γ

π
ln

(

2L

eπξ

)

, (9.7)

where ξ = ~/
√
mng is the healing length.

From Eq. (9.7) we see two important circumstances. First of all, for L→ ∞
one does not satisfy the condition n′ ≪ n. So, there is no true BEC in an
infinite 1D system even at T = 0. Second, since γ ≪ 1, the true BEC can be
present in a finite size system where equation (9.7) gives n′ ≪ n.

Let us now discuss a large 1D Bose gas and use the same hydrodynamic
approach as in the 2D case at T 6= 0. Writing again the field operators in the
density-phase representation according to Eqs. (5.40) and (5.41), substituting
them into the non-linear Schroedinger equation (3.4), and thus obtaining equa-
tions (8.12) and (8.13), we then assume small fluctuations of the density and
write n̂ = n+ δn̂. Shifting the phase by −µt/~ and linearizing Eqs. (8.12) and

(8.13) with respect to δn̂ and ∇φ̂ around the stationary solution n̂ = n, ∇φ̂ = 0
leads to Eq. (8.14) for the mean density n and to Eqs. (8.17) and (8.18) for δn̂

and φ̂. We then consider a uniform infinite 1D Bose gas and obtain the condi-
tions under which the density fluctuations are small. Dividing the fluctuations
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into the low-energy (phonon) and high-energy (free-particle) parts we calcu-
late the density-density correlation function at equal times due to low-energy
fluctuations of the density,

〈δn̂(z)δn̂(0)〉p =n

∫

ǫk<µ

dk

2π
(1+2Nk)

Ek

ǫk
cos kz ≈

(

µ

T 1D
d

)1/2

max

{

T

µ
, 1

}

, (9.8)

where the chemical potential is µ = ng, and the temperature of quantum de-
generacy is defined as

T 1D
d =

~
2n2

m
. (9.9)

Like in the 2D case at T 6= 0, for the high-energy part we again estimate the
density of ”free particles”:

〈Ψ̂f (0, 0)Ψ̂f(0, 0)〉 ≈
∫

ǫk>µ

dk

2π
Nk ∼ n

T
√

µT 1D
d

, (9.10)

and note that the contribution of vacuum fluctuations to this quantity is neg-
ligible. So, from equations (9.8) and (9.10) we see that in order to have small
fluctuations of the density we should satisfy the inequality

T ≪ (T 1D
d ng)1/2 ≈ √

γT 1D
d . (9.11)

Note that the condition µ = ng ≪ T 1D
d is automatically satisfied at γ ≪ 1. We

have ng/T 1D
d = γ ≪ 1.

We thus obtain that in 1D it is not sufficient to have T ≪ T 1D
d in order to

get small density fluctuations. One should have the inequality (9.11) which is
much stronger. Let us understand what this means and calculate the one-body
density matrix at equal times, g1(z) = 〈Ψ̂†(z, 0)Ψ̂(0, 0)〉, using the field operator
in the form (8.22). As well as in the 2D case, we then get

g1(z) = n exp

{

−1

2
〈[φ̂p(z) − φ̂p(0)]2〉

}

, (9.12)

and the mean square fluctuations of the phase are now given by

〈[φ̂p(z) − φ̂p(0)]2〉 =
1

2n

∫

ǫk<µ

dk

2π

ǫk
Ek

(1 + 2Nk)(1 − cos kz)

=
mT

~2n
|z| +

√
γ

π
ln

( |z|
ξ

)

; |z| ≫ ξ. (9.13)

At T = 0 the one-body density matrix undergoes a power law decay at large
z:

g1(z) = n exp

{

−
√
γ

2π
ln

( |z|
ξ

)}

= n

(

ξ

|z|

)

√
γ/2π

. (9.14)
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In this respect the situation is similar to that in 2D at finite temperatures,
and the phase coherence length is exponentially large compared to the healing
length;

lφ ≈ ξ exp

(

2π√
γ

)

. (9.15)

We can, therefore, divide the system into segments of size L such that ξ ≪
L ≪ lφ, and there is a true BEC inside each segment but the phases of dif-
ferent segments are not correlated to each other. So, one has the regime of a
quasicondensate in 1D at T = 0.

At a finite and sufficiently large temperature, but still satisfying the criterion
(9.11), omitting the contribution of vacuum fluctuations given by the second
term in the right hand side of Eq. (9.13) we obtain:

g1(z) = n exp

(

− mT

2~2n
|z|
)

(9.16)

and see that the one-body density matrix decays exponentially at large dis-
tances. The phase coherence length in this case is

lφ ≈ ~
2n

mT
. (9.17)

The inequality (9.11) is equivalent to lφ ≫ ξ. Repeating the same arguments
as in the previous paragraph we then conclude that there is a quasicondensate
at finite temperatures satisfying the condition (9.11). Note that this condition
is required for the validity of Eqs. (9.13) and (9.16).

9.3 Quantum decoherent regime

At temperatures in the range T 1D
d ≫ T >

√
γ T 1D

d the gas is still quantum
degenerate, but fluctuations of the density are strong and there is no quasiBEC.
This regime is called quantum decoherent. Since for T ≫ √

γ T 1D
d we automati-

cally have T ≫ ng, the quantum decoherent Bose gas can be treated as almost
ideal. Then, assuming that the chemical potential µ < 0, we have the following
expression for the one-body density matrix at equal times:

g1(z) = 〈Ψ̂†(z, 0)Ψ̂(0, 0)〉 =
∑

k

Nk exp(ikz) =

∫ ∞

−∞

dk

2π

exp(ikz)

exp{(Ek − µ)/T } − 1

=

√

mT 2

2~2|µ| exp

(

−
√

2m|µ|
~2

|z|
)

. (9.18)

For z = 0 we have

g1(0) = n =

√

mT 2

2~2|µ| .

This gives

|µ| =
mT 2

2~2n2
=

T 2

2T 1D
d

≪ T, (9.19)
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and the inequality |µ| ≪ T was used in the calculation of the integral in
Eq. (9.18). Using Eq. (9.19) equation (9.18) can be rewritten as

g1(z) = n exp

(

−mT
~2n

)

, (9.20)

and we see that the correlation function g1(z) qualitatively does not change
compared to that in the quasiBEC regime. Only the exponential factor acquires
an extra factor 2.

A qualitative difference between the quantum decoherent and quasiBEC
regimes is seen in the behavior of two-body correlation functions. Let us calcu-
late the local density correlation g2 = 〈Ψ̂†Ψ̂†Ψ̂Ψ̂〉, where all field operators are
taken at equal times and equal coordinates. In the quantum decoherent regime,
using the ideal gas approach we have

g2 =
∑

k1,k2,k3

1

L2
〈â†k1

â†k2
âk3

âk1+k2−k3
〉 =

2

L2

∑

k1,k2

〈â†k1
âk1

〉〈â†k2
âk2

〉 = 2n2. (9.21)

On the other hand, in the quasiBEC regime where the density fluctuations are
suppressed, we can use the field operators in the form Ψ̂ =

√
n exp(iφ̂), Ψ̂† =√

n exp(−iφ̂). This immediately gives g2 = n2, the result inherent for a Bose-
condensed gas.

The phase diagram for a finite-temperature weakly interacting 1D Bose gas
is displayed in Fig.9.2. The quasiBEC regime where the density fluctuations
are suppressed but the phase fluctuates on a long distance scale lφ, is realized
at low temperatures T ≪ √

γ T 1D
d . At T ∼ √

γ T 1D
d the phase coherence length

lφ (9.17) becomes of the order of ξ, the density fluctuations become large, and
the gas continuously transforms into the quantum decoherent regime. This is
a crossover, not a phase transition. At temperatures T & T 1D

d the decoherent
regime transforms from quantum into classical, with |µ| ≫ T (µ < 0).

9.4 Trapped 1D weakly interacting Bose gas

As we already saw in the previous subsection, in a finite geometry one can have
both true and quasi condensates. We now analyze the weakly interacting 1D
Bose gas in an external harmonic potential V (z) = mω2z2/2 at zero tempera-
ture and transfer the discussion of the finite-temperature case to the problem
section. For a harmonically trapped gas, in addition to the parameter γ (9.6),
one introduces a complementary dimensionless parameter

α =
mgl

~2
, (9.22)

where l = (~/mω)1/2 is the harmonic oscillator length. The parameter α is the
ratio of l to the characteristic interaction length rg = ~

2/mg (g > 0), i.e. the
length at which the contact interaction can appreciably change the wavefunction
of the relative motion of two particles in 1D.
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Figure 9.2: Phase diagram for a finite-temperature weakly interacting 1D Bose
gas.

Since the smallest possible size of the cloud is l, for a large number of particles
N the maximum density nmax ≫ l−1. Therefore, writing α = mgl/~2 = γnl
we see that for α ≪ 1 we always have γ ≪ 1. As the maximum density is
nmax ∼ N/L, where L is the size of the cloud, for Nα≪ 1 we have

N ∼ nmaxL≪ ~
2

mgl
, (9.23)

which is equivalent to the inequality

nmaxg ≪ ~
2

ml2
l

L
. ~ω. (9.24)

So, the mean field interaction is much smaller than than the level spacing in the
trapping potential, and we have a Gaussian density profile. This is a true BEC.

For Nα≫ 1 we have the Thomas-Fermi regime with the density profile

n(z) = nmax

(

1 − z2

L2
TF

)1/2

,

at |z| ≤ LTF and zero otherwise. The Thomas-Fermi size is LTF = (2µ/mω2)1/2,
with the chemical potential µ = nmaxg. The normalization condition

∫∞
−∞ n(z)dz =

N gives a relation between µ and the number of particles:

µ = ~ω

(

3Nα

4
√

2

)1/2

, (9.25)

which justifies that for Nα ≫ 1 we have the condition of the Thomas-Fermi
regime, nmaxg ≫ ~ω.
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We estimate the phase coherence length in this case by using ξ and γ at the
maximum density. This gives

lφ ∼ ξ exp

{

2π√
γ

}

∼ l

(

1

Nα

)1/3

exp

{

2πN1/3

α2/3

}

. (9.26)

Using Eq. (9.25) the Thomas-Fermi size can be written as LTF ∼ l(Nα)1/3. We
then clearly see that for α in the range 1 ≫ α≫ N−1 the phase coherence length
is much smaller than the size of the system, LTF . We thus have a true Thomas-
Fermi condensate. For large α we first have to check whether the criterion of the
weakly interacting regime, γ ≪ 1, is satisfied, at least at the maximum density.
We have

γ(nmax) =
mg

~2nmax
∼ α

nmaxl
∼ α4/3

N2/3
.

Thus, the gas is weakly interacting only if the inequality

N ≫ N∗ = α2 (9.27)

is satisfied. Then, rewriting the expressions for the Thomas-Fermi size and
phase coherence length as

LTF ≈ lα

(

N

N∗

)1/2

and

lφ ≈ l

α

(

N

N∗

)1/3

exp

{

2π

(

N

N∗

)1/3
}

,

we obtain the ratio

lφ
LTF

≈ 1

α2

(

N

N∗

)5/6

exp

{

2π

(

N

N∗

)1/3
}

. (9.28)

In principle, one can think of having very large α and N , while maintaining the
ratio N/N∗ ∼ 10. Then, according to Eq. (9.28), the phase coherence length
can be smaller than LTF , which corresponds to the zero-temperature regime of
quasiBEC in 1D. However, for all N and α achieved so far in experiments with
weakly interacting bosonic clouds the ratio (9.28) is large, and one expects a
true BEC at T → 0. The phase diagram for the trapped 1D weakly interacting
Bose gas at T = 0 is shown in Fig.9.3.

Problems 9

9.1 Calculate the one-body density matrix for a finite-temperature 1D Bose-
condensed gas in a harmonic potential V (r) = mω2z2/2 in the Thomas-Fermi
regime. Find conditionms under which it is a true condensate.
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Figure 9.3: Phase diagram for a trapped weakly interacting 1D Bose gas at
T = 0.

The Thomas-Fermi density profile of the trapped gas at sufficiently low temper-
atures is

n(z) = nmax

(

1 − z2

L2
TF

)1/2

at |z| ≤ LTF and zero otherwise, with the Thomas-Fermi size LTF = (2µ/mω2)1/2

and the chemical potential µ = nmaxg.Irrespective of whether one has a true or
quasiBEC, the wavefunctions and energies of elementary excitations follow from
the Bogoliubov-de Gennes equations (5.7) and (5.8). In the case of quasiBEC
we should only replace |ψ0|2 by

√

n(z). Writing Eqs. (5.7) and (5.8) in terms of
the functions f±

ν = uν ± vν we will have a one-dimensional version of equations
(5.55) and (5.56):

(

− ~
2

2m

d2

dz2
+ V (z) + n(z)g − µ

)

f+
ν = ǫνf

−
ν , (9.29)

(

− ~
2

2m

d2

dz2
+ V (z) + 3n(z)g − µ

)

f−
ν = ǫνf

+
ν . (9.30)
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Using the Gross-Pitaevskii equation (8.14) for the mean density n(z) we rewrite
Eqs. (5.55) and (5.56) in the form:

(

− ~
2

2m

d2

dz2
+

~
2

2m
√

n(z)

d2
√

n(z)

dz2

)

f+
ν = ǫνf

−
ν , (9.31)

(

− ~
2

2m

d2

dz2
+

~
2

2m
√

n(z)

d2
√

n(z)

dz2
+ 2n(z)g

)

f−
ν = ǫνf

+
ν . (9.32)

Considering low-energy excitations (ǫν ≪ µ) we can omit two first terms
in the left hand side of Eq. (9.32) since away from the Thomas-Fermi boarder
of the cloud they are small as (~ω/µ)2 compared to the third term. Then,
substituting f−

ν from Eq. (9.31) into Eq. (9.32) we obtain an equation for the
function f+

ν which is responsible for the phase fluctuations:

~
2µ

m

{

(

1 − z2

L2
TF

)

d2f+
ν

dz2
−
√

1 − z2

L2
TF

f+
ν

d2

dz2

√

1 − z2

L2
TF

}

+ ǫ2νf
+
ν = 0. (9.33)

The solution reads:

f+
j =

[

(2j + 1)µ

ǫjLTF

(

1 − z2

L2
TF

)]1/2

Pj

(

z

LTF

)

, (9.34)

where the quantum number j is an integer, and Pj are Legendre polynomials.
This solution is obtained by turning to the variable y = z2/L2

TF and introducing
the function Wν = f+

ν /
√

1 − y. Then Eq. (9.33) is reduced to a hypergeometri-
cal equation

y(1 − y)
d2Wν

dz2
+

(

1

2
− 3

2
y

)

dWν

dz
+

1

2

ǫ2ν
~2ω2

Wν = 0 (9.35)

which has two linearly independent solutions that are analytical in
√
y at y = 0.

The first one is
Wν = F (α, β, γ, y), (9.36)

where F is the hypergeometrical function, and

α+ β = γ = 1/2, (9.37)

αβ = −1

2

( ǫν
~ω

)2

. (9.38)

The hypergeometrical series for the function (9.36) is convergent at y = 1 (|z| =
LTF ) only if either α or β is a negative integer (see arguments in the problem
5.1). So, we have α = −q and β = 1/2+ q or vice versa, with q being a positive
integer. This leads to

Wν = F

(

−q, 1
2

+ q,
1

2
, y

)

∝ P2q(
√
y). (9.39)
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The other solution of Eq. (9.35) is

Wν = F (α− γ + 1, β − γ + 1, 2 − γ, y), (9.40)

with the same relations (9.37) and (9.38) for α, β, γ. Since the hypergeometrical
series for the function (9.40) is convergent at y = 1 if α + 1/2 or β + 1/2 is a
negative integer, this function becomes

Wν = F

(

−q, q +
3

2
,
3

2
, y

)

∝ P2q+1(
√
y). (9.41)

So, equations (9.39) and (9.41) together yield Wν ∝ Pj(
√
y), with j being a

positive integer. Including the normalization factor this leads to Eq. (9.34),
where we changed the subscript ν to j. Equation (9.38) leads to the spectrum

ǫj = ~ω
√

j(j + 1)/2. (9.42)

Let us now calculate the one-body density matrix at equal times. According
to Eq. (9.12) we have

g1(z) = 〈Ψ̂†(z, 0)Ψ̂(0, 0)〉 = n exp

{

−1

2
〈[φ̂(z) − φ̂(0)]2〉

}

.

For the mean square fluctuations, using Eqs. (8.18) and (9.34) we obtain

〈[φ̂(z) − φ̂(0)]2〉 =
∑

j

(j + 1/2)

LTF

µNj

nmaxǫj

[

Pj

(

z

LTF

)

− Pj(0)

]2

. (9.43)

There is an upper bound for the summation over j in Eq. (9.43), equal to ∼ µ.
For |z| ≫ ξ, excitations with energies much smaller than µ are just the ones that
give the main contribution to the sum and are described by equations (9.34)
and (9.42). The summation gives

〈[φ̂(z) − φ̂(0)]2〉 =
4Tµ

3T 1D
d ~ω

ln

[

1 + |z|/LTF

1 − |z|/LTF

]

, (9.44)

where the temperature of quantum degeneracy for the trapped 1D Bose gas is
T 1D

d = N~ω. We thus see that there is a characteristic temperature

Tφ = T 1D
d

~ω

µ
≪ T 1D

d (9.45)

which separates the true and quasiBEC states. For T ≫ Tφ the phase fluctua-
tions on a distance scale ∼ LTF are large and one has quasiBEC. For T ≪ Tφ

these fluctuations are small and the state is a true BEC.

9.2 Do the same as in the problem 9.1 for a 1D Bose gas in a rectangular box
(see Fig.9.4).
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Figure 9.4: 1D Bose gas in a rectangular box.

Lecture 10. Solitons in Bose-condensed gases

10.1 Bright solitons

We now continue to discuss one-dimensional Bose gases and turn to Bose-
condensed states called solitons. Our discussion will rely on the Gross-Pitaevskii
equation for the consdensate wavefunction. In view of the conclusions made in
Lecture 9 we thus consider a weakly interacting 1D Bose-condensed gas on a
length scale smaller than the phase coherence length. This is relevant at very
low temperatures, in particular at T = 0 where the phase coherence length is
exponentially large compared to the healing length. We will not deal with phase
coherence phenomena and omit the discussion of quantum fluctuations etc.

As we already saw, in 3D an infinite Bose-Einstein condensate of attractively
interacting particles (the coupling constant g < 0) collapses. What is the situa-
tion in 1D? Let us consider a stationary Gross-Pitaevskii equation for g < 0 in
free 1D space and assume that the condensate wavefunction ψ is real:

(

− ~
2

2m

d2

dz2
− |g|ψ2 − µ

)

ψ = 0. (10.1)

Multiplying Eq. (10.1) by dψ/dz and integrating over dz we have:

− ~
2

4m

(

dψ

dz

)2

− |g|
4
ψ4 − µ

2
ψ2 = C, (10.2)

with C being the integration constant. Assuming that at a certain point, let
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say z = 0, we have dψ/dz = 0, equation (10.2) gives

~
2

4m

dψ

dz
=

(

−|g|
4
ψ2 − µ

2
ψ2 +

|g|
4
ψ4(0) +

µ

2
ψ2(0)

)1/2

.

Placing the boundary condition ψ(∞) = 0 and integrating this equation we find:

ψ =

√
n0

cosh(z/ξ)
, (10.3)

where

ξ =
~

√

m|g|n0

, (10.4)

with n0 = ψ2(0) being the central density.
The solution (10.3) is called bright soliton. The number of particles N in this

state and the central density n0 are related to each other by the normalization
condition

N =

∫ ∞

−∞
ψ2(z)dz.

Using Eq. (10.3) it gives N = 2n0ξ, or

n0 =
m|g|
4~2

N2; (10.5)

ξ =
2~

2

m|g|N . (10.6)

So, a given number of attractively interacting bosons forms the bright soli-
ton state with a maximum density n0 and width ξ given by Eqs. (10.5) and
(10.6). With increasing the number of particles, the maximum density increases,
whereas the width decreases (see Fig.10.1).

Note that equation (10.5) can be rewritten as

γ0 =
m|g|
~2n0

=
4

N2
≪ 1. (10.7)

Equation (10.7) clearly shows that the bright soliton state satisfies the criterion
of the weakly interacting regime for a large number of particles N .

The energy of the bright soliton is

E =

∫ ∞

−∞

(

− ~
2

2m
ψ
d2ψ

dz2
− |g|

2
ψ4

)

dz = −mg2

24~2
N3. (10.8)

This gives the chemical potential

µ = −mg
2

8~2
N2 = −1

2
n0|g|. (10.9)

Why do we have such a striking difference from the 3D case? Let us compare
a 3D system which has a linear size L and with a 1D system of the same linear
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Figure 10.1: Density profile n(z) = ψ2(z) for the bright soliton state. A change
of colour from blue to red corresponds to an increase in the number of particles.

size. In both cases the kinetic energy is ∼ ~
2N/mL2. However, in 3D the

interaction energy is ∼ −|g3D|N2/L3, whereas in 1D it is ∼ −|g|N2/L. So,
omitting numerical coefficients we can write

E1D(L) =
~

2N

mL2
− |g|N2

L3
; (10.10)

E3D(L) =
~

2N

mL2
− |g3D|N2

L
. (10.11)

The energies E1D(L) and E3D(L) are displayed in Fig.10.2. In the 3D case
the energy decreases with decreasing L and this is the origin of collapse (the
region to the right of the shallow maximum corresponds to the case where the
level spacing in the finite size system is larger than the interaction energy per
particle, and one expects a stable BEC at a relatively small number of particles
N . L/|a|, with a being the 3D scattering length). In contrast, in 1D the
energy E1D(L) has a minimum at L ∼ ~

2/m|g|N ∼ ξ, and it is this minimum
that corresponds to the bright soliton state.

10.2 Dynamical stability. Moving bright soliton as a particle-

like object

The bright soliton state is the ground state of the 1D Bose gas of N particles
at g < 0. It is dynamically stable, which is seen from the solution of the
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Figure 10.2: Energy E of a Bose-condensed state versus the linear system size
L for the 1D and 3D cases.

Bogoliubov-de Gennes equations for the excitations. Using the Gross-Pitaevskii
equation (10.1), in analogy with Eqs. (9.31) and (9.32) we write these equations
in terms of the functions f±

ν as

− ~
2

2m

d2f+
ν

dz2
+

~
2

2m

f+
ν

ψ(z)

d2ψ(z)

dz2
= ǫνf

−
ν , (10.12)

− ~
2

2m

d2f−
ν

dz2
+

~
2

2m

f−
ν

ψ(z)

d2ψ(z)

dz2
− 2|g|ψ2(z)f−

ν = ǫνf
+
ν . (10.13)

One should simply put ψ(z) instead of
√

n(z) in Eqs. (9.31) and (9.32) and
replace g by −|g|. The solutions of equations (10.12) and (10.13) read:

f+
k =

k2ξ2 − 1 + 2ikξ tanh(z/ξ)

(k + i)2
exp ikz, (10.14)

f−
k =

k2ξ2 − 1 + 2ikξ tanh(z/ξ) + 2/ cosh2(z/ξ)

(k + i)2
exp ikz, (10.15)

where we put the excitation momentum k at an infinite separation from the
soliton as the index ν. The excitation spectrum is given by

ǫk =
~

2k2

2m
+ |µ| (10.16)
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and it has a gap equal to |µ|. The derivation of equations (10.14), (10.15), and
(10.16) is transferred to the problem section.

The energy of a bright soliton decreases with the number of particles N .
So, one can think that the 1D system has a tendency to form one big soliton.
However, if one creates several moving solitons they freely pass through each
other. This property is a consequence of integrability of the system. There is an
infinite number of the integrals of motion. The potential g|ψ|2 is reflectionless:
elementary excitations go through the soliton without reflection. Thus, the
formation of one big soliton requires lifting the integrability.

Let us now write down the solution for a moving bright soliton. Writing the
condensate wavefunction as Ψ(z, t) exp(−iµt/~) we have the time-dependent
Gross-Pitaevskii equation in the form:

i~
∂Ψ

∂t
= − ~

2

2m

∂2Ψ

∂z2
+ g|Ψ|2Ψ − µΨ. (10.17)

The solution of this equation reads:

Ψ =

√
n

cosh[(z − vt)/ξ]
exp(imvz/~), (10.18)

where v is the soliton velocity, and the chemical potential is given by

µ = −1

2
n0g +

mv2

2
. (10.19)

Thus, the energy of the moving bright soliton is

E = −mg2

24~2
N3 +

mNv2

2
. (10.20)

So, we see that the form of the bright soliton is independent of its velocity, and
it can be viewed as a particle-like object with mass Nm.

10.3 Dark solitons

We now turn to soliton solutions of the Gross-Pitaevskii equation at g > 0.
Consider an infinite Bose-condensed gas and assume that far from the soliton
the Schroedinger-picture condensate wavefunction is ψ =

√
n, where n is the

density. Assuming that ψ is real, the stationary Gross-Pitaevskii equation reads:

(

− ~
2

2m

d2

dz2
+ gψ2 − µ

)

ψ = 0, (10.21)

and considering this equation at an infinite separation from the soliton we see
that µ = ng. Multiplying Eq. (10.21) by dψ/dz and integrating over dz we find

− ~
2

4m

(

dψ

dz

)2

+
g

4
ψ4 − µ

2
ψ2 = C.
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Since µ = ng and at an infinite separation from the soliton we have ψ2 = n, the
integrtation constant should be put equal to C = −n2g/4. This gives

dψ

dz
= ±

(mg

~2

)1/2

(n− ψ2). (10.22)

Integrating Eq. (10.22) we immediately obtain

ψ = ±
√
n tanh(z/ξ), (10.23)

where ξ = ~/
√
mng is the healing length at an infinite separation from the

soliton, and we selected z = 0 as the point where the condensate wavefunction is
equal to zero. This Bose-condensed state is called dark soliton. The condensate
wavefunction (10.23) is shown in Fig.10.3. It can also be written in the density-
phase representation:

ψ =
√

n(z) exp iφ(z). (10.24)

Then, from equation (10.23) (with, for example, the sign +) we obtain the
density and phase of the dark soliton:

n(z) = tanh2(z/ξ), (10.25)

φ(z) = π(1 − θ(z)). (10.26)

Just the fact that the density vanishes at a certain point z = 0 has led to the
term dark soliton. The phase of the dark soliton undergoes a jump by π at this
point (see Fig.10.4).

10.4 Grey soliton. Particle-like object with a negative

mass

Let us now analyze moving dark solitons which obey the time-dependent Gross-
Pitaevskii equation. Writing the condensate wavefunction as Ψ(z, t) exp(−iµt/~)
this equation is similar to Eq. (10.17):

i~
∂Ψ

∂t
= − ~

2

2m

∂2Ψ

∂z2
+ g|Ψ|2Ψ − µΨ. (10.27)

We then assume that the function Ψ depends only on the variable z− vt, where
v is the soliton velocity and represent Ψ as

√
nf [(z− vt)/ξ]. So, we have f → 1

and df/dx = 0 for |x| = |z − vt|/ξ → ∞. Equation (10.27) then reduces to

i
v

cs

df

dx
=

1

2

d2f

dx2
+ (1 − |f |2)f, (10.28)

where we took into account that

~v

ξng
=

v

cs
,
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Figure 10.3: Condensate wavefunction for the dark soliton state.

with cs =
√

ng/m being the velocity of sound. Writing f = f1 + if2, where
f1 and f2 are real, we look for the solution with f2 = const. Then, equation
(10.28) leads to two equations:

v

cs

df1
dx

= (1 − f2
1 − f2

2 )f2, (10.29)

1

2

d2f1
dx2

+ (1 − f2
1 − f2

2 )f1 = 0. (10.30)

Integrating Eq. (10.30) we find

f1 =
√

1 − f2
2 tanh

(

√

1 − f2
2

csf2
v
x

)

,

and substituting this solution in Eq. (10.29) we obtain f2 = v/cs. Thus, return-
ing to the variable z − vt the soliton solution is

Ψ =
√
n

(

i
v

cs
+

√

1 − v2

c2s
tanh

[

(z − vt)

ξ

√

1 − v2

c2s

])

. (10.31)

The solution (10.31) is called grey soliton. In the density-phase represen-
tation where we write Ψ(z, t) =

√

n(z, t) exp{iφ(z, t)}, we obtain the following
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Figure 10.4: Density and phase for the dark soliton state.

density and phase profiles for the grey soliton:

n(z, t) = |Ψ|2 = n

(

1 − 1 − v2/c2s

cosh2[(z − vt)
√

1 − v2/c2s/ξ]

)

, (10.32)

φ(z, t) =
π

2
− arctan

{cs
v

√

1 − v2/c2s tanh[(z − vt)
√

1 − v2/c2s /ξ]
}

. (10.33)

These profiles are displayed in Fig.10.5 and Fig.10.6. With increasing velocity v
the density dip becomes smaller and so does the phase change ∆φ = φ(−∞) −
φ(∞). For v = c the density dip is zero, as well as the phase change. The grey
soliton transforms into a uniform BEC state with Ψ =

√
n.

So, the grey soliton exists at v < cs. It is a macroscopically excited Bose-
condensed state, the ground state being a uniform BEC. Using Ψ (10.31) in the
Hamiltonian

H =

∫ ∞

−∞
dz

{

− ~
2

2m
Ψ∗ d

2Ψ

dz2
+
g

2
|Ψ|4

}

we calculate the expectation value 〈H〉. Then, substracting the ground state
energy E0 = Nng/2 we obtain the energy of the grey soliton:

Es = 〈H〉 − E0 =
Mc2s

3

(

1 − v2

c2s

)3/2

, (10.34)
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n(z−vt)

z−vt0

Figure 10.5: Density profile for the grey soliton. A change of colour from blue
to brown corresponds to increasing the soliton velocity v.

z−vt0

(z−vt)φ

π/2

Figure 10.6: Phase profile for the grey soliton. A change of colour from blue to
brown corresponds to increasing the soliton velocity v.
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where the quantity
M = 4nξm (10.35)

can be identified as the soliton mass. For v ≪ cs the soliton energy (10.34)
becomes

Es =
Mc2s

3
− Mv2

2
. (10.36)

Thus, the grey soliton can be viewed as a particle-like object with a negative
mass so that any friction force, if present, accelerates the soliton.

Equation (10.34) demonstrates an important kinematic property of the grey
soliton. As the soliton momentum is

p =
∂Es

∂v
= −M

(

1 − v2

c2s

)1/2

v,

the quantity −M(1−v2/c2s) can be considered as a kinematic mass of the soliton.
Its modulus decreases with increasing v and it becomes easier to accelerate the
soliton by applying a friction force. This is in contrast to the case of a relativistic
particle, where the kinematic mass is increasing with v, and an infinite force is
required to accelerate the particle to the speed of light. Here, the grey soliton
can ultimately reach the velocity of sound and disappear.

However, the problem is integrable and the soliton is transparent for the ex-
citations. So, in order to provide a friction force one should lift the integrability.
In this respect, the situation is quite different from that in the case of vortices,
where the decay in the bulk is prevented by the presence of the topological
charge, circulation. The grey soliton does not have a topological charge, but
its decay in the bulk requires to lift the integrability, for example by adding an
extra non-linearity to the Gross-Pitaevskii equation.

Problems 10

10.1 Calculate the excitation spectrum and wavefunctions for a standing bright
soliton.

We first use Eq. (10.3) and rewrite the Bogoliubov-de Gennes equations (10.12)
and (10.13) in the form:

− ~
2

2m

d2f+
k

dz2
+ n0|g|

(

1

2
− 1

cosh2(z/ξ)

)

f+
k = ǫkf

−
k , (10.37)

− ~
2

2m

d2f−
k

dz2
+ n0|g|

(

1

2
− 3

cosh2(z/ξ)

)

f−
k = ǫkf

+
k , (10.38)

where we again use the excitation momentum at an infinite separation from the
soliton, k, as the excitation quantum number ν. Turning to the variable x = z/ξ
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and introducing a dimensionless energy ǫ̃k we reduce Eqs. (10.37) and (10.38)
to

Ĥ+f
+
k = ǫ̃kf

−
k , (10.39)

Ĥ−f
−
k = ǫ̃kf

+
k , (10.40)

where the operators Ĥ± are given by

Ĥ± =

(

−1

2

d2

dx2
+

−2 ± 1

cosh2 x
+

1

2

)

. (10.41)

We then transform Eqs. (10.39) and (10.40) to two fourth order differential
equations:

(Ĥ−Ĥ+)f+
k = ǫ̃2kf

+
k , (10.42)

(Ĥ+Ĥ−)f−
k = ǫ̃2kf

−
k . (10.43)

The operator products read:

Ĥ−Ĥ+ =

{

1

4

d4

dx4
+

(

2

cosh2 x
− 1

2

)

d2

dx2
− 2 sinhx

cosh3 x

d

dx
+

1

4

}

,(10.44)

Ĥ+Ĥ− =
{1

4

d4

dx4
+

(

2

cosh2 x
− 1

2

)

d2

dx2
− 6 sinhx

cosh3 x

d

dx

+

(

1

4
− 2

cosh2 x
+

6 sinh2 x

cosh4 x

)

}

. (10.45)

Differentiatiating equation (10.42) and using Eqs. (10.44), (10.45) we then ob-
tain:

(Ĥ+Ĥ−)
df+

k

dx
= ǫ̃2k

df+
k

dx
. (10.46)

This is the same equation as Eq. (10.43) for f−
k , which allows us to conclude

that we may put
f−

k = Cf+
k , (10.47)

where C is a numerical constant. Then equation (10.39) reduces to

(

−1

2

d2

dx2
− ǫ̃kC

d

dx
− 1

cosh2 x
+

1

2

)

f+
k = 0. (10.48)

For |x| → ∞ one should have f+
k ∝ exp iqx, where q = kξ is a dimensionless

momentum. We then set f+
k = W+(x) exp iqx, where W+ = const for |x → ∞,

and transform equation (10.48) to an equation for the function W+:

(

−1

2

d2

dx2
− (iq + ǫ̃qC)

d

dx
+
k2

2
+

1

2
− iqǫ̃qC − 1

cosh2 x

)

W+ = 0, (10.49)
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where we changed the subscript from k to q. Since for |x| → ∞ the function
W+ = const, we should have

C = −i1 + q2

2qǫ̃q
, (10.50)

which transforms Eq. (10.49) to
(

−1

2

d2

dx2
− i(q2 − 1)

2q

d

dx
− 1

cosh2 x

)

W+ = 0. (10.51)

Introducing a new variable y = (1 − tanhx)/2 equation (10.51) becomes a
hypergeometrical equation

y(1 − y)
d2W+

dy2
+

(

1 − i(q2 − 1)

2q
− 2y

)

dW+

dx
+ 2W+ = 0. (10.52)

The solution of this equation that is analytical at y → 0 (x → ∞) is a simple
first order polynomial:

W+ = 1 − 2y

1 − i(q2 − 1)/2q
,

or

W+ =
q2 − 1 + 2iq tanhx

(q + i)2
.

Accordingly, we have

f+
q =

q2 − 1 + 2iq tanhx

(q + i)2
exp iqx, (10.53)

f−
q = iqC

q2 − 1 + 2iq tanhx+ 2/ cosh2 x

(q + i)2
exp iqx. (10.54)

The function vq = (f+
q − f−

q )/2 should tend to zero for x → ±∞ since it
is localized in the spatial area of the soliton (for x→ ±∞ the density vanishes
and excitations are supposed to be single particles). This immediately gives

C = − i

q
. (10.55)

Substituting this result into Eq. (10.54) and returning to the momentum k and
coordinate z equations (10.53) and (10.54) become Eqs. (10.14) and (10.15).
From Eqs. (10.50) and (10.55) we obtain the dispersion relation ǫ̃q = (1+ q2)/2,
which in terms of the momentum k and excitation energy ǫk leads to equation
(10.16):

ǫk =
~

2k2

2m
+ |µ|.

10.2 Calculate the wavefunctions of the excitations for the (standing) dark soli-
ton.
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Lecture 11. Strongly interacting 1D Bose gases

11.1 Two-particle problem in 1D. Transmission and re-

flection

In this Lecture we discuss the strongly interacting regime for 1D Bose gases,
where the condition (9.6) is not fulfilled and, moreover, we have

γ =
m|g|
~2n

≫ 1. (11.1)

We consider g > 0 and focus on the case of impenetrable bosons, where γ → ∞.
Then, instead of the usual Hamiltonian which in first quantization has the form
(1.59):

Ĥ =
∑

i

− ~
2

2m

d2

dx2
i

+ g
∑

i>j

δ(xi − xj),

with indices i and j labeling particles, we consider only the kinetic energy part

ĤK =
∑

i

− ~
2

2m

d2

dx2
i

(11.2)

and put a constraint that the wavefunction vanishes when two particles approach
each other to a zero distance (see Fig.11.1).

x −x0
ji

ψ

Figure 11.1: Behavior of the wavefunction of the 1D gas of impenetrable bosons
when two of them (i and j) approach each other.

The behavior of the wavefunction displayed in Fig.11.1 is clearly seen from
the solution of the Schroedinger equation for 2 particles interacting with each
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other via a potential gδ(x). The Schroedinger equation for their relative motion
reads:

−~
2

m

d2ψ

dx2
+ gδ(x) = Eψ. (11.3)

Integrating equation (11.3) over dx from x− β to x+ β (β → 0) we obtain:

limβ→0[ψ
′(β) − ψ′(−β)] =

mg

~2
ψ(0). (11.4)

Considering E > 0 we actually have the scattering problem, where an inci-
dent particle with mass m/2 and momentum k =

√
mE/~ is reflected (trans-

mitted) by the potential gδ(x) (see Fig.11.2).

e

e

e

R

D
ikx ikx

_ ikx

δ(x)

0
x

Figure 11.2: Reflection/transmission of a particle by the potential δ(x).

For x < 0 we have the incident and reflected waves, and for x > 0 the
transmitted wave:

ψ = exp(ikx) +R exp(−ikx), x < 0, (11.5)

ψ = D exp(ikx), x > 0, (11.6)

with |D|2 and |R|2 being the transmission and reflection coefficients satisfying
the relation |D|2 + |R|2 = 1. Since ψ is continuous at x = 0, we should have
D = 1 +R. Then, from Eqs.(11.4), (11.5) and (11.6) we obtain:

D =
2k

2k + img/~2
, (11.7)

R =
img/~2

2k + img/~2
. (11.8)

We thus see that for g → ∞ the transmission coefficient |D|2 → 0 and |R|2 → 1.
Bosons do not go through each other, which is the origin of the term ”impene-
trable bosons”. We also see that

ψ → 0 for x→ 0 if g → ∞. (11.9)
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11.2 Many-body wavefunction and energy

The results of the previous section have very important consequencies. Consider
two impenetrable bosons in a large box (see Fig.11.3). One can not satisfy the
condition (11.9) putting both bosons in the ground state (labeled 0). The lowest
energy of the pair is achieved when one of the impenetrable bosons is in the
state 0 and the other one in the first excited state labeled 1. The corresponding
wavefunction is

ψ(x1, x2) = |ψ0(x1)ψ1(x2) − ψ0(x2)ψ1(x1)|, (11.10)

where ψ0 and ψ1 are the single-particle eigenfunctions of the states 0 and 1.
The wavefunction ψ (11.10) is symmetrical with respect to interchanging the
bosons and is tending to zero for x1 → x2.

0

1

Figure 11.3: Two impenetrable bosons (red balls) in a large box.

In analogy with Eq. (11.10), considering N impenetrable bosons one can
write their wavefunction as a modulus of the Slater determinant:

ψ(x1, x2, ...xN ) = Abs

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ψ0(x1) ψ1(x2) ... ψN−1(xN )
ψ0(x2) ψ1(x3) ... ψN−1(x1)

. . ... .

. . ... .
ψ0(xN ) ψ1(x1) ... ψN−1(xN−1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(11.11)

Note that for N free fermions the wavefunction is just the Slater determinant.
So, |ψ|2 is the same and in this sense an infinite repulsion plays a role of the Pauli
principle. All thermodynamic quantities are the same since they are determined
by |ψ|2. The same statement holds for the energy spectrum.

Let us calculate the energy at T = 0. Free N fermions occupy the lowest N
single-particle eigenstates. These are the states with momenta from k = 0 to
k = kF and from k = 0 to k = −kF , where kF is called the Fermi momentum
and is determined by the relation

∫ kF

−kF

dk

2π
L = N,

where L is the length of the box. Thus, kF = πN/L = πn, and the corresponding
eigenenergy EF = ~

2k2
F /2m is called Fermi energy (see Fig.11.4).
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E=
h k

2mF

2 2

Figure 11.4: Distribution of impenetrable bosons (free fermions) over the energy
states in a large box at T = 0

The total energy of the 1D gas of free fermions (impenetrable bosons) is
given by

E =

∫ kF

−kF

~
2k2

2m

Ldk

2π
=

~
2k3

F

6πm
L =

~
2π2

6m

N3

L2
. (11.12)

The energy per particle, or chemical potential is

µ =
∂E

∂N
=

~
2π2n2

2m
= EF . (11.13)

11.3 Excitation spectrum

We now discuss the excitation spectrum of 1D impenetrable bosons relying on
its analogy with the spectrum of free fermions. Consider T = 0 and put a
particle out of the filled energy space in Fig.11.4 (filled momentum space in
Fig.11.5) outside this space. Let say, put a particle with momentum kF − q to
the state with momentum kF + k (q, k > 0, see Fig.11.5). Then the energy of
the formed particle-hole pair is

ǫ =
~

2

2m
[(kF + k)2 − (kF − q)2]. (11.14)

For k, q ≪ kF we then get

ǫ = ~vF (k + q) = ~vF p, p≪ kF , (11.15)

where vF = ~kF /m is the Fermi velocity. So, for small p the excitations are
phonons and the ”speed of sound” is the Fermi velocity vF .

124



��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��

��
��
��

��
��
��
�� k
−k k

FF

k  −q k  +k
F F

0

Figure 11.5: Creation of a particle-hole pair in the momentum distribution of
free fermions at T = 0

For k, q comparable with kF the situation changes. Putting k = p − q in
Eq. (11.14) we have:

ǫpq =
~

2

2m

[

(kF + p− q)2 − (kF − q)2
]

=
~

2

2m
[2kF p+ (p− q)2 − q2]. (11.16)

As we see, the excitation energy also depends on q, and for this reason we write
ǫ with the subscript pq. Note that 0 ≤ q ≤ 2kF and for p = 2kF we have
0 ≤ ǫpq ≤ 4EF . The energy spectrum is shown in Fig.11.6.

ε

p

4E

2k0
F

F

hv p
F

pq

Figure 11.6: Excitation spectrum of 1D impenetrable bosons. Depending on
the value of q the excitation energy can take any value in between the blue and
brown curves.

11.4 Hydrodynamic equations. One-body density matrix

Since the low-energy excitations are phonons, the 1D gas of impenetrable bosons
should obey hydrodynamic equations. In order to see this, we consider a general
case of finite g > 0 and go back to equations (8.12) and (8.13) for the density and
pghase operators. Assuming that at least on a long distance scale fluctuations of
the phase gradient and density are small, we will only keep terms that are linear
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in δn̂ and ∇φ. Then, we put
√
n̂ =

√
n in the right hand side of Eq. (8.12),

where n is the mean density. In the left hand side of this equation we put√
n̂ = δn̂/2

√
n. In the right hand side of Eq. (8.13) we omit the first term

which is quadratic in ∇φ. Multiplying both sides of this equation by (
√
n̂)−1

and comparing the right hand side with that of Eq. (8.14) we then notice that
it can be written as µ(n̂). The corresponding therm that is linear in δn̂ is
(∂µ/∂n)δn̂. For the uniform case, we thus obtain the continuity and Euler
equations in the form:

∂δn̂

∂t
= −~n

m
∇2φ̂, (11.17)

∂φ̂

∂t
= −1

~

∂µ

∂n
δn̂, (11.18)

which allows us to consider the limit g → ∞.
Differentiating Eq. (11.17) with respect to t and substituting ∂φ̂/∂t from

Eq. (11.18) we obtain:

∂2δn̂

∂t2
=

n

m

∂µ

∂n

∂2δn̂

∂z2
= v2

F

∂2δn

∂z2
, (11.19)

where we used Eq. (11.13) for the chemical potential of a uniform gas of impene-
trable bosons. Equation (11.19) immediately gives the energy spectrum (11.15):
ǫk = ~vFk, and quantization relations for δn̂ and φ:

δn̂ =
∑

k

(

k

πL

)1/2

exp(ikz − iǫkt/~)b̂k + h.c. (11.20)

φ̂ = (−i)
∑

k

( π

kL

)1/2

exp(ikz − iǫkt/~)b̂k + h.c. (11.21)

We can now calculate the long-distance form of the one-body density matrix
assuming that fluctuations of the density are small on a large distance scale
and writing the field operator in the form (8.22): Ψ̂ =

√
n exp(iφ̂p). Like in

previous lectures, the subscript p means that we have to restrict the summa-
tion in Eq. (11.21) only to the phonon part of the excitation spectrum. For
impenetrable bosons this is equivalent to putting a high-momentum cut-off
kmax ∼ kF ∼ 1/n. For the mean square fluctuations of the phase we then
have:

〈[φ̂p(z, 0) − φ̂p(0, 0]2〉 =

∫ kmax

−kmax

2π(1 − cos kz)

k

dk

2π
≈ lnn|z|, |z| ≫ n−1.

(11.22)
This gives the long-distance form of the one-body density matrix at equal times:

g1(z) = 〈Ψ̂†(z, 0)Ψ̂(0, 0)〉 = n exp

{

−1

2
〈[φ̂p(z, 0) − φ̂p(0, 0)]2〉

}

∝ 1

|z|1/2
.

(11.23)
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Accordingly, the momentum distribution of impenetrable bosons is

n(p) =

∫ ∞

−∞
g1(z) exp ipz dz ∝ 1

√

|p|
, |p| ≪ pF . (11.24)

This is very different from the Fermi-step n(p) of free fermions (see Fig.11.7).
We thus conclude that although the thermodynamic quantities and excitation
spectrum of impenetrable bosons are the same as those of free fermions, the
correlation properties are quite different.

p p

n(p) n(p)

p
F

free fermions

impenetrable bosons

p
F

Figure 11.7: Momentum distribution of impenetrable bosons and free fermions.

Problems 11

11.1 Consider a 1D gas of impenetrable bosons in a harmonic potential V (z) =
mω2z2/2. Calculate the excitation spectrum and wavefunctions assuming the
Thomas-Fermi regime.

The density profile in the Thomas-Fermi regime follows from the local density
approximation:

mω2z2

2
+ µ(n(z)) = µ. (11.25)

In this approximation in every small piece of the system one has a local value
of the chemical potential determined from the relation for a uniform system
at density equal to the density in a given piece. For the case of impenetrable
bosons we have µ = π2

~
2n2/2m and Eq. (11.25) yields

n(z) = n(0)(1 − z2/L2
TF )1/2 (11.26)

for |z| < LTF and zero otherwise. The Thomas-Ferm size of the sample is given
by LTF = (2µ/mω2)1/2.
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The continuity and Euler equations are obtained in the same way as equa-
tions (11.17) and (11.18), but taking into account that now the mean density is
coordinate-dependent. This gives

∂δn̂

∂t
= − ~

m
∇
(

n(z)∇φ̂
)

, (11.27)

∂φ̂

∂t
= −1

~

∂µ

∂n
δn̂. (11.28)

Again, differentiating Eq. (11.27) with respect to t and substituting ∂φ̂/∂t from
Eq. (11.28) we obtain

∂2δn̂

∂t2
=
π2

~
2

m2

∂

∂z
n(z)

∂

∂z
n(z)δn̂. (11.29)

Writing quatization relations for the density and phase fluctuations in the form:

δn̂ =
∑

j

Ajfj(z) exp(−iǫjt/~)b̂j + h.c. (11.30)

φ̂ = (−i)
∑

j

Bjfj(z) exp(−iǫjt/~)b̂j + h.c. (11.31)

where ǫj are eigenmode energies and fj(z) eigenfunctions, and using n(z) (11.26)
we transform equation (11.29) into

v2
F (0)

d

dz

(

1 − z2

L2
TF

)1/2
d

dz

(

1 − z2

L2
TF

)1/2

fj + ω2
j fj = 0, (11.32)

with ωj = ǫj/~. Introducing a new variable τ = arcsin(z/LTF ) we reduce
Eq. (11.32) to

d2fj

dτ2
+
ω2

j

ω2
fj = 0 (11.33)

and obtain odd and even solutions;

fj = sin
(ωj

ω
τ
)

, (11.34)

fj = cos
(ωj

ω
τ
)

. (11.35)

Since
dfj

dz
∝ 1

1 − z2/L2
TF

dfj

dτ

and it should be finite at the Thomas-Fermi boarder where z = ±LTF and τ =
±π/2, the derivative dfj/dτ should be zero for this value of τ . This immediately
gives the spectrum

ωj = ωj, (11.36)

with j being a positive integer, and the eigenfunctions (11.34) and (11.35) be-
come

fj = sin(j arcsin z/LTF ), j odd (11.37)

fj = cos(j arcsin z/LTF ). j even (11.38)
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Lecture 12. Rapidly rotating Bose gases

12.1 Single-particle problem for a rapidly rotating har-

monically trapped atom

In this Lecture which is the last one in the part of Bose-condensed gases, we
discuss rapidly rotating bosons. It will be shown that in some sense this problem
also belongs to the class of one-dimensional problems.

Let us consider a Bose gas confined to two dimensions, x and y, and rotating
with frequency Ω around the z axis in an external (shallow) harmonic potential
V (r) = mω2r2/2 (r2 = x2 + y2). We first discuss the single-particle problem.
The corresponding Hamiltonian reads:

Ĥ(1) = − ~
2

2m
∆r +

mω2r2

2
− ~ΩL̂z, (12.1)

where the operator of orbital angular momentum is

L̂z = i

(

y
∂

∂x
− x

∂

∂y

)

. (12.2)

We certainly consider Ω < ω, otherwise the centrifugal force exceeds the restor-
ing force and the sample disintegrates.

The Hamiltonian (12.1) can be reduced to the form:

Ĥ(1) = − ~
2

2m
(∇r − iA)2 + (ω2 − Ω2)

mr2

2
, (12.3)

where A = mΩ(ẑ× r)/~ with ẑ being a unit vector in the z direction. Equation
(12.3) is identical to the Hamiltonian of a particle with a unit charge in a uniform
magnetic field (2mΩ/~)ẑ and confined in a harmonic potential m(ω2−Ω2)r2/2.
A common eigenbasis of L̂z and Ĥ(1) is (without a normalization coefficient):

Φjk(r) = exp

(

r2

2l2

)(

∂

∂x
+ i

∂

∂y

)j (
∂

∂x
− i

∂

∂y

)k

exp

(

−r
2

l2

)

, (12.4)

where l = (~/mω)1/2 is the (initial) harmonic oscillator length, and j, k are
non-negative integers. The corresponding eigenenergies are given by

Ejk = ~ω + ~(ω − Ω)j + ~(ω + Ω)k. (12.5)

Let us consider ω very close to Ω so that δω = (ω − Ω) ≪ Ω. Then, for
δω = 0 we have zero remaining confinement (put infinite walls at a large distance
in order to prevent the disintegration of the cloud), which corresponds to a free
charged particle in a uniform magnetic field and the well-known structure of
Landau levels (see Fig.12.1):

Ek = ~Ω(2k + 1). (12.6)
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Figure 12.1: Structure of Landau levels for rotating trapped atom for Ω = ω
and for Ω < ω (δω = (ω − Ω) ≪ Ω).

The distance between the lowest Landau levels is 2~Ω. In the lowest Landau
level (LLL, k = 0), the wavefunction of a particle is

ψ(r) = f(z) exp

(

− r2

2l2

)

, (12.7)

where z = x+iy, and f is any analytic function of z so that the LLL is infinitely
degenerate.

If ω > Ω, then each Landau level has sublevels (δω ≪ Ω) and

Ejk = ~ω + ~(Ω + ω)k + ~δωj. (12.8)

So, the LLL is no longer degenerate (see Fig.12.1). For each j the wavefunction
has the form (12.7) with

fj(z) =
zj

lj+1
√
πj!

. (12.9)

The quantity zj is equal to rj exp(ijφ), where φ is the asimuthal angle. So, the
quantum number j is the orbital angular momentum of the eigenstate.

12.2 Rapidly rotating Bose-Einstein condensate

Let us now consider a rapidly rotating Bose-Einstein condensate at T = 0,
assuming that δω ≪ Ω and the interaction energy per particle is ng ≪ ~Ω.
We then can say that there is a Bose-Einstein condensate in the lowest Landau
level. The condensate wavefunction has to be of the form

ψ0 =
√
nf(z) exp

(

− r2

2l2

)

, (12.10)
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where again z = x+iy, and to zero order we do not distinguish between the total
density n and the condensate density. The Gross-Pitaevskii equation reads:

[

− ~
2

2m
∆r +

mω2r2

2
− i~Ω

(

y
∂

∂x
− x

∂

∂y

)

+ ng|ψ2
0 − µ

]

ψ0 = 0, (12.11)

and substituting ψ0 (12.10) we reduce it to

exp

(

− r2

2l2

)[

~δωz
d

dz
+ ngf(z)f∗(z̄) exp

(

−r
2

l2

)

− µ̃

]

f(z) = 0, (12.12)

where z̄ = x− iy, and µ̃ = µ− ~ω. We can now write

f(z) =
∑

j

Cjfj(z), (12.13)

where fj(z) are given by Eq. (12.9). Then, multiplying Eq. (12.12) by ψ∗
q =

f∗
q (z̄) exp(−r2/2l2), where q is a non-negative integer, and integrating over d2r

we obtain:

~δω
√

q(q − 1)Cq−1 − µ̃Cq

+
ng

π

∑

j1,j2,q

Cj1Cj2C
∗
j1+j2−q

Γ
(j1 + j2 + 1)2−j1−j2−1

√

Γ(j1 + 1)Γ(j2 + 1)Γ(q + 1)Γ(j1 + j2 − q + 1) = 0.(12.14)

This is a 1D equation. It gives the coefficients Cj , which provides the wavefunc-
tion of the problem following from equations (12.10) and (12.13). Thus, in the
space of orbital angular momenta the LLL problem becomes one-dimensional.
However, being based on the solution of Eq. (12.14) it is a difficult problem,
and in the next section we show a more convinient approach.

12.3 Projected Gross-Pitaevskii equation. Vortex lattice

The more convinient approach assumes that one first of all projects the mean
field equation (12.12) onto the LLL. The projection operator has the form:

P̂ =
1

2π
exp(zz̄′ − z′z̄′/2), (12.15)

where we now use the coordinates z, z̄ in units of l, which is equivalent to putting
l = 1. The action of P̂ on a certain function ψ reads:

P̂ψ(z, z̄) =
1

2π

∫

ψ(z′, z̄′) exp(zz̄′ − z′z̄′/2) dz′dz̄′, (12.16)

and it projects the function ψ onto the LLL. Acting with the operator P̂ on
Eq. (12.12) we obtain:

~δωz
df(z)

dz
+
ng

2π

∫

f2(z′)f∗(z̄′) exp(zz̄′ − 2z′z̄′) dz′dz̄′ − µ̃f(z) = 0. (12.17)
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The easyest case is the one with δω = 0, i.e. in the absence of remaining
trapping. Then the solution of Eq. (12.17) gives a vortex lattice described by
the wavefunction

ψ0 = θ(z) exp(z2/2 − zz̄/2), (12.18)

where θ(z) is the Jacobi θ-function which for a square lattice is given by

θ(z) =

∞
∑

j=−∞
(−1)j exp(−π(j + 1/2)2 + i

√
π(2j + 1)z. (12.19)

Actually, the ground state is a triangular lattice, with a somewhat more com-
plicated expression for θ(z).

The mean-field approach for describing the vortex lattice is valid if the num-
ber of vortices is much smaller than the number of particles. The period of the
vortex lattice and the size of the vortex core are of the order of l. Hence, the
number of vortices is Nv ∼ A/l2, where A is the suerface area. The number of
particles is N ∼ nA. So, the condition Nv ≪ N takes the form

nl2 ≫ 1. (12.20)

Problems 12

12.1 Consider a 2D Bose-condensed gas trapped in a harmonic potential with
frequency ω and rotating with frequency Ω such that δω = (ω−Ω) ≪ Ω. Find a
condition under which the ground state is a condensate without vortices. Obtain
a quantum transition to the state with one vortex and identify the order of the
transition.

For the state without vortices we have f0(z) = 1/
√
π, where the subscript of f

indicates the number of vortices and the harmonic oscillator length l is again
put equal to unity. From Eq. (12.17) we then find the chemical potential

µ̃0 =
ng

2π
, (12.21)

where n is the mean density equal to the number of particles N once l is set
equal to unity. This corresponds to the energy

E =
N2g

4π
. (12.22)

For the state with one vortex we have f1(z) = z/
√
π, and equation (12.17)

yields

µ̃1 = ~δω +
ng

4π
, (12.23)

which leads to the energy

E1 = ~δωN +
N2g

8π
. (12.24)
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The state without vortices remains the ground state when E0 < E1, or

~δω <
ng

8π
. (12.25)

At the point where
ng

8π
= ~δω, (12.26)

one has a quantum phase transition to the state with one vortex. The chemical
potential undergoes a jump at this point (see Fig.12.2):

µ̃1 − µ̃0 = −~δω. (12.27)

The quantum phase transition, i.e. the transition at T = 0 under a change of
one of the parameters of the system (for example, g in our particular case), at
which the chemical potential has a jump is called first order quantum transition.

g* g

E

E
1

0E

Figure 12.2: Energy of a rapidly rotating trapped Bose gas, E, versus the
coupling constant g for the BEC state without vortices and for the one-vortex
BEC in the lowest Landau level. The red ball shows the point of quantum
transition between these states, which occurs at the coupling constant following
from Eq. (12.26).
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Abstract

This is the second part of our lecturing course on ultracold quantum

gases. It discusses ultracold degenerate gases of fermionic atoms and is

focused on the role of interactions and on superfluidity. After creating

quantum degenerate atomic Fermi gases, experiments have reached the

so-called strongly interacting regime bringing analigies with neutron stars

and high temperature superconductivity. Therefore, aside from an Intro-

duction to the theory of degenerate fermions, the lecturing course includes

several modern developments in this domain.
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Lecture 1. Key quantities. Elastic and inelastic

interaction between atoms

1.1 Length and energy scales

Characteristic length scales for a gas of atomic fermions are the same as in the
case of bosonic atoms. They have been introduced in Part 1 of the lecturing
course in section 1.1. So, there is the thermal de Broglie wavelength ΛT =
(2π~

2/mT )1/2, where m is the atom mass, and T the gas temperature, and this
length scale is inversly proportional to the thermal wavevector of atoms, kT .
Then, there is a characteristic radius of interaction between atoms, Re. The
wavefunction of the atoms is influenced by the interaction only at interatomic
distances of the order of or smaller than Re, and at much larger distances their
motion is free. The third length scale is the mean interatomic separation, n−1/3,
with n being the gas density.

The so-called dilute and ultracold limits have been also introduced in section
1.1 of Part 1. The dilute limit assumes that the mean interparticle distance is
much larger than the characteristic radius of interaction, i.e. n−1/3 ≫ Re or
nR3

e ≪ 1. Note that this condition is necessary for considering the system as a
gas.

The ultracold limit relies on the condition ΛT ≫ Re, i.e. it assumes that
the de Broglie wavelength of particles greatly exceeds the radius of interaction
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between them. In a dilute ultracold gas we usually consider only pair interac-
tions and collisions between the particles. The inequality ΛT ≫ Re provides
the dominant role of s-wave collisions, that is the collisions with zero orbital
angular momentum. However, for identical fermions the s-wave scattering is
not possible because the wavefunction of the relative motion should change sign
under permutation of the fermions. Thus, only the scattering with odd orbital
angular momenta is allowed, and the leading channel is the p-wave scattering,
i.e. the scattering with orbital angular momentum l = 1. We will see that this
leads to a crucial difference of fermions from bosons with respect to collisional
properties.

As well as in the case of bosons, we introduce the degeneracy parameter
nΛ3

T . When the de Broglie wavelength ΛT is much smaller than the mean
interparticle separation n−1/3 and hence nΛ3

T ≪ 1, then the gas is classical and
it obeys the Boltzmann statistics. In the case of nΛ3

T & 1, which in principle can
be achieved either by decreasing the temperature or by increasing the density,
the gas becomes degenerate and quantum statistics comes into play. For fermions
this leads to the formation of Fermi sea.

Let us consider a gas of non-interacting single-component fermions in free
space (the term single-component means that all particles are in the same inter-
nal quantum state). Then the particle wavevector k is a good quantum number
and the mean occupation number of the state with a given k is governed by the
Fermi distribution:

Nk =
1

exp{(Ek − µ)/T } + 1
, (1.1)

where µ is the chemical potential, and Ek = ~
2k2/2m is the single particle

kinetic energy. The dependence of the chemical potential on T and n follows
from the normalization condition:

N =
∑

k

Nk =

∫

Nk
V d3k

(2π)3
, (1.2)

with N being the total number of particles, and V the volume of the system.
For T = 0 one has to have µ0 > 0 and

Nk = 0; for Ek > µ0,

Nk = 1; for Ek < µ0. (1.3)

In other words, N identical fermions in the ground state occupy N lowest quan-
tum states, so that there is one fermion in each such state. This is clear from
the idea of Fermi statistics, where due to the Pauli principle there is not more
than one fermion in a given quantum state. Then, equation (1.2) at T = 0 takes
the form:

N =

∫ kF

0

V
4πk2dk

8π3
=
V k3

F

6π2
, (1.4)

where the quantities ~
2k2

F /2m = µ0 ≡ EF and ~kF are called Fermi energy and
Fermi momentum.
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The zero-temperature distribution function Nk has a stepwise behavior and
is shown in black in Fig 1.1. At a finite T such that T ≪ EF , the mean
occupation number Nk is smaller than 1 at k < kF , and there are occupied
states (Nk > 0) at k > kF . The corresponding distribution function is given by
the blue curve in Fig. 1.1.

k

N

1

k
F

k

Figure 1.1: The distribution functionNk as a function of the fermion momentum
k at zero temperature (in black) and at a finite temperature T ≪ EF (in blue).

From Eq. (1.4) we obtain the Fermi momentum as a function of the density
at T = 0:

~kF = ~

(

6π2N

V

)1/3

= ~(6π2n)1/3. (1.5)

Accordingly, for the Fermi energy we have:

EF =
(6π2)2/3

2

~
2n2/3

m
. (1.6)

The de Broglie wavelength of particles with energies ∼ EF is

ΛF =

(

2π~
2

mEF

)1/2

= n−1/3

(

4

3
√
π

)1/3

. (1.7)

So, we have nΛ3
F ∼ 1, which is obvious as the Fermi energy is of the order of the

temperature of quantum degeneracy. At T . EF the Fermi gas is degenerate
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and for this reason the distribution function displayed in Fig. 1.1 is drastically
different from that for the classical gas. It is called the Fermi sea.

We thus see that without interactions there are two energy scales in the
Fermi gas, temperature T and Fermi energy EF . The first quantum degenerate
Fermi gas has been obtained at JILA in 1998 (D. Jin, 40K), and presently tens
of labs all over the world are working with degenerate fermions. As well as
ultracold bosonic atoms, they are created by evaporative and optical cooling
in magnetic and optical traps as discussed in the course of J.T.M. Walraven.
Ongoing experiments are commonly dealing with temperatures from 100 nK to
1 µK and densities ranging from 1012 to 1014 cm−3. The number of fermionic
atoms is usually in the range from 104 to 107.

1.2 Interaction between identical fermions

The third energy scale is established by the interaction between particles. In the
dilute limit where the condition nR3

e ≪ 1 is satisfied, the total interaction energy
in the system is the sum of all pair interactions, Eint = (N2/2)ǫint, whereN ≫ 1
is the number of particles,N2/2 is the number of pairs, and ǫint is the interaction
energy for a pair of atoms. Two important circumstances should be mentioned
at this point. First of all, we consider here elastic interaction between particles,
i.e. the interaction which does not change their internal states. Second, we
assume the regime of weak interactions, where the interaction between particles
can be taken into account in a sort of many-body perturbative approach. The
related criterion will be discussed later in this Lecture.

The quantity ǫint has been calculated in section 1.2 of Part 1 of the course.
It is expressed through the phase shift (amplitude) of scattering of two particles
with relative wavevector k and orbital angular momentum l. The derivation in
section 1.2 of Part 1 is given for the s-wave scattering (l = 0), but it remains
exactly the same for l 6= 0. So, for given values of k and l we have:

ǫint(l, k) =
〈gl(k)〉
V

; gl(k) = −4π~
2

m

(

δl(k)

k

)

, (1.8)

where δl(k) is the scattering phase shift for the orbital angular momentum
l, and the symbol 〈〉 stands for the average over the momentum distribution
of particles. Note that equation (1.8) does not take into account correlations
between particles and for momentum-dependent gl a special care should be
taken in this respect.

The scattering phase shift follows from the condition that in the limit of
interatomic separations r → ∞ the wavefunction of the relative motion of two
atoms with orbital angular momentum l takes the form

ψl(r) ∼
sin(kr − πl/2 + δl)

kr
.

The calculation of δl relies on the knowledge of the potential of interaction
between the atoms, U(r). This is done in Problem 1.1 to this lecture. The
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interaction potential U(r) for the atoms has a Van der Waals long-range tail,
i.e. it decays at large distances as 1/r6. In this case, for identical fermions the
leading interaction (scattering) channel is the p-wave scattering and away from
resonances the corresponding phase shift is

δ1(k) = − (kb)3

3
, (1.9)

where b is a characteristic distance which depends on the shape of U(r), and we
assume the inequality k|b| ≪ 1.

For small k the p-wave scattering phase shift is much smaller than the phase
shift for the s-wave scattering. The latter is given by δ0 = −ka, where a is
the so-called scattering length. This is because for l = 1 the centrifugal barrier
reduces the probability for particles to approach each other at short distances
where the potential U(r) provides an efficient scattering (see Problem 1.1 to this
lecture).

In the case of identical fermions, using equations (1.8) and (1.9) we obtain

g(k) =
4π~

2

3m
(k2b3). (1.10)

The total interaction energy then becomes

Eint =
N2

2V
〈g(k)〉 =

4π~
2b3

3mV
〈k2〉N

2

2
, (1.11)

and the interaction energy per particle is given by

∂Eint

∂N
= n〈g(k)〉, (1.12)

assuming that 〈g(k)〉 is independent of the density. Note, however, that the
presence of this dependence only changes the numerical coefficient.

At T ≪ EF characteristic momenta of fermions are of the order of ~kF

and from Eqs. (1.10) and (1.12) we find the interaction energy per particle
n〈g(k)〉 ∼ EF (nb3). In the opposite limit of a classical Fermi gas, T ≫ EF ,
where characteristic particle momenta are of the order of the thermal momentum
~kT = ~(mT/~2)1/2, we obtain n〈g(k)〉 ∼ T (nb3). The atomic distance |b| is
generally of the order of Re, and hence in the dilute limit we have the inequality
n|b|3 ≪ 1. We thus see that at both low and high temperatures the interaction
energy is smaller than the kinetic energy of particles by a factor of n|b|3. At
realistic densities n ∼ 1012−1014 cm−3 this factor is ranging from 10−9 to 10−5

(away from p-wave resonances) and therefore the interaction between identical
fermions is usually omitted.

1.3 Elastic and inelastic collisions

The characteristic distance b is directly related to all parameters of elastic p-
wave scattering. The two-body scattering problem has been discussed in detail
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in section 1.3 of Part 1 of the course. This problem is equivalent to the scatter-
ing of a particle with mass m/2 from a force center, due to the particle-center
interaction via the potential U(r). As a result of the interaction, an incident
particle moving along the axis z with momentum k is scattered on an angle θ
and acquires the momentum k′ (see section 1.3 of Part 1). For elastic scattering
we have |k′| = |k|. At an infinite separation from the center the particle wave-
function is a superposition of the incident plane wave and scattered spherical
wave:

ψ = exp(ikz) +
f(θ)

r
exp(ikr), (1.13)

where f(θ) is called the scattering amplitude. The probability α(k) for the
scattered wave to pass through the surface of a sphere of radius r per unit time
is equal to the intensity of the scattered wave |f(θ)|2/r2 multiplied by vr2dΩ
and integrated over the solid angle Ω. Here v = 2~k/m is the velocity of the
incident particle or, returning to the two-body scattering problem, the relative
velocity of colliding atoms. We thus have α(k) =

∫

v|f(θ)|2dΩ, and this quantity
is called the rate constant of elastic collisions. The number of scattering events
per unit time and unit volume is given by ᾱN2/2V , where ᾱ is the rate constant
averaged over the momentum distribution of particles. The number of collisions
that a given particle experiences per unit time is ᾱn, and the quantity (ᾱn)−1

can be identified as a characteristic collisional or kinetic time τK . The quantity
σ(k) = α(k)/v =

∫

|f(θ)|2dΩ has a dimension of surface area and is called the
elastic cross section. The mean free path of a particle is λ ∼ 1/(nσ).

For finding the scattering amplitude f(θ) one commonly expands it in Leg-
endre polynomials:

f(θ) =
∞
∑

l=0

(2l+ 1)flPl(cos θ),

where fl are called partial scattering amplitudes. They correspond to the scat-
tering with orbital angular momentum l. The solution of the two-body scatter-
ing problem in section 1.3 of Part 1 and in Problem 1.1 to this lecture establish
a relation between the partial scattering amplitude fl and the scattering phase
shift δl:

fl =
tan δl

k(1 − i tan δl)
.

For k|b| ≪ 1, using Eq. (1.9) we immediately obtain the p-wave scattering
amplitude

f1 = −1

3
b(kb)2. (1.14)

This amplitude is actually very small. Since the parameter b is generally of the
order of Re, we have |f1| ≪ Re. The scattering cross section is σ1 ∼ b2(kb)4

and in the ultracold limit it is at least several orders of magnitude smaller
than R2

e. The rate of elastic collisions is α1 = σ1v ∝ k5 and is generally
very slow. For realistic parameters in cold gases we have the collisional time
τK = (ᾱn)−1 exceeding seconds. Therefore, elastic collisions between identical
fermions usually do not play an important role.
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We now discuss inelastic collisions, i.e. collisions changing the internal states
of the colliding atoms. Consider a gas of atoms which can be in two different
internal states, the ground state A1 and an excited (hyperfine) state A2. Then,
binary collisions involving atoms in the state A2 can lead to their relaxation
transition to the ground state. One may consider, for example, the following
inelastic collisional process:

A2 +A2 ⇒ A1 +A1 + 2∆E,

where ∆E is the difference between energies of the internal states A2 and A1.
Usually in cold gases ∆E greatly exceeds the kinetic energy of colliding atoms,
so that the final state of the pair is independent of the initial collision energy
(momentum). In this respect, inelastic collisions in cold gases can be identified
as ”deep inelastic processes”.

Inelastic collisions involving the s-wave in the incoming channel have been
discussed in section 1.4 of Part 1 of the course. For collisions of identical fermions
only odd angular momenta l in the incoming channel are possible and usually
the p-wave (l = 1) is the most important. This makes inelastic collisions rather
slow in the dilute ultracold limit, which is already seen without any calculations.
Consider two fermions at large separations r from each other, where the inter-
action potential U(r) is no longer important. Then the wavefunction of their
relative motion is simply an antisymmetrized superposition of plane waves

ψ =
1√
2

[exp(ikr) − exp(−ikr)] .

In the ultracold limit the inequality kRe ≪ 1 is satisfied, and there is a large
interval of distances where Re ≪ r ≪ 1/k and the interaction is still not im-
portant. In this interval, expanding the exponents in powers of (kr) we obtain
ψ ∝ (kr). So, we may say that ”cold identical fermions do not like to approach
each other”. The dependence ψ ∝ k is preserved with decreasing the interatomic
separation r and making it of the order of or smaller than Re. The interaction
only changes the coordinate dependence of ψ irrespective of the value of k. The
rate of an inelastic decay process is proportional to the square of the transition
matrix element of an inelastic interaction between the initial and final states.
For deep inelastic processes, the wavefunction and energy of the final state are
practically independent of the initial momentum k. Thus, the only quantity
that depends on k is the initial wavefunction ψ, which immediately shows that
the inelastic rate is αin ∝ k2.

This conclusion is confirmed by calculations in Problem 1.2 to this lecture.
In general, the rate of inelastic processes depends on the shape of the interaction
potential U(r) and on the interaction providing inelastic transitions. In order
to obtain the dependence of the inelastic rate on the relative momentum k of
colliding atoms we simplified the problem and assumed that the internal states
of the atoms are completely changed once the interatomic distance reaches a
certain value r0. At the same time it is assumed that inelastic transitions do
not occur at r > r0. This is equivalent to putting a perfectly absorbing wall

8



at r = r0, so that there is only an incoming spherical flux at this point (see
Problem 1 to this Lecture).

As the rate of inelastic collisions between identical fermions is proportional
to k2, it is usually not very important in ultracold gases.

1.4 Two-component Fermi gas. Weakly interacting regime.

The situation with interparticle interaction drastically changes in a two-component
Fermi gas, i.e. when fermionic atoms in two different internal states are present.
The interaction between fermions of different components originates from their
s-wave scattering. The phase shift for the s-wave scattering is given by δ0 = −ka
assuming that k|a| ≪ 1, where the quantity a is called the scattering length and
it depends on the shape of the potential U(r) (see section 1.2 of Part 1). The
s-wave scattering amplitude is f0 = −a as follows from equation (1.37) in Part
1 at k|a| ≪ 1 and Problem 1.1 to this lecture. Accordingly, the contribution of
the intercomponent interaction to the interaction energy in the system is

E0
int =

4π~
2a

mV
N1N2, (1.15)

where the first multiple is the interaction energy for an atomic pair consisting
of fermions in different internal states, and the second multiple represents the
number of such pairs, with N1 and N2 being the number of particles in the first
and second component.

Let us now assume that N1 = N2 = N and compare the energy of the inter-
component interaction (1.15) with the energy of interaction between fermions
in the same internal state (intracomponent interaction). The latter originates
from the p-wave scattering and follows from Eq. (1.11):

E1
int =

4π~
2b3

3mV
〈k2〉N2, (1.16)

where N2 appears as (N2
1 /2+N2

2 /2) for N1 = N2 = N . On the other hand, for
N1 = N2 = N equation (1.15) gives

E0
int =

4π~
2a

mV
N2. (1.17)

Generally, we have |a| ∼ |b| ∼ Re and in the ultracold dilute limit the ratio of
the intra- to intercomponent interaction energy is

E1
int

E0
int

∼ 〈k2〉R2
e ≪ 1.

The intercomponent interaction leads to the interaction energy per particle

ng =
4π~

2a

m
n ∼ EF (kF a) ∼ EF (na3)1/3 (1.18)
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and it can no longer be omitted. Moreover, as we will see later in the course,
this interaction leads to all interesting physics in dilute Fermi gases.

Usually, the interaction between particles in quantum gases is treated within
the many-body perturbation theory. For Fermi gases this assumes that the
interaction energy per particle is much smaller than the characteristic kinetic
energy of particles. In the case of quantum degenerate fermions, the latter is
∼ EF . Then, from Eq. (1.18) we immediately find the condition of such weakly
interacting regime:

kF |a| ≪ 1 → (n|a|3)1/3 ≪ 1. (1.19)

This condition should be certainly completed by the criterion of the dilute limit,
nR3

e ≪ 1, which is especially important if for a given potential U(r) the scat-
tering length a turns out to be anomalously small.

Problems 1

1.1 Calculate the phase shift and scattering amplitude for elastic scattering with
orbital angular momentum l in the limit of low collision energies. Show that
the scattering with l > 0 is much weaker than the s-wave scattering (l = 0).

The scattering problem for two particles with equal masses m is equivalent to
the scattering of a particle with mass m/2 from the force center, due to the
particle-center interaction via the potential U(r). The Schroedinger equation
for the relative motion of these particles then reads:

[

−~
2

m
∆r + U(r)

]

ψ(r) = Eψ(r), (1.20)

where E = ~
2k2/m is the collision energy. We now expand the wavefunction of

the relative motion of colliding atoms, ψ(r) in Legendre polynomials:

ψ(r) =
∑

l

(2l+ 1)Pl(cos θ)ψl(r), (1.21)

where θ is the scattering angle, and ψl(r) is the wavefunction of the relative
motion with orbital angular momentum l. Since we took the z axis (the axis
along the wave vector of the incident plane wave) as the axis of quantization,
due to the axial symmetry of our scattering problem the wavefunction ψ(r)
(1.21) is independent of the azimuthal angle φ. Substituting ψ(r) (1.21) into
the Schroedinger equation (1.20), multiplying both sides of the equation by
Pl′(cos θ) and integrating over the solid angle we obtain an equation for the
relative motion with a given orbital angular momentum l:

−~
2

m

[

d2

dr2
+

2

r

d

dr
− l(l+ 1)

r2

]

ψl(r) + U(r)ψl(r) =
~

2k2

m
ψl(r). (1.22)
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When obtaining Eq. (1.22) we took into account the well-known expression for
the Laplacian in spherical coordinates:

∆r =
∂2

∂r2
+

2

r

∂

∂r
+

1

r2

(

∂2

∂θ2
+ cot θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2

)

and the fact that
(

d2

dθ2
+ cot θ

d

dθ

)

Pl(cos θ) = −l(l+ 1)Pl(cos θ).

Equation (1.22) can be rewritten in the form:

−~
2

m

[

d2

dr2
+

2

r

d

dr

]

ψl(r) + Ueff (r)ψl(r) =
~

2k2

m
ψl(r), (1.23)

with

Ueff (r) = U(r) +
~

2l(l + 1)

mr2
(1.24)

being the so-called effective potential (see Fig. 1.2).

centrifugal barrier

r

Ueff

Figure 1.2: Effective potential Ueff (r) = U(r) + ~
2l(l+ 1)/mr2 for the relative

motion with orbital angular momentum l.

At distances r ≫ Re we can drop U(r) from Eq. (1.22), which transforms it
to the equation of free motion with orbital angular momentum l. The solution
then reads:

ψ ∝ [jl(kr) + Cηl(kr)] . (1.25)
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The spherical Bessel and Neumann functions, jl and ηl, have the following
asymptotic behavior at large arguments:

jl(x) ⇒
sin(x − πl/2)

x
; x→ ∞ (1.26)

ηl(x) ⇒ −cos(x− πl/2)

x
; x→ ∞ (1.27)

The scattering phase shift δl is defined by writing ψl at r → ∞ as

ψl ∝
sin(kr − πl/2 + δl)

kr
, r → ∞. (1.28)

For U(r) = 0 we have δl = 0 and ψl ∝ jl(kr). Comparing Eq. (1.28) with
Eq. (1.25) we obtain:

tan δl = −C. (1.29)

At distances where Re ≪ r ≪ k−1, we may drop both U(r) and ~
2k2/m

from the Schroedinger equation (1.22) and then obtain

ψl ∝
(

rl − b2l+1

rl+1

)

, (1.30)

where the length b is independent of k. Importantly, we assume that U(r)
decays faster than r−2l−3 and, hence, the term b2l+1/r2l+3 originating from the
kinetic energy exceeds the potential energy term U(r)rl. Within a normalization
coefficient, Eq. (1.30) should coincide with ψl following from Eq. (1.25) at kr ≪
1. Taking into account asymptotic expressions for the spherical Bessel and
Neumann functions at small arguments:

jl(x) ⇒
√
π

2l+1Γ(l + 3/2)
xl x≪ 1 (1.31)

ηl(x) ⇒ (−1)l 2l
√
π

Γ(1/2 − l)
x−l−1; x≪ 1, (1.32)

we reduce ψl (1.25) at kr ≪ 1 to

ψl ∝
[ √

π

2l+1Γ(l + 3/2)
(kr)l + (−1)lC

2l√π
Γ(1/2 − l)

(kr)−l−1

]

.

The comparison of this expression with Eq. (1.30) immediately gives

C = (−1)l

(

bk

2

)2l+1
Γ(1/2 − l)

Γ(l + 3/2)
(1.33)

and Eq. (1.29) yields

tan δl = (−1)l+1

(

kb

2

)2l+1
Γ(1/2 − l)

Γ(l + 3/2)
. (1.34)
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Using the expansion of the scattering amplitude in Legendre polynomials
given by Eq. (1.21) and recalling that at r → ∞ the total wavefunction ψ is
given by Eq. (1.13), we write the l-wave part of ψ as

ψl = il
sin(kr − πl/2)

kr
+
fl

r
exp(ikr)

and after a certain algebra transform it to

ψl ∝
1

kr
{(1 + ikfl) sin(kr − πl/2) + kfl cos(kr − πl/2)}.

Since this expression should coincide within a normalization coefficient with ψl

(1.28) we immediately find a relation between the scattering phase shift and
scattering amplitude:

fl =
tan δl

k(1 − i tan δl)
≡ exp(2iδl) − 1

2ik
. (1.35)

In the limit of low collision energies we put k|b| ≪ 1 and obtain;

fl =
δl
k

= (−1)l+1 b

2

(

kb

2

)2l
Γ(1/2 − l)

Γ(l + 3/2)
(1.36)

then the l-wave scattering cross section is

σl = 4π(2l+ 1)|fl|2 =
4π

k2
(2l + 1) sin2 δl ∝ k4l. (1.37)

We thus see that for slow particles the l-wave scattering (away from l-wave
resonances) is much weaker than the s-wave scattering. The physical reason
is that the centrifugal barrier of the effective potential Ueff (r) reduces the
amplitude of the wavefunction at short distances where the interaction potential
U(r) acts.

1.2 Calculate the inelastic rate constant for collisions of identical ultracold
fermions interacting with each other via the potential U(r) representing a per-
fectly absorbing wall at r = r0 and having a deep potential well for r0 < r < R0

(see Fig. 1.3).

We start with Eq. (1.23) for the wavefunction ψl(r) of the relative motion
with orbital angular momentum l. We assume that the collision energy Ek and
the centrifugal potential ~

2l(l + 1)/mr20 are much smaller than the well depth
U0. Then, for r0 < r < R0 the solution of Eq. (1.23) reads:

ψl(r) = A{jl(k0r) +Bhl(k0r)}, (1.38)
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r
0

r

U(r)

R
0

Figure 1.3: The interaction potential U(r) having a perfectly absorbing wall at
r = r0 and a deep potential well for r0 < r < R0. The brown curve shows the
effective piotential Ueff (r) = U(r) + ~

2l(l + 1)/mr2.

where jl and hl are spherical Bessel and Hankel functions, k0 =
√
mU0/~,

and the coefficients A and B have to be determined. The presence of the
perfectly absorbing wall at r = r0 means that for r → r0 we only have an
incoming spherical flux and hence ψl(r) ∝ exp[−ik0(r − r0)]. The assumption
~

2l(l + 1)/mr20 ≪ U0 is equivalent to k0r0 ≫ 1, i.e. the arguments of the
Bessel and Hankel functions in Eq. (1.38) are large. This allows us to use the
asymptotic expression (1.26) and a similar asymptotic expression for hl:

hl(x) ⇒ −iexp(ix− iπl/2)

x
; x→ ∞. (1.39)

Then, in order to satisfy the boundary condition for r → r0 we should put
B = −1/2, and the wavefunction in the interval of distances r0 < r < R0 takes
the form

ψl(r) =
iA

2k0r
exp(−ik0r + iπl/2). (1.40)

For r > R0 the motion is free and we write the solution as

ψl(r) = il[jl(kr) + ikflhl(kr)] (1.41)

so that at r → ∞ the second term in Eq. (1.41) becomes (fl/r) exp(ikr) and
thus describes an outgoing spherical wave with orbital angular momentum l,
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with fl being the l-wave scattering amplitude. Note that multiplying Eq. (1.41)
by (2l + 1)Pl(cos θ), making the summation over l, and using the relations

exp(ikz) =
∑

l

il(2l+ 1)jl(kr)Pl(cos θ); f(θ) =
∑

l

(2l+ 1)flPl(cos θ),

where f(θ) is the total scattering amplitude, we obtain the required expression
for the wavefunction ψ(r) at r → ∞:

ψ(r) = exp(ikz) +
f(θ)

r
exp(ikr).

In the ultracold limit we have kR0 ≪ 1 and at r close to R0 in Eq. (1.41)
we may use the asymptotic expression (1.31) and the asymptotic expression

hl(x) ⇒
i(−1)l+1

√
π

Γ(1/2 − l)

2l

xl+1
; x≪ 1. (1.42)

Then, equalizing the wavefunctions (1.41) and (1.40) and their derivatives at
r = R0 and using the inequality k0R0 ≫ 1, we obtain:

fl =
ijl(kR0)

khl(kR0)

[

1− (2l+1)i

k0R0

]

=
(−1)l+1Γ(1/2−l)(kR0)

2l

Γ(l + 3/2)22l+1

[

1− (2l+1)i

k0R0

]

R0, (1.43)

|A| = 2(2l + 1)jl(kR0) =

√
π(2l + 1)

2lΓ(l + 3/2)
(kR0)

l. (1.44)

The inelastic rate constant is equal to the incoming flux at r → r0, multiplied
by the surface area 4πr20 :

αin =
~

im

{(

ψl
dψ∗

l

dr
− ψ∗

l

dψl

dr

)

× 4πr2
}

r→r0

. (1.45)

Using ψl (1.40) with |A| (1.44), we obtain

αin =
2π~|A|2
mk0

=
2π2

~

mk0

[

(2l + 1)

Γ(l + 3/2)

]2(
kR0

2

)2l

. (1.46)

For identical fermions only odd l are possible, and the leading decay channel
is related to the p-wave scattering (l = 1). Thus, we have

αin ≃ 8π~

mk0
(kR0)

2 ∝ k2. (1.47)

Taking into account that for identical fermions the wavefunction should be an-
tisymmetrized, we have to multiply Eq. (1.47) by a factor of 2.

The obtauined result (1.47) justifies the dimensional estimate αin ∝ k2 ob-
tained in subsection 1.3.

1.3. Find the l-wave scattering amplitude and the inelastic rate constant in
the limit of k → 0 for the scattering potential which has the form U(r) = −β/r4
at r ≥ r0 and and has a perfectly absorbing wall at r = r0 (see Fig. 1.4). Assume
the validity of the WKB approximation at r → r0.
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U(r)

r

r
0

Figure 1.4: The scattering potential U(r) = −β/r4 (r > r0) with a perfectly
absorbing wall at r = r0 (brown curve). The effective potential Ueff (r) =
U(r) + ~

2l(l + 1)/mr2 is shown by the blue curve.

Lecture 2. Second quantization. Ideal Fermi gas

2.1 Second quantization

We now introduce the method of second quantization for fermions. For sim-
plicity we first consider N identical fermions in a large but finite volume and
assume that they do not interact with each other, so that the Hamiltonian is

Ĥkin = − ~
2

2m

∑

α

∂2

∂r2
α

, (2.1)

where particles are labelled by the index α and rα are their coordinates. The
many-body wavefunction is antisymmetric with respect to an interchange of
fermionic particles and has the form of a Slater determinant:

ψ =
1√
N !

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ψp1
(r1) ψp1

(r2) ... ψp1
(rN )

ψp2
(r1) ψp2

(r2) ... ψp2
(rN )

. . ... .

. . ... .
ψpN

(r1) ψpN
(r2) ... ψpN

(rN )

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(2.2)

where ψpi
(rk) are wavefunctions of single-particle states. In order to establish

the sign of ψ we numerate the states by the numbers

p1 < p2 < p3 < ... < pN . (2.3)

All pi (2.3) are different from each other so that the occupation numbers Ni can
be only 1 or 0.
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Consider now an operator

F̂ (1) =
∑

α

f̂(rα). (2.4)

Its matrix elements will be non-zero only between the states with the same
N1, N2, ... or between the states in which one of these numbers increases by 1
and another one decreases by 1. For the diagonal matrix element we have:

F̄ (1) =
∑

i

f
(1)
ii Ni, (2.5)

as well as in the case of bosons, and the notation

f
(1)
ik =

∫

ψ∗
i (r)f (1)(r)ψk(r)d3r (2.6)

is again used for the matrix element between the single particle states i and k.
For the matrix element between the many-body states 1i, 0k and 0i, 1k (in the
initial state Nk = 1, Ni = 0 and in the final state Nk = 0, Ni = 1, and it is
assumed that i < k) we have

〈1i, 0k |F (1)| 0i, 1k〉 = f
(1)
ik (−1)Aik , (2.7)

where Aik is the sum of the occupation numbers for the states from i + 1 to
k − 1:

Aik =

k−1
∑

j=i+1

Nj. (2.8)

For i = k − 1 one should put Aik = 0.

3

2

1

3

2

1

3

2

1

a) b) c)

Figure 2.1: Two identical fermions (red balls) in three possible single-particle
states (blue lines). The configurations from left to right show two-particle states
a), b), and c) (see text).

As an example, consider 2 identical fermions and assume that each of them
can be in one of the 3 states as depicted in Fig. 2.1. There are 3 two-particle
states:

(a)
1√
2
{ψ1(r1)ψ2(r2) − ψ1(r2)ψ2(r1)}, (2.9)

(b)
1√
2
{ψ1(r1)ψ3(r2) − ψ1(r2)ψ3(r1)}, (2.10)

(c)
1√
2
{ψ2(r1)ψ3(r2) − ψ2(r2)ψ3(r1)}. (2.11)
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Matrix elements of the operator F̂ = f̂(r1)+ f̂(r2)+ f̂(r3) between these states
are:

Fba = f32

Fca = −f31
Fcb = f21

Faa = f11 + f22

Fbb = f11 + f33

Fcc = f22 + f33.

One can easily check that these relations coincide with what we get from Eqs. (2.5)
and (2.7).

We now turn to the operators âi which act not on the functions of particle
coordinates, but on the functions of occupation numbers:

âi|N1, N2, ...Ni, ...〉 ⇒ |N1, N2, ...Ni − 1, ...〉, (2.12)

â†i |N1, N2, ...Ni, ...〉 ⇒ |N1, N2, ...Ni + 1, ...〉. (2.13)

The operators âi and â†i are called annihilation and creation operators of parti-

cles. In order to write the operator F̂ (1) as

F̂ (1) =
∑

i,k

f
(1)
ik â†i âk, (2.14)

like in the case of bosons, the annihilation and creation operators should be
determined as matrices with elements

〈0i|âi|1i〉 = 〈1i|â†i |0i〉 = (−1)A0i . (2.15)

For the product of such matrices we find (for i < k):

〈1i, 0k|â†i âk|0i, 1k〉 = 〈1i, 0k|â†i |0i, 0k〉 × 〈0i, 0k|âk|0i, 1k〉 = (−1)[A0i+A0k].
(2.16)

Since in the second matrix element the occupation number Ni = 0, we may
write

A0k =

k−1
∑

j=1

Nj =

i−1
∑

j=1

Nj +

k−1
∑

j=i+1

Nj = A0i +Aik.

We then obtain
〈1i, 0k|â†i âk|0i, 1k〉 = (−1)Aik . (2.17)

For i = k the matrix â†i âi is diagonal:

â†i âi = Ni (2.18)

(zero element for Ni = 0 and unity for Ni = 1).
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Reversing the order of the operators we again obtain the result of Eq. (2.16)
(i < k):

〈1i, 0k|âkâ
†
i |0i, 1k〉 = 〈1i, 0k|âk|1i, 0k〉 × 〈1i, 1k|â†i |0i, 1k〉 = (−1)[A0i+A0k].

However, now in the first matrix element the occupation number Ni = 1 and,
hence,

A0i =

i−1
∑

j=1

Nj =

k−1
∑

j=1

Nj −
k−1
∑

j=i

= A0k −Aik − 1.

Thus, we get

〈1i, 0k|âkâ
†
i |0i, 1k〉 = (−1)2A0k−Aik−1 = (−1) × (−1)Aik (2.19)

So, comparing Eq. (2.19) with Eq. (2.17) we see that

â†i âk + âkâ
†
i = 0; i 6= k. (2.20)

For the diagonal matrix we can write:

âiâ
†
i = 1 −Ni, (2.21)

so that
âiâ

†
i + â†i âi = 1. (2.22)

A general relation can be written as

âiâ
†
k + â†kâi = δik. (2.23)

Similarly, we can obtain
âiâk + âkâi = 0. (2.24)

The Hamiltonian (2.1) has only diagonal matrix elements. In free space the
particle momentum is a good quantum number and plane waves form a complete
set of basis functions. Thus, in terms of the operators âk and â†k, equation (2.1)
can be written as

Ĥkin =
∑

k

Ekâ
†
kâk, (2.25)

with Ek = ~
2k2/2m being the single particle kinetic energy.

Relying on Eqs. (2.23) and (2.24) we can establish commutation relations

for the field operators ψ̂(r) and ψ̂†(r) defined as

ψ̂(r) =
∑

i

âiψi(r), (2.26)

ψ̂†(r) =
∑

i

â†iψ
∗
i (r), (2.27)
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and representing annihilation and creation operators of a fermionic particle at
the point r. We have

ψ̂†(r)ψ̂(r′) + ψ̂(r′)ψ̂†(r) = δ(r − r′). (2.28)

ψ̂(r)ψ̂(r′) + ψ̂(r′)ψ̂(r) = 0. (2.29)

In terms of the field operators ψ̂(r), ψ̂†(r) the Hamiltonian (2.25) takes the
form:

Ĥkin = −
∫

d3r ψ†(r)
~

2

2m
∆rψ̂(r). (2.30)

We thus see that the fermionic operators anticommute, in contrast to bosonic
operators which commute. In a mixture of bosons and fermions, the operators
of the fermions commute with bosonic operators. In a multicomponent Fermi
system, the operators of different fermions can be considered as both commu-
tative or anticommutative. The final results for physical quantities remain the
same.

We finally present a useful relation for the square of the matrix element of
the operator â†i âk for i 6= k:

|〈Ni +1, Nk−1|â†i âk|Ni, Nk〉|2 =〈Ni, Nk|âiâ
†
i â

†
kâk|Ni, Nk〉=Nk(1−Ni). (2.31)

Let us now consider a two-component Fermi gas and omit the interaction
between identical fermions. Then we only have the s-wave interaction between
fermions of different components (internal states), which we denote as ↑ and ↓.
In the first quantization the interaction Hamiltonian reads:

Ĥint =
∑

α↑,β↓
U(rα↑ − rβ↓), (2.32)

where rα↑ and rβ↓ are coordinates of ↑ and ↓ fermions, and U(r) is the potential
of pair interaction between such fermions. The amplitude of the s-wave scat-
tering in the ultracold limit is momentum independent and equal to −a, where
a is the scattering length. The corresponding coupling constant for the inter-
particle interaction is g = 4π~

2a/m. Then, the secondly quantized interaction

Hamiltonian in terms of the field operators ψ̂(r), ψ̂†(r) takes the form:

Ĥint = g

∫

d3r ψ̂†
↑(r)ψ̂

†
↓(r)ψ̂↓(r)ψ̂↑(r). (2.33)

In free space, where the wavevector k of a particle is a good quantum number,
equation (2.33) can be rewritten through the creation and annihilation operators
in the momentum space:

Ĥint =
g

V

∑

k1,k2,k3

â†k3↑â
†
k4↓âk1↓âk2↑, (2.34)

and there is a momentum conservation law k1 + k2 = k3 + k4. The derivation
of equations (2.34) and (2.33) is exactly the same as in the case of bosons in
subsections 2.2 and 2.3 of Lecture 2 in Part 1 of the course and we do not repeat
this derivation here.
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2.2 Thermodynamics of an ideal Fermi gas

We now turn to thermodynamic properties of an ideal Fermi gas. For simplicity,
we first consider a single-component Fermi gas in free space. It is described by
the Hamiltonian (2.25). As we discussed in subsection 1.1 of Lecture 1, the
distribution function (occupation number averaged over the ensemble) at T = 0
is a filled Fermi sphere: Nk = θ(kF − k), where the Fermi wavevector kF and
Fermi energy EF are given by Eqs. (1.5) and (1.6), and θ(x) is the step function
equal to zero for negative arguments and to unity for positive ones. So, all states
with E < EF or k < kF are occupied, and the states with higher energies (above
the Fermi surface) are empty. The zero-temperature distribution function Nk is
given in black in Fig. 1.1. It is the limiting case of the general Fermi distribution
(1.1) at T → 0, and the zero-temperature chemical potential is µ0 = EF (see
subsection 1.1 of Lecture 1). The energy of the ideal single-component Fermi
gas at T = 0 is

E=

∫

NkEk
V d3k

(2π)3
=

∫ kF

0

~
2

m
k4V dk

4π2
=

~
2k5

FV

20π2m
=

~
2V

20π2m

(

6π2N

V

)5/3

=
3

5
EFN, (2.35)

where we used equation (1.4) providing a relation between the Fermi momentum
~kF and the total number of particles N .

Let us now consider temperatures T ≪ EF and develop calculations of
thermodynamic functions of the ideal Fermi gas. At these temperatures the
chemical potential is close to the Fermi energy and our first step will be to find
the deviation of µ from EF . For this purpose we turn from the integration over
k to the integration over Ek = ~

2k2/2m in the expression providing a rela-
tion between the density and chemical potential through the Fermi distribution
function. Using Eq. (1.1) we have:

n=

∫

d3k

(2π)3
Nk =

∫ ∞

0

4πk2dk

(2π)3
1

exp{(Ek−µ)/T }+1
=

∫ ∞

0

ν(E)dE

exp{(E−µ)/T }+1
, (2.36)

where

ν(E) =

(

2m

~2

)3/2
E1/2

4π2
(2.37)

is the density of states. We then represent Eq. (2.36) as

n =

∫ 0

−µ

ν(E − µ+ µ)d(E − µ)

exp{(E − µ)/T } + 1
+

∫ ∞

0

ν(E − µ+ µ)d(E − µ)

exp{(E − µ)/T } + 1

and write in the first integral

1

exp{(E − µ)/T }+ 1
= 1 − exp{(E − µ)/T }

exp{(E − µ)/T } + 1
= 1 − 1

exp(ǫ/T ) + 1
,

where ǫ = µ− E. In the second integral we write E − µ = ǫ. Then we have:

n = −
∫ µ

0

ν(µ− ǫ)dǫ

exp(ǫ/T ) + 1
+

∫ ∞

0

ν(µ+ ǫ)dǫ

exp(ǫ/T ) + 1
+

∫ µ

0

ν(E)dE. (2.38)
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The values of ǫ which give the main contribution to the first two integrals are
of the order of T ≪ µ. Therefore, we extend the integration to infinity in the
first integral, and then we expand the density of states ν(µ ± ǫ) in powers of ǫ
up to the linear term:

ν(µ± ǫ) = ν(µ) ± ǫ
dν

dE
.

This yields

n =

∫ µ

0

ν(E)dE + 2T 2dν(µ)

dµ

∫ ∞

0

xdx

exp(x) + 1
.

Using Eq. (2.37) and the fact that
∫∞
0 x[exp(x) + 1]−1dx = π2/12 we then find

n =

(

1

6π2
+

T 2

48µ2

)(

2mµ

~2

)3/2

. (2.39)

The second term in Eq. (2.39) is much smaller than the first one and we may
put µ = EF in this term, whereas in the first term we should write µ = EF + δ,
where δ is a small deviation of the chemical potential from the Fermi energy.
We thus obtain a linear equation for δ, which gives

δ = −π
2

12

(

T

EF

)2

EF . (2.40)

In a similar way we calculate the energy of the gas:

E =

∫

V d3k

(2π)3
Ek

exp{(Ek − µ)/T } + 1
= V

∫ ∞

0

Eν(E)dE

exp{(E − µ)/T } + 1

= V

∫ µ

0

Eν(E)dE

[

1 − exp{(E − µ)/T }
exp{(E − µ)/T }+ 1

]

+ V

∫ ∞

0

Eν(E)d(E − µ)

exp{(E − µ)/T } + 1

= V

∫ µ

0

Eν(E)dE + 2V
d(Eν(E))

dE
|E=µ ×

∫ ∞

0

(E − µ)d(E − µ)

exp{(E − µ)/T } + 1

=
3

5
EFN

(

µ

EF

)5/2

+
π2

4
ν(µ)T 2V =

3

5
EFN +

3

2
δN +

3π2

8

(

T

EF

)2

EFN

=
3

5
EFN +

π2

4

T 2

EF
N. (2.41)

The free energy F is related to the energy E by

E = −T 2

(

∂

∂T

F

T

)

V

(2.42)

and the entropy is given by the relation

S = −
(

∂F

∂T

)

V

. (2.43)
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The relation for the pressure is

P = −
(

∂F

∂V

)

T

. (2.44)

These thermodynamic quantities are easily calculated using Eq. (2.41) for the
energy E.

The generalization to multicomponent ideal Fermi gases is straightforward.
In the absence of interactions, fermionic components behave themselves as in-
dependent ideal gases. For example, in the case of two components which we
again denote as ↑ and ↓, the distribution of particles in these components is
given by

Np↑ =
1

exp{(Ek↑ − µ↑)/T }+ 1
, (2.45)

Np↓ =
1

exp{(Ek↓ − µ↓)/T }+ 1
, (2.46)

where the corresponding chemical potentials are µ↑ = EF↑ + δ↑ and µ↓ =
EF↓ + δ↓. The quantities δ↑ and δ↓ are given by Eq. (2.40) with EF = EF↑
and EF = EF↓, respectively. The Fermi energies of the two components, EF↑
and EF↓ follow from Eq. (1.6). One should simply put n = n↑ = N↑/V for
the ↑-component, and n = n↓ = N↓/V for the ↓-component. The energy of the
two-component gas is E = E↑ + E↓, where E↑ and E↓ are given by Eq. (2.41)
with EF = EF↑, N = N↑ and EF = EF↓, N = N↓, respectively.

2.3 Particle and hole excitations

We now consider T = 0 and discuss excitations of an ideal Fermi gas in free
space. The ground state is a filled Fermi sphere, and let us create an excited
state by transferring a particle with momentum ~k1 (|k1| < kF ) to the state
with momentum ~k2 (|k2| > kF ) as depicted in Fig. 2.2. The change of the
energy is

E − E0 =
~

2k2
2

2m
− ~

2k2
1

2m
,

and it can be written in the form

E − E0 =

(

~
2k2

2

2m
− EF

)

+

(

EF − ~
2k2

1

2m

)

. (2.47)

By taking a particle out of the Fermi sphere and putting it into an excited state
above the Fermi surface we create a hole in the Fermi sphere. Thus, we can
distinguish between particle and hole excitations.

Consider first particle excitations. Acting with the operator â†k on the ground

state of N particles we have â†k|N〉 6= 0 only for k > kF . In the latter case we
create an excited state of the system of (N +1) particles. The excitation energy
is given by

ǫk = Ek + E0(N) − E0(N + 1) =
~

2k2

2m
− EF > 0; k > kF , (2.48)
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Figure 2.2: The creation of particle and hole excitations.

i.e. it is represented by the first term in the right hand side of equation (2.47).
So, for k > kF the quantity ǫk (2.48) can be identified as a particle excitation.

Let us now consider hole excitations. Acting with the operator âk on the
ground state of N particles we have âk|N〉 6= 0 only for k < kF . Then, if k < kF ,
we create an excited state of (N − 1) particles. The corresponding excitation
energy is

ǫk = E0(N) − E0(N − 1) − Ek = EF − ~
2k2

2m
> 0; k < kF , (2.49)

and is equivalent to the second term in the right hand side of Eq. (2.47). Thus,
for k < kF the quantity ǫk (2.49) can be treated as a hole excitation. The
particle and hole excitation branches are displayed in Fig. 2.3. In both cases
one can write the excitation energy as

ǫk =
~

2|k2 − k2
F |

2m
. (2.50)

Problems 2

2.1 Calculate the chemical potential and total energy of a single-component
ideal two-dimensional Fermi gas at a finite temperature.

We first introduce the density of states in two dimensions (2D):

ν(E) =

∫

d2k

(2π)2
δ(E − ~

2k2/2m) =
m

2π~2
= const. (2.51)

Then, we obtain the following relation between the chemical potential and den-
sity:

n =

∫ ∞

0

ν(E)dE

exp{(E − µ)/T } + 1
=

mT

2π~2
ln [1 + exp(µ/T )] . (2.52)
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Figure 2.3: The energies of particle and hole excitations versus the momentum
~k.

We thus obtain:
µ = T ln [exp(Td/T )− 1] , (2.53)

where the temperature of quantum degeneracy is given by

Td =
2π~

2

m
n (2.54)

and is equal to the 2D Fermi energy EF .
At high temperatures, T ≫ Td, equation (2.53) gives the well-known classical

result:

µ = −T ln

(

T

Td

)

= T ln(nΛ2
T ). (2.55)

At low temperatures, T ≪ Td = EF , we have

µ = EF − T exp(−EF /T ). (2.56)

We thus see that the temperature-dependent part of µ is exponential, in contrast
to the 3D case where it is proportional to T 2.

For the total energy at T ≪ EF we find

E = V

∫ ∞

0

ν(E)EdE

exp{(E − µ)/T } + 1
=
mV µ2

4π~2
+
πT 2mV

12~2

=
1

2
EFN +

π2

6

(

T

EF

)2

EFN, (2.57)

where we used the same method of integration as in 3D and omitted exponen-
tially small corrections to µ.

2.2 Calculate the chemical potential and total energy for the one-dimensional
ideal Fermi gas at temperatures T ≪ EF .
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Lecture 3. Repulsively interacting Fermi gas. Lan-

dau’s Fermi liquid theory

3.1 Weakly interacting Fermi gas with repulsion between

particles

We now consider a degenerate interacting two-component Fermi system and
start with the weakly interacting Fermi gas. We only include the s-wave inter-
action between fermions of different components and in this Lecture discuss the
case where the interaction is repulsive. So, in free space the Hamiltonian is the
sum of the kinetic and interaction energy terms which in the momentum space
second quantization are given by Eqs. (2.25) and (2.34), respectively:

Ĥ =
∑

k

~
2k2

2m
(â†↑kâ↑k + â†↓kâ↓k) +

g

V

∑

k1,k2,k3,k4

â†↑k3
â†↓k4

â↓k2
â↑k1

, (3.1)

where g = 4π~
2a/m with a > 0 being the scattering length, the symbols ↑

and ↓ label the two fermionic components, and the momentum conservation law
k1 + k2 = k3 + k4 is satisfied. As we discussed in subsection 1.4 of Lecture
1, the weakly interacting regime is characterized by the condition na3 ≪ 1
which ensures that the interaction energy is much smaller than the Fermi energy
(kinetic energy of particles) and allows one to treat the interaction part of
the Hamiltonian within a many-body perturbation theory. To zero order the
total energy of the system at T = 0 is equal to the ideal gas energy E0 =
(3/5)[EF↑N↑ + EF↓N↓], where EF↑, N↑ and EF↓, N↓ are Fermi energies and
particle numbers in the ↑ and ↓ components (see subsection 2.2 of Lecture 2).

In the first order of perturbation theory, we have to add the diagonal matrix
element of the interaction term (the second term of Eq. (3.1)). It is easy to see
that then we should have k3 = k1 and k4 = k2, otherwise the diagonal matrix
element is zero. So, the contribution of the interaction term to the total energy
is

Eint =
g

V

∑

k1,k2

〈â†↑k1
â↑k1

〉〈â†↓k2
â↓k2

〉 =
g

V

∑

k1,k2

N↑k1
N↓k2

=
g

V
N↑N↓. (3.2)

Thus, the total energy of the Fermi gas is given by

E0 =
3

5
(EF↑N↑ + EF↓N↓) +

g

V
N↑N↓, (3.3)

and for the chemical potentials of the ↑ and ↓ components we have:

µ↑ =
∂E0

∂N↑
= EF↑ + n↓g, (3.4)

µ↓ =
∂E0

∂N↓
= EF↓ + n↑g, (3.5)

26



If the concentrations of the two fermionic components are equal, i.e. N↑ =
N↓ = N/2 and EF↑ = EF↓ = EF , then equations (3.3), (3.4), and (3.5) yield

E0 =

(

3

5
EF +

1

4
ng

)

N=
3

5
EFN

(

1 +
5

12

ng

EF

)

=
3

5
EFN

(

1 +
10

9π
kF a

)

, (3.6)

µ↑ = µ↓ = µ = EF +
1

2
ng = EF

(

1 +
ng

2EF

)

= EF

(

1 +
4

3π
kF a

)

. (3.7)

The small parameter of the perturbation theory is (ng/EF ) ∼ kFa≪ 1. As we
see, the first order correction to the energy is ∼ kF a. The second order correction
turns out to be ∼ (kFa)

2. The calculation of this correction is beyond the scope
of the present course.

1

2

E−E
0

=
2m

−E

2

2
F( ) ( E

F 2m
h
2 2

)− 1+

2

particle excitation hole excitation

kkh

k

k

Figure 3.1: Particle and hole excitations in a two-component Fermi gas.

Let us now discuss excitations of a weakly interacting Fermi gas with in-
terparticle repulsion. The picture of particle and hole excitations in the two-
component gas remains the same as discussed in subsection 2.3 for a single-
component gas. For T = 0, transferring for example a ↑ particle from the
state with wavevector k1 inside the Fermi sphere to the state with wavevector
k2 above the Fermi surface we change the energy by an amount E − E0 =
(~2k2

2/2m−~
2k2

1/2m) and create both a particle and a hole excitation as shown
in Fig.3.1. The particle excitation is an excited state of the system of (N + 1)
particles. By bringing an extra ↑-particle from infinity and putting it above
the Fermi surface we increase the energy by (~2k2

2/2m− EF ) compared to the
ground state of (N + 1) particles. The interaction energy does not change as it
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is momentum independent. The hole excitation is an excited state of (N − 1)
particles. Making a hole we increase the energy by (EF − ~

2k2
1/2m) compared

to the ground state of (N − 1) particles. Again, the interaction energy does not
change. So, the excitation branches behave themselves exactly in the same way
as depicted in Fig.2.2 for the ideal gas.

Does the interaction do something with the excitations? The answer is yes,
it does. In contrast to the ideal gas, the excitations of an interacting Fermi
gas interact with each other and have a finite lifetime, i.e. they are damped.
Consider a particle excitation with momentum ~k1 (k1 > kF ) at T = 0. It
interacts with a particle which has momentum ~k2 and is located inside the
Fermi sphere (k2 < kF ), makes a hole and creates two particle excitations,
with momenta ~k′

1 and ~k′
2. Using the terminology of the scattering theory, ↑

and ↓ particles with momenta ~k1 and ~k2, collide and go to the states with
momenta ~k′

1 and ~k′
2. In the language of particle and hole excitations, a

particle excitation with wavevector k1 (close to kF ) and energy E = ~
2k2

1/2m−
EF decays into two particle excitations and one hole excitation. This process is
caused by the interaction Hamiltonian (2.34):

g

V

∑

k2,k′

1

â†↑k′

1

â†↓k′

2

â↓k2
â↑k1

.

The decay rate is obtained by using the Fermi Golden rule:

1

τ
=
∑

k2,k′

1

2π

~

∣

∣

∣
〈↑ k′

1, ↓ k′
2|Ĥint| ↓ k2, ↑ k1〉

∣

∣

∣

2

δ

(

~
2k2

1

2m
+

~
2k2

2

2m
− ~

2k′21
2m

− ~
2k′22
2m

)

, (3.8)

and there is a momentum conservation law k1 + k2 = k′
1 + k′

2.
We now write k′22 = |k1 + k2|2 + k′21 − 2k′1|k1 + k2| cos θ′, where θ′ is the

angle between the vectors (k1 + k2) and k′
1. Since all momenta are close to

~kF , we may put k1 = k2 = k′1 = kF and set |k1 + k2| = 2kF cos θ/2 (θ
is the angle between k1 and k2) in the energy conservation law, i.e. in the
argument of the δ-function in Eq. (3.8). Then this argument becomes equal to
(2~

2k2
F /m)[cos2 θ/2 − cos θ/2 cos θ′], and we rewrite Eq. (3.8) as

1

τ
=

2πg2

~

∫

2πk′21 dk
′
1 2πk2

2dk2 sin θ dθ d cos θ′

(2π)6
N↓(k2)(1 −N↑(k

′
1))(1 −N↓(k

′
2))

×δ
(

2~
2k2

F

m
[cos2 θ/2 − cos θ/2 cos θ′]

)

, (3.9)

where the occupation numbers N↑(k) and N↓(k) are equal to unity for k < kF

and to zero for k > kF , and k′2 =
√

k2
1 + k2

2 − k′21 . The integration over d cos θ′

and then over dθ gives

1

τ
=

2mg2k2
F

(2π~)3

∫

dq′1dq2N↓(kF +q2)(1−N↑(kF+q′1))(1−N↓(kF +q1+q2−q′1)). (3.10)
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Here q1 = k1 − kF , q2 = k2 − kF , q
′
1 = k′1 − kF , and hence q′2 = q1 + q2 − q′1. In

order to have N↓(kF + q2) = 1, N↑(kF + q′1) = 0, N↓(kF + q1 + q2 − q′1) = 0, the
momenta should satisfy the inequalities

q2 < 0; q′1 > 0; q1 + q2 − q′1 > 0.

Since we consider the decay of a particle excitation we have q1 > 0, and these
inequalities are equivalent to

0 < q′1 < q1 + q2, (3.11)

−q1 < q2 < 0. (3.12)

Equations (3.11) and (3.12) determine the limits of integration over dq′1 and dq2
in Eq. (3.10). We then obtain:

1

τ
=
mk2

F g
2q21

(2π~)3
. (3.13)

As we consider the decay of an excitation with momentum k1 close to the
Fermi surface, the excitation energy can be written in the form E = ~

2k2
1/2m−

EF = ~vF q1, where vF = ~kF /m is the Fermi velocity. Recalling that k3
F =

3π2n and g = 4π~
2a/m we then rewrite equation (3.13) as

1

τ
=

3

2
nσvF

(

E

EF

)2

, (3.14)

where σ = 4πa2 is the cross section of elastic collisions. We thus see that
the presence of the filled Fermi sphere (Pauli blocking) makes the lifetime of
excitations rather large. It is clear that

1

τ
≪ E

~
. (3.15)

The ratio Eτ/~ is
Eτ

~
≃ π

4

(

EF

E

)

1

(kF a)2
≫ 1. (3.16)

3.2 Quasiparticles in Landau’s Fermi liquid theory

We now turn to the discussion of Landau’s Fermi liquid theory which was de-
signed for the description of strongly (repulsively) interacting Fermi systems,
such as liquid 3He. In a strongly interacting Fermi system instead of consider-
ing particles one introduces dressed particles, or quasiparticles. The number of
quasiparticles is equal to the total number of particles and they also obey Fermi
statistics. In free space each quasiparticle has momentum p and energy ǫ(p) (in
the rest of this Lecture p is the true momentum, not the wavevector). Let n(p)
be the distribution function of quasiparticles. Then, in a two-component Fermi
liquid, assuming that ǫ(p) and n(p) are spin independent, we have

2

∫

n(p)
d3p

(2π~)3
=
N

V
, (3.17)
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where N is the total number of particles. However, the total energy E is not
equal to 2

∫

n(p)ǫ(p)V d3p/(2π~)3. The energy E is a functional of n(p). Con-
sidering a change of E under an infinitesimally small variation δn of n(p) we
have

δE

V
= 2

∫

ǫ(p)δn(p)
d3p

(2π~)3
. (3.18)

So, ǫ(p) is a variational derivative of E with respect to n(p).
The classification of energy levels in a Fermi liquid is similar to that in an

ideal Fermi gas. The only difference is that particles are replaced by quasipar-
ticles. Therefore, the entropy is given by the well-known expression:

S

V
= −2

∫

d3p

(2π~)3
{n(p) lnn(p) + (1 − n(p)) ln (1 − n(p))} , (3.19)

and the distribution of quasiparticles at equilibrium obeys the Fermi-Dirac re-
lation:

n(p) =
1

exp{[ǫ(p) − µ]/T } + 1
. (3.20)

At T = 0 the chemical potential coincides with the boundary energy at the
Fermi sphere:

µ0 ≡ µ(T = 0) = ǫF ≡ ǫ(pF ). (3.21)

Note, however, that ǫ(p) itself may depend on n(p). The distribution of quasi-
particles at T = 0 represents a step function:

n(p) = θ(pF − p) ≡
{

1, p < pF

0, p > pF
(3.22)

and the Fermi momentum is related to the total density n by the same expression
as in an ideal Fermi gas: pF = ~(3π2n)1/3. At finite low temperatures the
distribution function is different from the step function (3.22) in the energy
interval ∼ T near the boundary energy ǫF .

The fact that a quasiparticle has momentum and energy means, in particu-
lar, that the uncertainty in the energy should be smaller than the least of the
important energy scales in the system. As we saw in previous lectures of the
course, in a weakly interacting Fermi gas at temperatures T ≪ EF only particles
next to the Fermi surface participate in the response of the system to external
perturbations. The energy width of the distribution function n(p) where this
happens is ∼ T . The situation is similar in the Fermi liquid, so that the least
important energy scale is T . The quantum uncertainty of the quasiparticle en-
ergy is ∼ ~/τ where τ is the relaxation time of the quasiparticles. So, we should
have the inequality

~

τ
≪ T. (3.23)

As we understand, only quasiparticles at energies within the width ∼ T next
to the Fermi surface can scatter, and they stay in the same energy interval. Since
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the scattering occurs in binary collisions, we have

1

τ
∼ T 2, (3.24)

and the inequality (3.23) is surely satisfied at T → 0. For a strongly interacting
Fermi liquid at T → 0 all energy parameters are ∼ ǫF . Hence, Eq. (3.24) may
be written as τ−1 ∼ T 2/~|ǫF |, and the condition (3.23) is equivalent to

T ≪ |ǫF |. (3.25)

Equations (3.24) and (3.25) are consistent with our discussion of the decay
rate τ−1

E of an excitation with energy E in a weakly interacting Fermi gas
in the previous subsection. We found Eq. (3.14), and the finite-temperature
relaxation rate that we discuss now is obtained by putting E ∼ T . Then,
with σ = 4πa2, vF = pF /m, pF ∼ ~n1/3, and E ∼ T , equation (3.14) gives
τ−1 ∼ (na3)2/3T 2/~EF . Approaching strong interactions one has na3 ∼ 1, so
that we have τ−1 ∼ T 2/~EF and the condition (3.23) reduces to T ≪ EF .

For low-temperature distributions which are close to the step-wise distri-
bution (3.22), to first approximation one can take n(p) in the form (3.22) for
calculating ǫ(p). Then the latter becomes a definite function of p. Next to the
Fermi surface where ǫ(p) makes sense, it can be expanded in powers of (p−pF ).
Confining ourselves to the linear term we have

ǫ− ǫF ≃ vF (p− pF ), (3.26)

where

vF =
∂ǫ

∂p
|p=pF

(3.27)

is the velocity of quasiparticles at the Fermi surface, and we may introduce an
effective mass of a quasiparticle:

m∗ =
pF

vF
. (3.28)

Let us now briefly discuss the interaction between quasiparticles. The de-
viation δn of the distribution function n(p) from the step-wise behavior (3.22)
achieved for non-interacting quasiparticles, leads to a change in the quasiparticle
energy. Assuming that both quantities are spin independent we have

δǫ(p) =

∫

f(p,p′)δn(p′)
d3p′

(2π~)3
. (3.29)

The function f(p,p′) is called interaction function of quasiparticles. Then, near
the Fermi surface the quasiparticle energy can be written as

ǫ(p) − ǫF = vF (p− pF ) +

∫

f(p,p′)δn(p′)
d3p′

(2π~)3
. (3.30)
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The deviation δn is significantly different from zero only near the Fermi surface.
For this reason we may write

f(p,p′) =
π2

~
3

2m∗pF
F (ϑ), (3.31)

where ϑ is the angle between p and p′. Taking into account the exchange
interaction one adds the term σ σ

′G(ϑ) to F (ϑ), where σ and σ
′ are Pauli ma-

trices acting on spin variables corresponding to the momentum variables p and
p′. Note that in the two-component liquid f represents the second variational
derivative of the total energy with respect to the distribution functions of the
components.

The interaction function f is a very important quantity and the knowledge
of this function allows one to find many observables. In particular, using f
one can establish a relation between the true particle mass m and the effective
mass m∗. This is done in Problem 1 to this Lecture. Here we consider a simple
example of the weakly interacting two-component Fermi gas. To first order in
the perturbation theory the total energy is

E0 =
∑

p

p2

2m
(n↑(p) + n↓(p)) +

g

V

∑

p,p′

n↑(p)n↓(p
′).

Then, for the quasiparticle energies we have:

ǫ↑(p) =
δE0

δn↑
=

p2

2m
+
g

V

∑

p

n↓(p) =
p2

2m
+ n↓g = µ↑ +

(p2 − p2
F )

2m
,

ǫ↓(p) =
δE0

δn↓
=

p2

2m
+ n↓g = µ↑ +

(p2 − p2
F )

2m
.

The interaction function is given by

f =
δ2E0

V δn↑δn↓
= g.

3.3 Hydrodynamic regime

Non-equilibrium states of the Fermi liquid are described by distribution func-
tions which depend not only on momenta, but also on coordinates and time.
Such functions n(p, r, t) obey the kinetic equation:

dn

dt
= Stn, (3.32)

where Stn is the so-called collisional integral determining the rate of change of
the quasiparticle number in a given element of the phase volume, due to their
collisions with each other. For only slightly non-equilibrium states we have:

n(p, r, t) = n0(p) + δn(p, r, t), (3.33)
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and the quasiparticle energy is ǫ = ǫ0 + δǫ, where

∂ǫ

∂r
=
∂δǫ

∂r
=

∫

f(p,p′)
∂δn(p′, r, t)

∂r

d3p′

(2π~)3
. (3.34)

The full time derivative of n(p, r, t) is expressed through partial derivatives as

dn

dt
=
∂δn

∂t
+
∂δn

∂r
ṙ +

∂n

∂p
ṗ. (3.35)

For quasiparticles the role of the Hamiltonian function is played by ǫ. So, the
Hamiltonian equations read:

ṙ =
∂ǫ

∂p
; (3.36)

ṗ = − ∂ǫ

∂r
. (3.37)

Then, confining ourselves to zero and linear order terms in δn we obtain:

∂δn

∂t
+
∂ǫ0
∂p

∂δn

∂r
− ∂δǫ

∂r

∂n0

∂p
= Stn. (3.38)

Equations (3.36), (3.37), and (3.38) are classical. Hence, the de Broglie
wavelength of quasiparticles ~/pF should be much smaller than the character-
istic distance L at which the distribution function changes: L≫ ~/pF . So, the
frequency of change of the distribution function, which is ω ∼ vF /L, should
satisfy the condition:

~ω ≪ |ǫF |. (3.39)

Let us now discuss the limiting case where

ωτ ≪ 1, (3.40)

with τ−1 ∝ T 2 being the relaxation rate of quasiparticles. The criterion (3.40)
corresponds to the hydrodynamic regime. Equation (3.40) is equivalent to the
condition l ≪ λ, where l is the mean free path of quasiparticles, and λ is
their wavelength. In this case quasiparticle collisions establish a local thermal
equilibrium in every elementary volume of the system. This means that we are
dealing with ordinary hydrodynamic waves propagating with velocity

u =

√

∂P

∂ρ
, (3.41)

where P is the pressure, ρ is the mass density, and at a finite temperature the
partial derivative should be taken at a constant entropy. These waves have the
dispersion relation

ω = uk, (3.42)

with k being their wavevector.

33



For the weakly interacting Fermi gas, where τ−1 is given by Eq. (3.14), the
inequality (3.40) requires extremely small frequencies:

ω ≪ nσvF

(

T

EF

)2

∼ (na3)2/3

(

T

EF

)

T.

For realistic densities in the range from 1012 to 1014 cm−3 and typical values of
the scattering length a ∼ 100 Å, assuming T ∼ 0.1EF we obtain that ω should
be smaller than T by more than 4 orders of magnitude. At commonly used
temperatures ranging from 100 nK to 1 µK this requires frequencies ω ≪ 10
s−1. So, it is rather difficult to reach the hydrodynamic regime in the weakly
interacting Fermi gas.

3.4 Collisionless regime. Zero sound

If the condition opposite to Eq. (3.40) is satisfied, i.e.

ωτ ≫ 1, (3.43)

then there is no equilibrium in each small volume of the system, and quasipar-
ticle collisions do not play a role. This regime is identified as collisionless, and
there is another type of waves called zero sound.

So, under the condition (3.43) we may neglect the collisional integral in the
kinetic equation (3.38) and write it in the form:

∂δn

∂t
+ v

∂δn

∂r
− ∂δǫ

∂r

∂n0

∂p
= 0, (3.44)

where v = ∂ǫ0/∂p is the unperturbed quasiparticle velocity, so that v = vF n

with n being a unit vector. Taking n0 = θ(pF − p) from Eq. (3.22) we have

∂n0

∂p
= −nδ(p− pF ) = −vδ(ǫ− ǫF ). (3.45)

Then, assuming that

δn = δ(ǫ− ǫF )ν(n) exp(ikr − iωt), (3.46)

where ν(n) is an unknown function, and taking

∂δǫ

∂r
=

∫

f(p,p′)
∂δn(p′, r, t)

∂r

d3p′

(2π~)3
, (3.47)

we reduce Eq. (3.44) to

(ω − vF nk)ν(n) =
(nk)p2

F

(2π~)3

∫

f(n,n′)ν(n′)dOp′ , (3.48)

where n and n′ are unit vectors in the directions of p and p′.
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We now select k as a polar axis, and let θ, φ be the polar and azimuthal
angles of n. Introducing the velocity of zero sound u0 = ω/k, from Eq. (3.48)
we have:

(

u0

vF
− cos θ

)

ν(θ, φ) = cos θ

∫

F (ϕ)ν(θ′, φ′)
dOp′

4π
, (3.49)

where ϕ is the angle between p and p′, and the function F (ϕ) is given by
Eq. (3.31). Rewriting Eq. (3.49) as

ν̃(θ, φ) = cos θ

∫

F (ϕ)ν̃(θ′, φ′)

u0/vF − cos θ′
dOp′

4π
, (3.50)

where ν̃ = (u0/k − cos θ)ν, we see that

u0 > vF , (3.51)

otherwise there is a pole in Eq. (3.50) and ω will have an imaginary part for
real k.

The zero sound waves deform the Fermi surface. Assuming that f = f0 =
const (F = F0 = const) we make sure that the Fermi surface becomes a surface
of rotation elongated in the direction of the wave propagation. In this case we
obtain

ν = const
cos θ

u0/k − cos θ
. (3.52)

Substituting Eq. (3.52) into Eq. (3.49) we find

F0

∫ π

0

cos θ

u0/k − cos θ

2π sin θdθ

4π
= 1. (3.53)

This gives
1

F0
=

u0

2vF
ln

(

u0 + vF

u0 − vF

)

. (3.54)

For the weakly (repulsively) interacting two-component Fermi gas we have
f = g and m∗ = m (see Problem 1 to this Lecture). This yields

F =
pFm

2π2~3
g =

2

π

pFa

~
≪ 1. (3.55)

Then, from Eq. (3.54) we obtain:

u0 ≈ vF

[

1 + 2 exp

(

− π~

pFa

)]

. (3.56)

Thus, the velocity of zero sound in the weakly interacting Fermi gas almost
coincides with the Fermi velocity.
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Problems 3

3.1 Establish a relation between the true particle mass m and the effective mass
m∗ using the interaction function of quasiparticles.

The velocity of a quasiparticle is ∂ǫ/∂p. Hence, the flux of quasiparticles is
∫

n(∂ǫ/∂p)d3p/(2π)3. Since the number of quasiparticles coincides with the
number of particles, the transfer of mass by quasiparticles is a product of their
flux and the particle mass m. So, we have

∫

pn(p)
d3p

(2π~)3
=

∫

m
∂ǫ

∂p
n(p)

d3p

(2π~)3
. (3.57)

Making a variation we obtain:

∫

pδn
d3p

(2π~)3
= m

∫

∂ǫ

∂p
δn

d3p

(2π~)3
−m

∫

f(p,p′)
∂n(p′)

∂p′ δn(p′)
d3pd3p′

(2π~)6
.

As the quantity δn is arbitrary we find:

p

m
=
∂ǫ

∂p
−
∫

f(p,p′)
∂n(p′)

∂p′
d3p′

(2π~)3
.

Taking a step-wise distribution n(p) = θ(pF − p), using Eq. (3.26) for the
quasiparticle energy, and putting p = pF n where n is a unit vector, we then
have

1

m
=

1

m∗ +
pF

(2π)2~3

∫ π

0

f(ϕ) cosϕ sinϕdϕ, (3.58)

where ϕ is the angle between p and p′.
For the weakly interacting two-component Fermi gas we have f = g = const,

and Eq. (3.58) gives m∗ = m.

3.2 Consider a two-component Fermi gas with repulsive interaction between
particles in an external harmonic potential V (r) = mω2r2/2 at T = 0. Find the
density distribution.

Lecture 4. Attractively interacting Fermi gas. Su-

perfluid pairing

4.1 Cooper problem

This Lecture is dedicated to a weakly interacting two-component Fermi gas with
attractive interaction between fermions of different components. We will discuss
the phenomenon of superfluid pairing and superfluid phase transition.
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In order to get a physical intuition we first consider two attractively inter-
acting particles in vacuum. The wavefunction of their relative motion obeys the
Schroedinger equation

{

−~
2

m
∆r + U(r)

}

ψ(r) = Eψ(r), (4.1)

where r is the relative coordinate. Representing the wavefunction ψ(r) as

ψ(r) =
∑

k

ck exp(ikr), (4.2)

we have
∑

k′ ck′ [E−2Ek′ −U(r)] exp(ik′r) = 0 with Ek = ~
2k2/2m, and obtain

a set of equations for the coefficients ck:

(E − 2Ek)ck =
1

Ω

∑

k′

U(k − k′)ck′ , (4.3)

where

U(k − k′) =

∫

drU(r) exp[i(k′ − k)r], (4.4)

and Ω is the volume.
We now use the model where

U(k − k′) =

{

−V0; Ek′ ≤ ω̃
0, otherwise

(4.5)

Then we obtain

ck =
−V0

E − 2Ek

1

Ω

∑

k′

ck′θ(ω̃ − Ek′ ),

where the θ-function is equal to unity for positive values of the argument and
zero for negative arguments. Multiplying both sides of this equation by θ(ω̃−Ek)
and making a summation over k we arrive at the relation;

∑

k

ckθ(ω̃ − Ek) =
1

Ω

∑

k

−V0θ(ω̃ − Ek)

E − 2Ek

∑

k′

ck′θ(ω̃ − Ek′ )

or

− 1

Ω

∑

k

V0θ(ω̃ − Ek)

E − 2Ek
= 1. (4.6)

Searching for the solution with a negative energy, that is E = −2∆ < 0, we
find:

V0

Ω

∑

k

θ(ω̃ − Ek)

2∆ + 2Ek
=

∫ k0

0

V0

(~2k2/m+ 2∆)

4πk2dk

(2π)3
= 1,

where k0 =
√

2mω̃/~. This gives

mV0k0

2π2~2

{

1 −
√

2m∆

~k0
arctan

(

~k0√
2m∆

)

}

= 1. (4.7)
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Assuming that ∆ ≪ ω̃ and, hence, k0 =
√

2mω̃/~ ≫
√

2∆m/~, we have

λ

(

1 − π

2

√

∆

ω̃

)

= 1, (4.8)

where

λ =
mk0

2π2~2
V0. (4.9)

Equation (4.8) clearly shows that a bound state of two particles may exist only
for λ > 1, which is a known result.

It is now easy to turn to the famous Cooper problem which lies in the basis of
superfluid pairing phenomenon. Consider two attractively interacting fermions
on top of a filled Fermi sphere, so that the states with wavevectors k < kF are
filled and thus blocked for the occupation. Asssume that the center of mass of
the two fermions is at rest and, hence, their wavefunction is

ψ(r) =
∑

|k|>kF

ck exp(ikr), (4.10)

with r being the separation between these fermions. We thus return to the
already discussed problem, where now the coefficients ck are given by

ck =
1

E − 2Ek

∑

|k|>kF ,|k′|>kF

U(k − k′) ck′ . (4.11)

We then use the following model:

U(k − k′) =

{

−V0; Ek > EF , EF < Ek′ ≤ EF + ω̃
0, otherwise

(4.12)

We search for the solution in the form E = 2EF − 2∆ (∆ > 0), i.e. for the
bound state of the two fermions on top of the filled Fermi sphere and assume
that the inequality ∆ ≪ ω̃ ≪ EF is satisfied. Then we have:

∫ k′

0

kF

V0

(2∆ + 2Ek − 2EF )

4πk2dk

(2π)3
= 1, (4.13)

where k′0 =
√

2m(EF + ω̃) ≈ kF + mω̃/~kF , and (mω̃/~kF ) ≪ kF . Equation
(4.13) then yields:

mV0k
2
F

2π2~2

∫ mω̃/~kF

0

d(k − kF )

(2m∆/~2) + 2kF (k − kF )
=
λ

2
ln

(

ω̃

∆

)

= 1. (4.14)

So, we thus obtain

∆ = ω̃ exp

{

− 2

λ

}

6= 0. (4.15)

In other words, two attractively interacting fermions on top of the filled Fermi
sphere always form sort of bound pairs. This phenomenon is called superfluid
pairing, and we will see later in the course how it leads to superfluidity. Note
that it is a collective phenomenon. The presence of the filled Fermi sphere is
crucial.
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4.2 BCS approach. Gapped single-particle excitations

We now consider a weakly (attractively) interacting gas of ↑ and ↓ fermions
with densities n↑ = n↓ = n. The grand-canonical Hamiltonian of this system is

obtained by subtracting the term µN̂ (N̂ is the operator of the total number of
particles) from Ĥ (3.1) and it reads:

Ĥ =
∑

k; σ=↑,↓
ξkâ

†
σkâσk +

g

V

∑

k1,k2,k3

â†↑k3
â†↓k4

â↓k2
â↑k1

, (4.16)

where g = 4π~
2a/m < 0, the chemical potential is µ = ~

2k2
F /2m, and we

introduced the notation

ξk =
~

2k2

2m
− µ =

~
2

2m
(k2 − k2

F ). (4.17)

We will denote the first term of Eq. (4.16) as Ĥ0µ, and the second (interaction)

term as Ĥint. In terms of the field operators ψ̂↑, ψ̂↓, the term Ĥ0µ is obtained

by subtracting µ
∑

σ

∫

ψ̂†
σ(r)ψ̂σ(r)d3r from ĤK (2.30) and reads:

Ĥ0µ =

∫

d3r
∑

σ

ψ̂†
σ(r)

(

− ~
2

2m
∇2 − µ

)

ψ̂σ(r). (4.18)

The interaction part of the Hamiltonian is given by equation (2.33) and we
introduce a significant simplification writing Ĥint in the form:

Ĥint=

∫

d3r{U(r)[ψ̂†
↑(r)ψ̂↑(r)+ψ̂

†
↓(r)ψ̂↓(r)]+∆(r)ψ̂†

↑(r)ψ̂
†
↓(r)+∆∗(r)ψ̂↓(r)ψ̂↑(r)},

(4.19)
where the quantities U(r) and ∆(r) are called the Hartree-Fock potential and
pairing potential, respectively. They are given by the relations:

U(r) = g〈ψ̂†
↑(r)ψ̂↑(r)〉 = g〈ψ̂†

↓(r)ψ̂↓(r)〉, (4.20)

∆(r) = g〈ψ̂↓(r)ψ̂↑(r)〉. (4.21)

In free space U and ∆ are independent of r and are real, so that ∆ = ∆∗.
Why do we write Eq. (4.19)? Note that there is Wick’s theorem in an ideal

gas (however, ∆ in this case is zero):

〈ψ̂†
↑ψ̂

†
↓ψ̂↓ψ̂↑〉 = 〈ψ̂†

↑ψ̂↑〉〈ψ̂↓†ψ̂↓〉 + 〈ψ̂†
↑ψ̂

†
↓〉〈ψ̂↓ψ̂↑〉 + other pairs of averages.

Assuming weak interactions we simply kept in mind this theorem and used a
partial average in Eq. (4.19).

It is also important that the Hartree-Fock potential can be absorbed in the
chemical potential by making a transformation µ → µ − U , and it essentially
drops out of the problem. We thus may restrict ourselves to the interaction
Hamiltonian

Ĥint = ∆

∫

d3r[ψ̂†
↑(r)ψ̂

†
↓(r) + ψ̂↓(r)ψ̂↑(r)]. (4.22)
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Then the momentum-space grand-canonical Hamiltonian (4.16) takes the form:

ĤBCS =
∑

k;σ=↑,↓
ξkâ

†
σkâσk + ∆

∑

k

(â↓kâ↑−k + â†↑−kâ
†
↓k). (4.23)

The approach based on the Hamiltonian (4.23) belongs to Bardeen, Cooper,
and Schrieffer and is commonly identified as BCS approach.

The Hamiltonian (4.23) is bilinear in the particle operators âσ,k and hence
can be reduced to a diagonal form by using a canonical Bogoliubov transforma-
tion. We employ the Bogoliubov transformation in the form:

b̂↑k = ukâ↑k + vkâ
†
↓−k, (4.24)

b̂↓k = ukâ↓k − vkâ
†
↑−k, (4.25)

where the new (quasiparticle) operators b̂σk satisfy the same (anti)commutation
relations as the particle operators âσk:

b̂σkb̂
†
σ′k′ + b̂†σ′k′ b̂σk = δσσ′δkk′ , (4.26)

b̂σkb̂σ′k′ + b̂σ′k′ b̂σk = 0. (4.27)

From Eq. (4.24) we then have

{b̂σkb̂
†
σ′k′} = ukuk′{âσkâ

†
σ′k′}+(2δσσ′−1)vkvk′{â†σ′−k

âσ−k′} = (u2
k+v2

k)δkk′δσσ′ ,

where the symbol { } stands for the anticommutation: {âσkâ
†
σ′k′} = âσkâ

†
σ′k′ +

â†σ′k′ âσk. We thus obtain the normalization condition

u2
k + v2

k = 1. (4.28)

The inverse Bogoliubov transformation reads:

â↑k = ukb̂↑k − vk b̂
†
↓−k, (4.29)

â↓k = ukb̂↓k + vk b̂
†
↑−k. (4.30)

Then, for reducing ĤBCS (4.23) to the diagonal form

ĤBCS = E0 +
∑

σ,k

ǫk b̂
†
σkb̂σk, (4.31)

the functions uk, vk should satisfy the Bogoliubov-de Gennes equations

ξkuk + ∆vk = ǫkuk, (4.32)

−ξkvk + ∆uk = ǫkvk. (4.33)

Taking into account the normalization condition (4.28), equations (4.32) and
(4.33) yield:

u2
k =

1

2

(

1 +
ξk
ǫk

)

, (4.34)

v2
k =

1

2

(

1 − ξk
ǫk

)

, (4.35)
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Figure 4.1: Spectrum of single-particle excitations for an attractively interacting
two-component Fermi gas.

and lead to the dispersion relation

ǫk =
√

ξ2k + ∆2. (4.36)

u v

k

1

k
,k

u
k

vk

k
F

1/ 2

Figure 4.2: The functions uk (brown curve) and vk (blue curve).

These quantities are shown in Fig. 4.1 and Fig. 4.2. Thus, the spectrum of
single-particle excitations has a gap. This implies that the density of states for

41



the excitations has a singularity at ǫ = ∆ as shown in Fig. 4.3:

ν(ǫ) =

∫

δ(ǫ−
√

ξ2k + ∆2)
d3k

(2π)3
= ν(EF )

ǫ√
ǫ2 − ∆2

; |ǫ| > ∆, (4.37)

where ν(EF ) = mkF /2π
2
~

2 is the particle density of states at the Fermi surface.

ε

ν(ε)

∆

ν (E   
F
)

Figure 4.3: Density of states for single-particle excitations.

4.3 Order parameter and transition temperature

We now have to find the gap ∆. It is given by equation (4.21) and is, therefore,
also termed order parameter. We write Eq. (4.21) in the form:

∆ = g〈ψ̂↓(r)ψ̂↑(r)〉 =
g

V

∑

k

〈â↓−kâ↑k〉 =
g

V

∑

k

〈(ukb̂↓−k + vk b̂
†
↑k)(uk b̂↑k − vk b̂

†
↓−k)〉

=
g

V

∑

k

(ukvk〈(b̂†↑kb̂↑k − b̂↓−kb̂
†
↓−k)〉 = − g

V

∑

k

ukvk(1 − 2Nk). (4.38)

Single-particle excitations obey Fermi statistics and their occupation numbers
Nk are given by the Fermi-Dirac relation:

Nk = 〈b̂†σkb̂σk〉 =
1

exp(ǫk/T ) + 1
.

Using the relation ukvk = ∆/2ǫk following from Eqs. (4.34) and (4.35) we then
transform Eq. (4.38) to

|g|
∫

tanh(ǫk/2T )

2ǫk

d3k

(2π)3
= 1. (4.39)
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Equation (4.39) is called the gap equation. At T = 0 it becomes

|g|
∫

1

2
√

∆2
0 + ξ2k

d3k

(2π)3
= 1. (4.40)

The main contribution to the integral in Eq. (4.40) comes from momenta k close
to kF and we may write |ξk| ≃ ~vF |k − kF | ≪ EF . We thus obtain:

|g|ν(EF )

∫ ω̃

0

dξ
√

ξ2 + ∆2
0

= λ ln

(

ω̃

∆0

)

= 1, (4.41)

where recalling that g = 4π~
2a/m we have λ = 2kF |a|/π, and the high-energy

cut-off ω̃ may be put of the order of EF . This gives the zero-temperature gap:

∆0 ≈ EF exp(−1/λ) = EF exp(−π/2kF |a|) ≪ EF . (4.42)

Let us now return to the initial gap equation (4.39). The highest temperature
at which this equation has a non-trivial solution is the critical temperature Tc.
Only below this temperature the spectrum of single-particle excitations has a
gap. The calculation of Tc and ∆(T ) is presented in Problem 1 to this Lecture.
The critical temperature is related to the zero-temperature gap as

Tc = 0.57∆0, (4.43)

and the temperature dependence of the gap is given by

∆ = ∆0

[

1 −
√

2πT

∆0
exp(−∆0/T )

]

; T ≪ ∆0, (4.44)

∆ = 3.06Tc

(

1 − T

Tc

)1/2

; T → Tc. (4.45)

The dependence ∆(T ) is displayed in Fig. 4.4.
The spectrum of single-particle excitations, ǫ(k), satisfies the Landau crite-

rion of superfluidity discussed in Lecture 6 of Part 1 of the course. The minimum
value of ǫ(k)/k is non-zero. Therefore, the weakly interacting two-component
Fermi gas with intercomponent attraction is superfluid. We will discuss the
issue of fermionic superfluidity in Lecture 5. Here we only mention that since
∆(T ) decreases with increasing temperature and becomes zero for T > Tc, the
temperature Tc is the superfluid transition temperature. For T > Tc the spec-
trum is not gapped and is in some sense similar to the spectrum of an ideal gas
(Fermi liquid), so that there is no superfluidity.

Note that the picture of pairing near the Fermi surface is better imaged
as correlation between states in k-space, which allows two particles to have
zero total momentum. The momentum interval δk in the region of correlations
corresponds to the energy interval ∆. So, we have δk ∼ ∆/~vF . The related
length is ζ ∼ ~vF /∆. It determines a characteristic distance between particles
with correlated momenta. At T = 0 it is called coherence length and is given by

ζ0 =
~vF

∆0
∼ 1

kF
exp

(

π

2|kF |a

)

≫ n−1/3. (4.46)
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Figure 4.4: The gap in the spectrum of single-particle excitations as a function
of temperature.

Problems 4

4.1 Find a relation between the zero-temperature gap ∆0 and the critical tem-
perature Tc. Calculate ∆(T ) in the limit of ultralow temperatures T ≪ ∆0.

At T = Tc the gap vanishes and the excitation energy is ǫk = |ξk| = ~
2|k2 −

k2
F |/2m. Thus the gap equation (4.39) becomes:

|g|
∫

tanh(|ξk|/2Tc)

2|ξk|
d3k

(2π)3
= 1. (4.47)

On the other hand, at T = 0 we have ǫk =
√

ξ2k + ∆2
0 and the gap equation

(4.40). Substracting Eq. (4.40) from Eq. (4.47) and turning to the integration
over dξk we obtain:

∫ ∞

−EF

[

tanh(|ξk|/2Tc)

2|ξk|
− 1

2
√

ξ2k + ∆2
0

]

mk

2π2~2
dξk = 0. (4.48)

Assuming that both ∆0 and Tc are very small we divide the area of integration
in Eq. (4.48) into two parts: from −ω to ω, and from ω to infinity plus from −EF

to −ω. The quantity ω is chosen such that EF ≫ ω ≫ ∆0, Tc. In the second
area, i.e. from ω to ∞ and from −EF to −ω, we may put tanh(|ξk|/2Tc) = 1
and ∆0 = 0. Hence, the integrand vanishes, and we are left with the integration
from −ω to ω for which we put k = kF outside the square brackets. Taking into
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account that the integrand becomes an even function of ξk we reduce Eq. (4.48)
to

∫ ω

0

[

tanh(ξk/2Tc)

2ξk
− 1

2
√

ξ2k + ∆2
0

]

dξk = 0. (4.49)

Integrating the first term in the square brackets we turn to the integration
variable ξk/2Tc, and integrating the second term to the integration variable
ξk/∆0. The integration yields:

ln

(

ω

2Tc

)

tanh

(

ω

2Tc

)

−
∫ ω/2Tc

0

lnx

cosh2 x
dx− ln

{

ω

∆0
+

√

1 +
ω2

∆2
0

}

= 0

Since ω ≫ Tc,∆0, we may put tanh(ω/2Tc) = 1, set the upper limit of inte-
gration over dx equal to infinity, and write the last term as ln(2ω/∆0). This
gives:

ln
∆0

4Tc
=

∫ ∞

0

lnx

cosh2 x
dx = lnπ − 2 ln 2 − C,

where C = 0.577 is the Euler constant. We thus obtain equation (4.43):

Tc =
expC

π
∆0 = 0.57∆0.

For calculating ∆(T ) at T ≪ ∆0 we substract the gap equation (4.39) from
the zero-temperature gap equation (4.40) and thus obtain:

∫ ∞

0

[

1

2
√

ξ2k + ∆2
0

− tanh(
√

ξ2k + ∆2/2T )

2
√

ξ2k + ∆2

]

k2dk

2π2
= 0.

Again, turning to the integration over dξk and dividing the area of integration
into two parts: from −ω to ω, and from ω to ∞ plus from −EF to −ω, we select
ω such that ∆0 ≪ ω ≪ EF and find:

∫ ω

0

[

1
√

ξ2k + ∆2
0

− tanh(
√

ξ2k + ∆2/2T )
√

ξ2k + ∆2

]

dξk = 0. (4.50)

Using a relation

tanhx = 1 − 2 exp(−x)
expx+ exp(−x)

we reduce equation (4.50) to

ln
∆

∆0
+ 2

∫ ω

0

exp(−
√

ξ2k + ∆2/T )
√

ξ2k + ∆2
dξk = 0,

where we took into account that ω ≫ ∆0. Since T ≪ ∆,∆0 the main contribu-
tion to the remaining integral over dξk comes from ξk ≪ ∆. We then represent
√

ξ2k + ∆2 in the exponent as
√

ξ2k + ∆2 = ∆ + ξ2k/2∆ and put this quantity
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equal to ξk in the denominator of the integrand. After the integration over dξk
we have:

ln
∆0

∆
=

√

2πT

∆
exp

(

−∆

T

)

. (4.51)

Writing ∆ = ∆0 − δ∆ and assuming that δ∆ ≪ T , from Eq. (4.51) we obtain:

δ∆ =
√

2π∆0T exp

(

−∆0

T

)

.

This equation justifies the assumption that δ∆ ≪ T . So, the final result is given
by equation (4.44):

∆(T ) = ∆0

[

1 −
√

2πT

∆0
exp

(

−∆0

T

)

]

.

4.2 Calculate ∆(T ) at temperatures near Tc, where ∆ ≪ T and (Tc − T ) ≪
Tc.

Lecture 5. Superfluidity in Fermi gases

5.1 Landau criterion in Fermi gases

In this Lecture we discuss the phenomenon of superfluidity in attractively in-
teracting Fermi gases. As we have established in Lecture 4, the spectrum of

single-particle excitations is ǫ(p) =
√

∆2 + ξ2p, where ξp = vF (p − pF ) (p is

here the true momentum, not the wavevector). The gap ∆ is exponentially
small in the limit of weak interactions and becomes zero for T > Tc = 0.57∆0,
with ∆0 being the zero-temperature gap. In Fig. 5.1 we compare the spectra
of attractively and repulsively interacting Fermi gases. As we see, there is a
drastic difference. For the attractively interacting gas there is a minimum value
(ǫ(p)/p)min > 0, whereas for repulsive interactions it is zero.

Let us repeat the arguments given in Lecture 6 of Part 1 of the course,
now on support of superfluidity in attractively interacting Fermi gases. Imagine
that an excitation with energy ǫ(p) and momentum p appears in such a system.
Then the energy and momentum of the gas become ǫ(p) and ~p. The excitation
appears, for example, if the gas is in a capillary and the latter is moving with
velocity −v. Then, in the reference frame where the capillary is at rest but the
gas is moving with velocity v, we have the energy and momentum:

E = ǫ(p) + p0v +
Mv2

2
,

p′ = p +Mv,

where M is the mass of the gas. The term Mv2/2 is the initial kinetic energy of
the gas, and ǫ+pv is the energy change due to the appearance of the excitation.
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Figure 5.1: Spectrum of single-particle excitations for attractively and repul-
sively interacting Fermi gases.

So, at T = 0 we should have ǫ + pv < 0, otherwise the excitation can not
appear. This is possible only if v > (ǫ/p). Thus, if there is a minimum value
(ǫ/p)min = vc, for velocities v < vc the excitations do not appear. Then, there
is no friction between the capillary and the gas, and one has superfluidity.

So, the superfluidity requires the condition
(

ǫ(p)

p

)

min

> 0,

and the velocity of the motion

v < vc =

(

ǫ(p)

p

)

min

.

For the attractively interacting Fermi gas we have a very small critical velocity:

vc ≈ ∆

vF
∼ vF exp

(

− π

2kF |a|

)

. (5.1)

5.2 Superfluid current

Let us now discuss the superfluid current. First of all, we write the Bogoliubov-
de Gennes equations for the coordinate-space wavefunctions of the excitations.
In free space they read (see Problem 1 to this Lecture):

Ĥ0uν + ∆vν = ǫνuν , (5.2)

−Ĥ0vν + ∆∗uν = ǫνvν , (5.3)

where Ĥ0 = (−~
2/2m)(d2/dr2) − µ, and the index ν labels quantum states of

the excitations. Assuming that in the presence of current the order parameter
(gap) is complex we write

∆ = ∆̄ exp(2iφ). (5.4)
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Comparing equations (5.2) and (5.3) with the Bogoliubov-de Gennes equations
for a Bose-condensed gas (see Lecture 5 of Part 1) we see that ∆ plays a role of
the ”wavefunction of a condensate of Cooper pairs”. We now write

uν = ūν exp(iφ), (5.5)

vν = v̄ν exp(−iφ). (5.6)

For small gradients of φ and vanishingly low momenta of the excitations the
quantities ū, v̄ coincide with uk/

√
V , vk/

√
V where uk vk are given by Eqs. (4.34)

and (4.35). This is clear from the Bogoliubov-de Gennes equations obtained af-
ter substituting uν (5.5) and vν (5.6) into Eqs. (5.2) and (5.3):

Ĥ0ūν + ∆̄v̄ν + gradients of φ = ǫūν ,

−Ĥ0v̄ν + ∆̄∗ūν + gradients of φ = ǫv̄ν .

The operator of the current is given by

ĵ = − i~

2m

∑

σ

[

ψ̂†
σ∇ψ̂σ − (∇ψ̂†

σ)ψ̂σ

]

. (5.7)

Since the field operators ψ̂σ can be expressed as (see Problem 1 to this Lecture):

ψ̂↑ =
∑

ν

(uν b̂↑ν − v∗ν b̂
†
↓ν),

ψ̂↓ =
∑

ν

(uν b̂↓ν + v∗ν b̂
†
↑ν),

at T = 0 we obtain the following expectation value

〈j〉 = − ih

2m

∑

σν

(vν∇v∗ν − v∗ν∇vν) =
~

m

(

∑

σν

v2
ν

V

)

∇φ (5.8)

Let us now recall the expression for vk in the uniform case. It is given by
Eq. (4.35). Except for a narrow vicinity of kF , where the presence of the gap
∆ in the expression for the excitation energy is important, we have vk = 1 for
k < kF and vk = 0 for k > kF . Thus, equation (5.8) gives:

〈j〉 =
~

m
∇φ

∑

σ

∫ kF

0

k2

2π2
dk =

~

m
n∇φ. (5.9)

where n =
∑

σ nσ is the total density. So, the quantity

vs =
~

m
∇φ (5.10)

is the superfluid velocity.
The superfluid current is

js = nvs. (5.11)

Thus, at T = 0 the whole mass of the gas (liquid) is superfluid.
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5.3 Bogoliubov-Anderson sound

We now consider hydrodynamic equations for the superfluid Fermi gas. They
read:

∂n

∂t
+ div(nv) = 0, (5.12)

m
∂v

∂t
+ ∇

[

1

2
mv2 + µ(n)

]

= 0. (5.13)

We then write n = n̄+ δn, where n̄ is the mean value of the density. Assuming
small velocities v and density fluctuations δn, we confine ourselves only to terms
that are linear in v and δn. Writing v = (~/m)∇φ we thus obtain linearized
hydrodynamic equations:

∂δn

∂t
+ ∇

(

~n̄

m
∇φ
)

= 0, (5.14)

~
∂∇φ
∂t

+
∂µ

∂n

∣

∣

∣

n=n̄
∇δn = 0. (5.15)

Taking the time derivative in Eq. (5.14) and substituting ∂∇φ/∂t from Eq. (5.15)
we obtain:

∂2δn

∂t2
=

n̄

m

∂µ

∂n

∣

∣

∣

n=n̄
∇2δn. (5.16)

The derivative of the chemical potential with respect to the density is given
by

∂µ

∂n

∣

∣

∣

n=n̄
=

∂

∂n

(

~
2

2m
(3π2n)2/3

)

∣

∣

∣

n=n̄
=

2EF

3n̄
.

Writing small fluctuations of the density as

δn ∝ exp(−iǫt/~ + ikr)

we then find
( ǫ

~

)2

=
2EF

3m
k2,

or

ǫ = ~

√

2EF

3m
k =

~vF√
3
k. (5.17)

We thus see that there is one more branch of excitations. It is related to
fluctuations of the phase of ∆. These excitations obey the Bose statistics and
are called Bogoliubov-Anderson sound. Note that for this branch of excitations
we have (ǫ/~k)min = vF /

√
3 and they do not destroy superfluidity. They do

not even change the critical velocity.
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5.4 Superfluid and normal density. Thermodynamic quan-

tities near T
c

At a finite temperature the superfluid gas can be implicitly divided into two
parts: superfluid and normal. Repeating the arguments given in Lecture 6 of
Part 1 of the course we now imagine that the ”gas of excitations” is moving
with respect to the liquid (gas) with velocity v. The distribution function for
the excitations is then obtained by replacing the excitation energy ǫ with ǫ−pv,
where p is the excitation momentum. So, the total momentum of the ”gas of
excitations” per unit volume will be:

P =

∫

pN(ǫ− pv)
d3p

(2π~)3
. (5.18)

Assuming a small velocity v we expand the integrand of Eq. (5.18) in powers of
(pv). Retaining only the linear term we have:

P = −
∫

p(pv)
dN(ǫ)

dǫ

d3p

(2π~)3
.

Averaging over the directions of p we then obtain:

P = −v

3

∫

dN(ǫ)

dǫ
p2 d3p

(2π~)3
. (5.19)

The gas of excitations can collide with the walls, exchange energy and mo-
mentum, and eventually it will be stopped by the walls. The mass density of
the liquid (gas) can be written as a sum of the superfluid and normal parts:

ρ = ρs + ρn. (5.20)

The expression for the normal density follows from Eq. (5.19) treating P as the
momentum of the system as a whole:

ρn = −1

3

∫

dN(ǫ)

dǫ
p2 d3p

(2π~)3
. (5.21)

As we see, there are two contributions to ρn: the contribution of gapped
single-particle excitations, and at sufficiently low temperatures we should take
into account the contribution of Bogoliubov-Anderson sound. Both are zero at
T = 0. At a finite temperature for the contribution of single-particle gapped
excitations we have:

ρn = −2

3

∫

p2 d

dǫ

(

1

exp(ǫ/T ) + 1

)

d3p

(2π~)3
, (5.22)

where ǫ =
√

∆2 + [(p2 − p2
F )/2m]2, and an additional factor 2 comes from the

summation over ↑ and ↓ excitation branches. The main contribution to the
integral comes from momenta p close to the Fermi momentum pF , and we obtain:

ρn = − p4
F

3π2vF ~3

∫ ∞

−∞

dN(ǫ)

dǫ
dξ, (5.23)
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with ξ = vF (p− pF ). Since the total density is ρ = mp3
F /3π

2, we can write:

ρn = −2ρ

∫ ∞

0

dN(ǫ)

dǫ
dξ. (5.24)

We first notice that at the superfluid transition temperature, T = Tc, we
have ∆ = 0 and ǫ = |ξ|, so that

−2

∫ ∞

0

dN

dǫ
dξ = 1.

Just below Tc we may expand the integral in Eq. (5.24) in powers of ∆2/T 2
c .

This gives

ρn

ρ
= 1 − 2

∆2

T 2
c

7ζ(3)

8π2
= 1 − 2

Tc − T

Tc
; 0 < (Tc − T ) ≪ Tc. (5.25)

For very low temperatures, T ≪ ∆0, we may write

dN

dǫ
= − 1

T

exp(ǫ/T )

exp(ǫ/T ) + 1
≈ − 1

T
exp

(

−∆0

T
− ξ2

2∆0T

)

,

and Eq. (5.24) yields

ρn

ρ
=

(

2π∆0

T

)1/2

exp(−∆0/T ); T ≪ ∆0. (5.26)

The normal density decreases exponentially with temperature, and we have to
take into account the contribution of bosonic Bogoliubov-Anderson sound.

For these excitations we have the dispersion relation (5.17) and the distri-
bution function

N(ǫ) =
1

exp(ǫ/T )− 1
.

Then, equation (5.21) is transformed to

ρn =
1

6π2T

∫ ∞

0

exp(ǫ/T

(exp(ǫ/T )− 1)2
p4dp

~3
.

The integration with ǫ = vF p/
√

3 is straightforward and it yields:

ρn =
1

6π2T~3

(√
3T

vF

)5
∫ ∞

0

x4 expx

(expx− 1)2
dx =

27
√

3

4
ρ

(

T

EF

)4

ζ(4). (5.27)

where ζ(4) is very close to unity. Thus, at T → 0 the Bogoliubov-Anderson
sound gives the leading contribution to the normal density.

We now show that the BCS superfluid transition is of the second order.
Indeed, for T = Tc we have ∆ = 0 and ǫ(p) = |p2−p2

F |/2m. This is the same as
in the Fermi liquid. We should only renormalize the chemical potential in order
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to take into account the interactions, not more than that. Thus, the energy and
other thermodynamic quantities are continuous at T = Tc. So, this is not the
first order transition.

Let us focus on the derivatives of thermodynamic functions, for example on
the heat capacity. Variation of the energy under variations of the occupation
numbers is

δE =
∑

p

ǫ(p)(δN↑p + δN↓p) = 2
∑

p

ǫ(p)δNp. (5.28)

Dividing Eq. (5.28) by δT we have

C = 2

∫

ǫ(p)
∂N(p)

∂T

V d3p

(2π~)3
=
V mpF

π2

∫ ∞

−∞
ǫ
∂N(ǫ)

∂T
dξ, (5.29)

where again ξ = vF (p−pF ) and we took into account that the main contribution
to the integral comes from momenta near the Fermi surface.

Using the Fermi-Dirac relation for N(ǫ) we obtain;

ǫ
∂N(ǫ)

∂T
=

[

ǫ2

T 2
− 1

2T

∂∆2

∂T

]

exp(ǫ/T )

(exp(ǫ/T ) + 1)2
. (5.30)

The result of the integration of the first term in the square brackets on the right
hand side of Eq. (5.30) is continuous at T = Tc, and it gives the heat capacity
in the normal (non-superfluid) phase, Cn. The second term is discontinuous
at T = Tc. In the normal phase, i.e. for T > Tc, it is equal to zero. In the
superfluid phase at T → Tc, using Eq. (4.45) we have:

∂∆2

∂T
= −Tc

8π2

7ζ(3)
; T → Tc. (5.31)

So, the result of the integration of the second term in the square brackets of
Eq. (5.30) gives a jump in the heat capacity at T = Tc:

Cs − Cn =
4VmpF

7ζ(3)

∫ ∞

−∞

exp(ǫ/T )

(exp(ǫ/T ) + 1)2
dξ. (5.32)

Putting ǫ = |ξ| in the integrand of Eq. (5.32) we find:

Cs − Cn =
4VmpF

7ζ(3)
Tc ∼ N exp

(

− π

2pF |a|

)

, (5.33)

where N is the total number of particles. We thus clearly see that the superfluid
BCS transition is the transition of the second order.

Problems 5

5.1 Derive the Bogoliubov-de Gennes equations for the coordinate-space eigen-
functions of single-particle excitations.
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In terms of the field operators ψ̂†
σ(r), ψ̂σ(r) the BCS Hamiltonian is the sum of

Ĥ0µ (4.18) and Ĥint (4.19) with U(r) = 0:

ĤBCS=

∫

d3r

[

∑

σ

ψ̂†
σ(r)(Ĥ0+V (r))ψ̂σ(r)+∆(r)ψ̂†

↑(r)ψ̂
†
↓(r)+∆∗(r)ψ̂↓(r)ψ̂↑(r)

]

, (5.34)

where

Ĥ0 = − ~
2

2m
∇2 − µ, (5.35)

and we also included an external potential V (r). We now write ψ̂σ(r) in the
form:

ψ̂↑(r) =
∑

ν

[uν(r)b̂↑ν − v∗ν(r)b̂†↓ν ], (5.36)

ψ̂↓(r) =
∑

ν

[uν(r)b̂↓ν + v∗ν(r)b̂†↑ν ], (5.37)

which is nothing else than the Bogoliubov transformation in the coordinate
space. Substituting the field operators given by Eqs. (5.36) and (5.37) into
HBCS (5.34) we find that the latter reduces to the diagonal form

ĤBCS = E0 +
∑

σν

ǫν b̂
†
σν b̂σν

if the functions uν(r), vν(r) satisfy the Bogoliubov-de Gennes equations:

[Ĥ0 + V (r)]uν(r) + ∆(r)vν(r) = ǫνuν(r), (5.38)

−[Ĥ0 + V (r)]vν(r) + ∆∗(r)uν(r) = ǫνvν(r). (5.39)

In this respect, the functions uν(r), vν(r) can be called eigenfunctions of ele-
mentary excitations. In the absence of external potential V (r) we immediately
see that Eqs. (5.38) and (5.39) coincide with equations (5.2) and (5.3).

If the current is also absent, then putting the quantum number ν of an
excitation as its wavevector k we have

uk =
uk√
V

exp(ikr), (5.40)

vk =
vk√
V

exp(ikr), (5.41)

where uk, vk are given by Eqs. (4.34) and (4.35). Substituting uk, vk given by

Eqs. (5.40) and (5.41) into Eqs. (5.36) and (5.37) and recalling that ψ̂σ(r) =
∑

k âσk exp(ikr), we arrive at the momentum-space Bogoliubov transformations
(4.29), (4.30) and (4.24), (4.25).

5.2 Express the ratio ρn/ρ through ∆−1d∆/dT in the entire range of tem-
peratures T < Tc. Consider only the contribution of single-particle excitations.
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Lecture 6. Gizburg-Landau approach. Vortices in

Fermi gases

6.1 Landau-Ginzburg functional

In this Lecture we discuss the Ginzburg-Landau description of (two-component)
Fermi superfluids and then turn to vortex structures in these systems. In
previous lectures we introduced and found the order parameter (gap) ∆ =

g〈ψ̂↓(r)ψ̂↑(r)〉. In Lecture 5 we then showed that the gradient of the phase
of ∆ (∆ = ∆̄ exp(2iφ)) is related to the superfluid current j = nvs, with n
being the total density and vs = (~/m)∇φ the superfluid velocity. The quan-

tity 〈ψ̂↓(r)ψ̂↑(r)〉 plays a role of the wavefunction of the ”condensate of Cooper
pairs”. In many cases it is more convinient to introduce the order parameter Ψ
in such a way that its phase coincides with the phase of ∆, but the amplitude
is |Ψ|2 = ns/2, where ns is the superfluid density. Then the superfluid current
is

js =
~

2mi
(Ψ∇Ψ∗ − Ψ∗∇Ψ) =

~

m
ns∇φ = nsvs. (6.1)

At T = 0 where ns = n, equation (6.1) exactly coincides with Eq. (5.11) which
we derived in Lecture 5.

As we have shown, at T = Tc the system undergoes the second order phase
transition. The physical nature of this transition lies in an anomalous growth of
the fluctuations of the order parameter. Let us consider the spatially uniform
system and write the free energy per unit volume as an expansion in powers of
Ψ:

F = Fn + α(T − Tc)|Ψ|2 +
b

2
|Ψ|4, (6.2)

where Fn is the free energy in the normal (non-superfluid) phase. In the presence
of currents we have to add the term with the gradient of the order parameter.
So, we have

F = Fn +
~

2

4m
|∇Ψ|2 + α(T − Tc)|Ψ|2 +

b

2
|Ψ|4. (6.3)

Equation (6.3) is usually called the Ginzburg-Landau functional. The coefficient
α > 0, so that the superfluid phase is at T < Tc. At T = Tc the term α(T−Tc) =
0, and the difference between the free energies of superfluid and normal phases
is (Fs − Fn) ∝ |Ψ|4. The equilibrium value of |Ψ|2 at T < Tc is determined by
the minimization of F (6.2) and is equal to

|Ψ̄|2 =
α(Tc − T )

b
. (6.4)

In the uniform case this gives:

Fs − Fn = −α
2

2b
(Tc − T )2 (6.5)
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and leads to the temperature independent heat capacity per unit volume:

Cs − Cn = −T
(

∂2(Fs − Fn)

∂T 2

)

V

=
α2Tc

b
, (6.6)

as it should be according to our derivation in Lecture 5.
For a weakly interacting two-component Fermi gas we have:

α =
6π2Tc

7ζ(3)µ
, (6.7)

b =
αTc

n
. (6.8)

This follows from the expression for the energy

E = 〈Ĥ〉 = 〈
∑

σk

Ekâ
†
σkâσk + ∆

∑

k

(â↓kâ↑−k + â†↑−kâ
†
↓k)〉

using the Bogoliubov transformation (4.29), (4.30) and the expression for the
entropy:

S = −
∑

σk

[Nσk lnNσk + (1 −Nσk) ln(1 −Nσk)]. (6.9)

Then, the free energy F = E − TS will be given by Eq. (6.2) with α, b from
Eqs. (6.7) and (6.8).

6.2 Critical fluctuations

Let us now consider fluctuations of the order parameter. Under a small deviation
of |Ψ| from the equilibrium value |Ψ̄| the change of F is

δF =
1

2
(|Ψ| − |Ψ̄|)2

(

∂2F

∂|Ψ|2
)

. (6.10)

For the quantity ∂2F/∂|Ψ|2 we have:

∂2F

∂|Ψ|2 = 2α(T − Tc); T > Tc, |Ψ̄| = 0. (6.11)

∂2F

∂|Ψ|2 = 4α(Tc − T ); T < Tc, |Ψ̄| =
α(Tc − T )

b
. (6.12)

The probability of the fluctuation is

w ∼ exp

{

−V δF
T

}

= exp

{

−V (|Ψ| − |Ψ̄|)2
2T

∂2F

∂|Ψ̄|2
}

. (6.13)

We then obtain the mean square fluctuation of |Ψ|:

〈(|Ψ| − |Ψ̄|)2〉 =
Tc

2α|T − Tc|V
×
{

1 ; T > Tc

1/2 ; T < Tc
(6.14)
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From Eq. (6.3) we can establish the correlation radius rc of the fluctuations.
It follows from the condition that the gradient term is of the order of the |Ψ|2
term:

rc ∼
√

~2

mα|Tc − T | . (6.15)

In order to still apply the theory that we discussed in previous lectures, we
should have small fluctuations over the volume r3c , compared to |Ψ̄|2 = α(Tc −
T )/b:

〈(|Ψ| − |Ψ̄|)2〉
∣

∣

∣

V =r3
c

≪ |Ψ̄|2.

This leads to the inequality:

Tc

α|Tc − T |r3c
≪ α

b
|Tc − T |. (6.16)

Substituting rc from Eq. (6.15) we obtain the famous Ginzburg criterion:

α|Tc − T | ≫ T 2
c b

2
(m

~2

)3

. (6.17)

For the weakly interacting Fermi gas, with α ∼ Tc/µ; b ∼ T 2
c /µn from

Eqs. (6.7), (6.8) and µ = EF ∼ ~
2n2/3/m, we find:

|Tc − T | ≫ Tc

(

Tc

EF

)4

. (6.18)

Thus, in a very narrow interval of temperatures near Tc the theory is not ap-
plicable. This interval is called the region of critical fluctuations. A theory for
this region is beyond the scope of the present course.

6.3 Vortex state

We now turn to the discussion of vortices in the two-component superfluid Fermi
gas. What is the vortex state? Assume that in free space the complex order
parameter ∆ (or Ψ) is of the form

∆(r) = ∆(ρ) exp(iφ), (6.19)

where ρ is the vector in the {x, y} plane and φ is the asimuthal angle (x =
ρ cosφ, y = ρ sinφ). The velocity field v as derived in Lecture 5, then is

v =
~

2m
∇φ. (6.20)

An extra factor 2 in the denominator is related to the fact that now we write the
phase φ instead of 2φ before. Now it is even more convinient, since the factor
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2m shows that the mass of a Cooper pair is twice the mass of a particle. The
velocity field has a tangential form (ρv = 0):

v = − [ρẑ]

ρ2

~

2m
, (6.21)

where ẑ is a unit vector perpendicular to the {x, y} plane. So, we have

|v| =
~

2mρ
(6.22)

and clearly see that the velocity increases on approach to the vortex line, i.e. to
the line where |v| → ∞. The circulation is quantized:

∮

vdl =
π~

m
. (6.23)

The angular momentum carried by the vortex is

〈L̂z〉 = m

∫

[r × v]n(r)d3r =
~N

2
, (6.24)

with N being the total number of particles, and n(r) the density distribution.
The energy Ev acquired by the vortex is mainly determined by the hydrody-
namic kinetic energy (m/2)

∫

nv2d3r. In a non-rotating cylinder of radius R we
have:

Ev =
N~

4mR2
ln

(

R

ξ

)

, (6.25)

where ξ is the radius of the vortex core, which is of the order of the coherence
length ~vF /∆.

Let us now discuss the form of ∆(r) in the case of the vortex state. For this
purpose we write the Bogoliubov-de Gennes equations where we still keep the
Hartree-Fock terms:

[

H− µ ∆(r)
∆∗(r) −(H− µ)

] [

uσ(r)
vσ(r)

]

= ǫσ

[

uσ(r)
vσ(r)

]

, (6.26)

where

H = − ~
2

2m
− gn(ρ), (6.27)

and g = −4π~
2a/m > 0 for a < 0.

For simplicity we consider T = 0 and assume that the system is a very large
cylinder and is not rotating. The density profile is given by

n(ρ) =
∑

σk

|vσk(ρ)|2 = 2
∑

k

|vk(ρ)|2, (6.28)

and the gap equation reads:

∆(ρ) = g
∑

σk

uσk(ρ)v∗σk(ρ). (6.29)
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The lowest energy solution (ǫ > 0) corresponds to

u = u(ρ); v = ṽ(ρ) exp(−iφ). (6.30)

Since the order parameter is exponentially small in the BCS regime, the density
is practically not affected by the vortex. However, ∆ vanishes at the vortex
line. The solution of this problem is quite combersome and requires numerics.
Therefore, we only present the dependence |∆(ρ)| in Fig. 6.1.

ρ

∆

ξ

| |

Figure 6.1: Modulus of the order parameter |∆| as a function of the distance
from the vortex core, ρ.

In a non-rotating cylinder the vortex state is an excited state of the sys-
tem. We now briefly discuss the case of a rotating cylinder. Let Ω be the
rotation frequency. In the rotating reference frame the energy associated with
the appearance of the vortex is

E = Ev − Ω〈Lz〉, (6.31)

where Ev is given by Eq. (6.25), and 〈Lz〉 by Eq. (6.24). The critical frequency
Ωc at which the vortex state becomes the ground state of the system is obtained
from the condition E = 0. We thus have:

Ωc =
~

2mR2
ln

(

R

ξ

)

. (6.32)
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6.4 Vortices near T
c

Let us now discuss vortices at temperatures close to Tc and employ the Ginzburg-
Landau functional (6.3). In the spatially non-uniform system we have to write
it in the form:

F =

∫

d3r

{

~
2

4m
(∇Ψ∗∇Ψ) − α(Tc − T )|Ψ|2 +

b

2
|Ψ|4

}

. (6.33)

The first term in curly brackets can also be written as −(~2/4m)Ψ∗∇2Ψ, which
is clearly seen after performing the integration by parts. Let us make a variation
of F . Note that we should vary Ψ∗ and Ψ separately. Consider variations δΨ∗

we have:

δF =

∫

d3r δΨ∗
{

− ~
2

4m
∇2Ψ − α(Tc − T )Ψ + b|ψ|2Ψ

}

.

So, setting δF = 0 we obtain an equation:

− ~
2

4m
∇2Ψ − α(Tc − T )Ψ + b|Ψ|2Ψ = 0. (6.34)

Equation (6.34) looks exactly the same as the Gross-Pitaevskii equation for
the condensate wavefunction in the case of bosons (see Lecture 3 of Part 1 of the
course). In order to make the analogy explicit we should treat α(Tc −T ) as the
”chemical potential”, and b as the ”coupling constant”. Since α ∼ Tc/EF , b ∼
T 2

c /nEF (see Eqs. (6.7) and (6.8)), we obtain the ”healing length”:

ξ ∼
√

~2

mµ
∼
√

~EF

mTc(Tc − T )
∼ ~vF
√

Tc(Tc − t)
∼ ~vF

∆
,

where we took into account that ∆(T ) ∼
√

Tc(Tc − T ) at T → Tc.
For the vortex state of bosons, Ψ has been obtained in Lecture 7 of Part 1.

It is presented in Fig. 6.2.
All other solutions at temperatures near Tc are obtained in the same way as

in the case Bose-Einstein condensates in Part 1 of the course.

Problems 6

6.1 Obtain the Ginzburg-Landau functional for the free energy F = E − TS
from the microscopic theory for the weakly interacting two-component Fermi
gas. Use the following expessions for the energy and entropy:

E = 2

∫

ǫ(k)Nk

V d3k

(2π)3
,

S = −2

∫

[Nk lnNk + (1 −Nk) ln(1 −Nk)]
V d3k

(2π)3
.
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ρξ

ψ

ρ∼
(1−ξ /4ρ )2 2

| |

Figure 6.2: Modulus of the order parameter |Ψ| (or |∆|) as a function of the
distance from the vortex core, ρ, at temperatures T → TC .

Lecture 7. Strongly interacting regime in Fermi

gases

7.1 Anomalously large scattering length

We now arrive at the discussion of the so-called strongly interacting regime in
dilute Fermi gases. In previous lectures we were writing the interaction term in
the Hamiltonian as

Ĥint = g

∫

ψ̂†
↑(r)ψ̂

†
↓(r)ψ̂↓(r)ψ̂↑(r) d

3r,

where g = 4π~
2a/m, with a being the scattering length for the interaction

between ↑ and ↓ atoms. We were considering the weakly interacting regime,
where n|a|3 ≪ 1 and the interaction energy per particle is much smaller than
the Fermi energy, so that the interactions can be taken into account within the
many-body perturbation theory. What happens if |a| → ∞, but the gas is still
dilute and nR3

e ≪ 1, where Re is the radius of the interaction potential U(r) ?
First of all, why and how this can happen? Consider U(r) such that there is

a very weakly bound state with zero orbital angular momentum (s-state) and
binding energy ǫ0 → 0 (see Fig. 7.1). At r ≫ Re the wavefunction of the bound
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s-state is governed by the Schroedinger equation for the free motion:

−~
2

m

(

d2ψ0

dr2
+

2

r

dψ0

dr

)

= −ǫ0ψ0 (7.1)

and reads:

ψ0 = C
exp(−κr)

r
, (7.2)

where κ =
√
mǫ0/~, and C is the normalization coefficient.

R e

U(r)

r

ε0

Figure 7.1: Interaction potential U(r) supporting a weakly bound state with
zero orbital angular momentum.

On the other hand, the wavefunction of continuum states with zero orbital
angular momentum and energy ǫ→ 0 is

ψ =
(

1 − a

r

)

, (7.3)

where a is the scattering length. In the interval of distances where κ−1 ≫ r ≫
Re, equation (7.2) becomes ψ0 ∝ (1−1/κr) and it should coincide with Eq. (7.3),
except for the normalization coefficient. This is because at such distances in
both cases the wavefunction is governed by the Schroedinger equation for free
motion with zero energy: ψ′′

rr + (2/r)ψ′
r = 0. So, we thus obtain:

a =
1

κ
=

~
2

√
mǫ0

> 0. (7.4)
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The scattering length is positive and large (a≫ Re).
Note that we obtained Eq. (7.4) in the presence of a very weakly bound state.

The case of a large but negative scattering length corresponds to the presence of
the so-called virtual bound state (just make the potential U(r) slightly deeper
and the bound state appears). So, we see that one can have n|a|3 large, but
nR3

e ≪ 1. For ǫ0 → 0 we have |a| → ∞.

7.2 Fano-Feshbach resonance

Is there a possibility to manipulate the interaction and modify the scattering
length a, thus changing the coupling constant g and influencing the many-body
physics ? Imagine that there is a collision between two atoms in certain hyperfine
states along the potential curve U1(r). The hyperfine interaction can change the
internal state of one of the colliding atoms or even the internal states of both
of them, thus transferring the system to the motion along the potential curve
U2(r) (see Fig. 7.2). Assume now that there is a bound state in the potential
U2(r), which almost coincides with the bottom of continuum states of U1(r) so
that the corresponding energy difference E0 is small.

U(r)

r

U

U
1

2

E
0

Figure 7.2: The picture of interaction potentials and bound state(s) showing
the presence of a Fano-Feshbach resonance.

We then consider the s-wave scattering and write the wavefunction of the
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scattering state at large distances as

ψ(r) =
1

r
[A exp(ikr) +B exp(−ikr)], (7.5)

with k =
√

mE/~2. Treat now the scattering energy E as a complex quantity.
This is because the energy of the bound state E0 is in fact complex and equal to
E0−iΓ/2. This state is actually quasibound as it can decay into free atoms, and
the quantity Γ is the corresponding width. The condition determining complex
eigenstates is that there is no incoming wave at large distances. This means
that we should have zero coefficient B for E = E0 − iΓ/2:

B(E0 − iΓ/2) = 0. (7.6)

For the scattering energy E close to E0 we may expand B in powers of (E −
E0+iΓ/2) and confine ourselves to the linear term of the expansion, which gives

B =

(

E − E0 + i
Γ

2

)

b,

where b is a constant. So, taking into account that A = B∗ the wavefunction
(7.5) becomes

ψ(r) =
1

r

[(

E − E0 − i
Γ

2

)

b∗ exp(ikr) +

(

E − E0 + i
Γ

2

)

b exp(−ikr)
]

. (7.7)

The phase δ of this function is given by

exp(2iδ) =
E − E0 − iΓ/2

E − E0 + iΓ/2
exp(2iδ(0)), (7.8)

where exp(2iδ(0)) = −b∗/b. For |E − E0| ≫ E0 we have δ = δ(0). So, δ(0) is
the phase far from resonance. For simplicity we put δ(0) = 0, thus omitting
the potential scattering. Then, using the well-known formula for the scattering
amplitude (see Lecture 1):

f =
tan δ

k(1 − i tan δ)

we obtain:

f = − Γ/2

k(E − E0 + iΓ/2)
. (7.9)

For E and E0 tending to zero the function B(E) can be expanded in powers
of E. The point E = 0 is the branching point of B(E) so that going from the
upper part of the complex half-plane to the lower part transforms B to B∗.
Therefore, the expansion of B should be in powers of

√
E, and we have

B(E) = (E − E0 + iγ
√
E)b. (7.10)
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Thus, we have a relation

Γ

2
= γ

√
E = γ

~√
m
k.

We then rewrite equation (7.9) in the form

f = − ~γ√
2m(E − E0 + iγ

√
E)
,

or

f = − 1

a−1 +R∗k2 + ik
, (7.11)

where a−1 = −E0

√
2m/~γ, and R∗ = ~/(γ

√
2m). For k → 0 we have f = −a

and we see that the scattering length is a ∝ E−1
0 . In our derivation we assumed

that E0 > 0 and obtained a < 0. For E0 < 0 the derivation is similar and one
obtains a > 0. The original description of the discussed resonance scattering
belongs to Fano and to Feshbach and it is usually identified as Fano-Feshbach
resonance.

The spacing between the potentials U1(r) and U2(r) is equal to the difference
in the energies of the involved internal (hyperfine) states of the atoms and
depends on the magnetic field. As a result, the scattering length becomes field
dependent and tends to infinity when E0 → 0 (see Fig. 7.3).

7.3 BCS-BEC crossover

Let us now consider T = 0 and make a qualitative sketch of the phase diagram.
Namely, we find out what kind of ground state we have depending on the value
of the scattering length a (or magnetic field B). For a small negative a satis-
fying the condition kF |a| ≪ 1 there is a BCS superfluid that we discussed in
the previous lectures. For |a| → ∞ we have the so-called strongly interacting
regime, which we can not treat on the basis of the many-body perturbation
theory. For a large positive a still satisfying the inequality na3 ≪ 1, ↑ and ↓
fermions form a weakly bound state as we discussed in subsection 7.1. So, we
have diatomic molecules representing composite bosons, and they should bose-
condense. The wavefunction of each composite boson is given by equation (7.2)
and the corresponding momentum distribution is

G(k) =

∫

ψ0(r1 − r2) exp[ik(r1 − r2)]d(r1 − r2) ∝
1

a−2 + k2
. (7.12)

Considering a Bose-Einstein condensate of the molecules at T = 0 we may
say that the system consists of real-space pairs of ↑ and ↓ fermions, with mo-
mentum distribution (7.12). This is an argument on support of the statement
that going from BCS (small negative a) to BEC of molecules (positive a and
na3 ≪ 1) simply transforms Cooper pairs to real space diatomic molecules.
The symmetry of the system does not change and we have a crossover, not a
quantum transition. The phase diagram is displayed in Fig. 7.4

64



B

a

B0

Figure 7.3: The magnetic field dependence of the scattering length for a Fano-
Feshbach resonance. The field B0 corresponds to |a| → ∞.

7.4 Description of the strongly interacting regime. Uni-

tarity limit

We now treat all regimes shown in Fig. 7.4 on equal footing by using a sort of
BCS approach at T = 0. So, we again write the BCS Hamiltonian (4.23)

ĤBCS =
∑

k;σ=↑,↓
ξkâ

†
σkâσk + ∆

∑

k

(â↓kâ↑−k + â†↑−kâ
†
↓k),

where âσk are the particle operators, and ξk = (~2k2/2m−µ). We then employ
the Bogoliubov transformation (4.24), (4.25):

b̂↑k = ukâ↑k + vkâ
†
↓−k,

b̂↓k = ukâ↓k − vkâ
†
↑−k,

thus reducing ĤBCS to the diagonal form (4.31):

ĤBCS = E0 +
∑

σ,k

ǫk b̂
†
σkb̂σk.

For the ground state energy we have:

E0 =
∑

k

(

2Ekv
2
k − ∆2

2ǫk

)

, (7.13)
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B0

a

Molecular BEC
BCS

Strongly

interacting

regime

Figure 7.4: Phase diagram for a two-component atomic Fermi gas at T = 0.

where Ek = ~
2k2/2m, and the normalization condition reads:

n =
2

V

∑

k

v2
k =

∫

d3k

(2π)3

(

1 − ξk
ǫk

)

. (7.14)

However, in contrast to the standard BCS approach we now do not assume that
only momenta close to kF are important in the integral over d3k in Eq. (7.14)
and use the exact expression ξk = ~

2k2/2m− µ.
The zero-temperature gap equation (4.40) we now write using the so-called

renormalized coupling constant:

1

|g| =

∫

d3k

2(2π)3

(

1

ǫk
− 1

Ek

)

. (7.15)

The renormalization of the coupling constant is needed in order to circumvent
the divergence of the integral at large k in Eq. (7.14). In the standard BCS
approach in Lecture 4 we did this ”by hands”, saying that there should be
a natural high-energy cut-off which is of the order of the Fermi energy. The
rigorous renormalization procedure is beyond the scope of the present course,
and we only give supporting arguments. Imagine that we have two particles
with very low momenta and treat g as the Fourier transform of the interaction
potential. Then, to first order in perturbation theory the coupling constant is
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g, and the second order gives the contribution −∑k g
2/2EkV . So, we have to

make a replacement g → g(1 −
∑

k g/2EkV ), or

1

g
→ 1

g
+
∑

k

1

2EkV
.

For a negative g this is exactly what we have done in Eq. (7.15).
The functions uk, vk are still determined by the Bogoliubov-de Gennes equa-

tions (4.32), (4.33) and are given by Eqs. (4.34), (4.35):

u2
k =

1

2

(

1 +
ξk
ǫk

)

,

v2
k =

1

2

(

1 − ξk
ǫk

)

The excitation energy ǫk follows from equation (4.36):

ǫk =
√

ξ2k + ∆2.

Then, using Eqs. (7.14) and (7.15), for small a < 0 we recover the earlier ob-
tained result for the gap in the BCS limit. We even find a numerical coefficient in
front of the exponent. However, this coefficient has to be corrected by including
second order many-body processes.

In the limit of molecular BEC (a > 0 and na3 ≪ 1) equations (7.14), (7.15)
and (7.13) give the ground state energy

E0 = − ~
2

2ma2
N +

π~
2a

2m

N2

V
, (7.16)

whereN is the number of fermionic atoms. Accordingly, the number of molecules
is Nm = N/2, and the first term in Eq. (7.16) is nothing else than the binding
energy of a molecule, ǫ0 = ~

2/ma2, multiplied by the number of molecules. The
second term corresponds to the interaction between the molecules. Taking into
account that the molecular mass is 2m, we see that the molecule-molecule scat-
tering length am = 2a. This because the molecule-molecule interaction energy
should be equal to (4π~

2am/2m)N2
m/2V . Note that the exact result following

from the solution of the 4-body problem gives am = 0.6a.
The chemical potential following from Eq. (7.16) is

µ = − ǫ0
2

+
π~

2

m
an. (7.17)

The order parameter ∆ then turns out to be much smaller than |µ|, but the gap
in the excitation spectrum is provided by the binding energy of a molecule and
is equal to ǫ0/2.

In the unitarity limit, that is at |a| → ∞, one finds ∆ = 0.69EF , E0 =
0.6(3EF/5)N , and µ = 0.6EF . The latter result is 40% larger than the result
of the exact Monte Carlo calculation.
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We thus see that even using the BCS theory one can qualitatively recover
the physics. The discussed approach for describing the BCS-BEC crossover has
been proposed by Leggett. Note that the unitarity limit is universal. There is
only one energy scale, the Fermi energy EF , and only one distance scale, the
mean interparticle separation n−1/3.

Monte Carlo studies have obtained the superfluid transition temperature
Tc as a function of the scattering length a, which for a given system is easily
transformed into the dependence of Tc on the magnetic field. This dependence
is sketched in Fig. 7.5. In the unitarity limit we have Tc ≈ 0.15EF . Experi-
mental studies have achieved the strongly interacting regime, and Monte Carlo
calculations of Tc and µ are consistent with the experiments. The presence of
superfluidity in the strongly interacting regime has been proven in MIT exper-
iments (W. Ketterle) by creating a lattice of quantum vortices.

unitarity limit
Molecular BEC

BCS

B

Tc

a>0

a<0

|a|= 8

0.15

0.19

/EF

Figure 7.5: Superfluid transition temperature as a function of the magnetic field
for the BCS-BEC crossover in a two-component atomic Fermi gas.

Problems 7

7.1 Calculate the spectrum of collective excitations for a 2-component Fermi gas
in the unitarity limit and in the regime of molecular BEC.

We rely on the hydrodynamic equations (5.12), (5.13):

∂n

∂t
+ div(nv) = 0,
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m
∂v

∂t
+ ∇

[

1

2
mv2 + µ(n)

]

= 0,

and assume small fluctuations of the density, δn = n− n̄, where n̄ is the mean
density. Then, writing the velocity as v = (~/m)∇φ, with φ being the phase of
the order parameter, we arrive at the linearized equations (5.14), (5.15):

∂δn

∂t
+ ∇

(

~n̄

m
∇φ
)

= 0,

~
∂∇φ
∂t

+
∂µ

∂n

∣

∣

∣

n=n̄
∇δn = 0.

Reducing them to Eq. (5.16):

∂2δn

∂t2
=

n̄

m

∂µ

∂n

∣

∣

∣

n=n̄
∇2δn,

we then write small fluctuations of the density as δn ∝ exp(−iωt+ ikr). This
gives

ω2 =

(

n̄

m

∂µ

∂n

∣

∣

∣

n=n̄

)

k2. (7.18)

In the unitarity limit we have µ = 0.4EF and

∂µ

∂n

∣

∣

∣

n=n̄
= 0.4 × 2EF

3n̄
= 0.267

EF

n̄
,

which yields

ω =

(

0.4√
3

)

vF k = 0.231vFk. (7.19)

In the regime of molecular BEC we have

µ = − ǫ0
2

+
π~

2

2m
n× 0.6a

and
∂µ

∂n

∣

∣

∣

n=n̄
= 0.3

π~
2a

m
.

Then equation (7.18) yields

ω =

(

0.3
π~

2n̄a

m2

)1/2

k ≃ 3vF (n̄a3)1/3k. (7.20)

7.2 Calculate the lowest frequencies of collective excitations of a 2-component
Fermi gas in the unitarity regime in a harmonic potential V (r) = mω2

0r
2/2.
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