WIPM Lectures on Models in Statistical Mechanics

Lecture 6: Quantum Lattice Gas and Bethe Ansatz
Jacques H. H. Perk, Oklahoma State University

In the previous lectures we discussed the 2D Ising model and the 1D quantum
Ising chain in transverse field. Even though much more can be said, we leave it
with that. Today we start a series on Bethe Ansatz and Yang—Baxter equations.

« We first introduce the one-dimensional quantum lattice gas (QLG) with
nearest-neighbor interactions.

x Next we shall show how this QLG model relates to the one-dimensional
Heisenberg—Ising model (also called XXZ chain).

* After this we shall discuss the coordinate Bethe Ansatz method.

x Finally we shall show how these models in the limit A — 1 reproduce the
Lieb-Liniger 1D Bose gas with delta interaction.

One-Dimensional Quantum Lattice Model

Yang and Yang* mention the paper’ of Matsubara and Matsuda on the quantum
lattice gas model as a principal motivation to study the Heisenberg-Ising model.
The connection with the Bose gas with delta interaction and the Bethe Ansatz
solution come out more naturally if we treat the 1D QLG first:*

As indicated in the figure, we have a direct map between a
T l l T spin model and a hard-core particle model:

Spin up or + corresponds with a hole (or 0), while spin down
4+ — - 4 or- corresponds with a particle present (or 1).

We can represent the creation of a particle at site j by o
Ce®eoO and its annihilation by aj+.

* C.N. Yang and C.P. Yang, Phys. Lett. 20, 9-10; Phys. Rev. 147, 303-306, 150 321-327 (1966).

f T. Matsubara and H. Matsuda, Progr. Theor. Phys. 16, 569-582 (1956).
1 J.H.H. Perk’s Scriptie (University of Amsterdam, June 1974) contains unpublished details.

2




TWO PHA/SE REGION

CRITICAL
( LIQUID /6 VAPOR) @ == POINT

2 / EXPT.

VAPOR
el IRl | |

o | 1.5 2 4
T (in units of ®¥/md®= 1.49° K)

Interestingly, P.R. Zilsel [Phys. Rev. Lett. 15, 476-479 (1965)] got this phase
diagram in the mean-field approximation applied to the Quantum Lattice Gas.
It semiquantitatively represents the phase diagram of Helium-4.

For a one-dimensional system of spinless bosons interacting via pair potential
V(x) we can write the Hamiltonian in second quantized form as

2 L t L L
M= o g [ [ay Vi — vl @w i)
R T R T )

where wT(x) creates a particle at position x and 1 (z) annihilates it.

Following Matsubara and Matsuda, we can discretize it assuming a periodic
lattice of N sites and lattice spacing a, so that L. = Na. We also assume pair
potential V(x;,z;) = V(x;,x;) given by

V(i,1) = +00
V(i,it1l) = —2A i=12---.N.
V@,itt) =0, if2<t<N —2

We then have to replace the integration fOL dz by the summation Zf\il and the
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differentiations by differences according to
af Af _fin— fi d?f _ A figr+ fio1 —2fi
dz Az a da? Az? a? '
Since we have infinite on-site repulsion, we can have only no or one particle on

each site. Considering the vacuum as all spins up and a particle as a down spin,
we thus also have to replace

' — o7, b — o,

so that we arrive at the quantum-lattice-gas Hamiltonian

-
_ - - + _— +
HQLG_Zma2 (0i41 —0; )(a7, Oiy1 — z' ZE V(i,j)o; o/ o; 0
=1 =1 j5=1
i£]
B2 N N
_ — E —\ .+ -+ - _+
= T oma? Z (0ip1 T 0,4 — 20, )o)” — QAZ‘% 0; 0i410+41>
i=1 i=1

with the periodic boundary condition o+ Ny = ;.

Next we follow the convention of choosing units such that = 1 and we may

also replace

2171@2

+ . —
o5 = %(J;’?:I:la;/), o; U;_ s5(1—07),
and find
N
Horag = — Z (001 + 050/ +200; 007,07, —20; 0])
i=1
N N
1
=52 (ofotiy +ololyy + Acfof) + ) [(A- 1)o7 +1- A,
i=1 i=1
or
Hqre = Hxxz + (A—-1)M?*+ N — %NA
= Hxxz —2(A —1)N~ 4+ iNA
with
N N N
1 z z — —
Hxxz = —52 (0 o 1t0; (TZ+1+A(T JZ+1) M :Z o;, N :Zo‘i o,
i=1 i=1 i=1




Here N~ counts the number of particles (or down spins) in a given state and
M?* = N — 2N~ is the magnetization (in some special unit system).

One can easily check that the operators Hqrag, Hxxz, M?, and N~ form a set
of mutually commuting Hermitian operators, e.g.,

H;F(XZ = Hxxz; [(Hxxz, M?] =0, etc.
Thus they have common eigenvectors |¥)
Haqral¥) = Equcl|¥), N7|¥) =n|¥),
Hxxz|V) = Exxz|V), M?*|V)=Nm|V), Nm=N —2n,
Equc — Exxz = (A= 1)Nm+ N — sNA = —2(A —1)n+ 1 NA,

where m = (V| M?|W) /N is the average magnetization per site and n = (V| N~ |¥)
the number of particles (down spins) in state |¥).

X X7 Hamiltonian

Remarks:

e For the XYZ Hamiltonian,

N

Y (Joofoby + Jyololy, + J.ofoi),
i=1

to have the same particle picture we need [Hxyz, M?] =0, or J, = J,.

Hxyz(Je, Iy, J2) = —

N | —

e If N is even, we can choose J, to be positive, as
N/2
Hxvz(Jo, Jy, Jo) = AHxyz(=Jo, =Ty, YA, A= T] 035
j=1

e Therefore, if N is even and J, = J, # 0, it is sufficient to study

N
1 Tr __x z _z JZ
Hxxz = _52 (0foiy +olol + Acfoi,y), A= AL
i=1 x

as we can always choose J, > 0 and Hxvz(|Jz|, |Jz|, J2) = |Jo|Hxx2-




e Hxxz(—A) is unitarily equivalent to —Hxxz(A), as
Anyz(l, 1, A)A_l = nyz(—l, -1, A) = —nyz(l, 1, —A)

e We have the following special cases of Hxxz(—A):
(A =0: Isotropic XY Hamiltonian,

A =+1: Isotropic ferromagnet,

A =—1: Isotropic antiferromagnet,

( A =+00: One-dimensional Ising model.

e For fixed magnetization m and finite N:

1°  The ground state of Hxxyz is nondegenerate.
2°  Its energy En(m,A) is analytic in A.
3° Corresponding eigenvector |[¥o(m, A)) has only positive elements.

The proof uses the Perron-Frobenius theorem applied to (A1 — Hxxz)",
which is strictly positive for A and k large enough. (In the given sector any
basis state is connected with any other basis state by a string of nonzero
off-diagonal elements of the non-negative matrix \1 — Hxxz.)

e Rewriting Hxxz as

1 N

1
HXXZ:—QNﬁl——Z (O‘ O+ O O'H_l—i—AO' O'H_l—A].)

2 4
=1

we see that it is the sum of —%N A1 and N matrices based on

0O 0 0 O
1 0 A -1 0
= x x Yy Y z z —

2(0 ®o® 4+ 0Y®R0Y + Ac*R0° — Alyxy) 0 -1 A ol

0O 0 0 O
having eigenvalues 0 and A + 1. Therefore, for all allowed m or n values
1
FExxz > NA—i—leIl{OA }>_§NA7 if A>1.
e Taking trial state |(I) Hl LTT - T> = }oo---ooo---o>, we find
n N—n n N—n

then, for any n= lN(l—m),

1
——NA<E§1§?Z (@[Hxxz|®) = —JNA+2A, i A>1,
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e For the XXZ model we can define the ground-state energy per site in the
thermodynamic limit as

e(m, A) :]\}EnOONE§§€Z(N,mN,A), my = S5

where | Nm| is the integer part of Nm. We know e(m,A) = —1 A if A>1.

e The existence of the limit follows from the variational principle (or the
“Bogolyubov Inequality at T'=0"):
Let |®;) be a ground state of H;, with ¢ =1 or 2. Then,

(@i Hi|Pi) <(Pj[H;|Pj) = (@[ H;|Py) + (Pj[Hi—H;|®),

— |EPin — Bl || Hy — Hal| |-

e Comparing the case with Ny N, sites with the case with Ny copies of the
XXZ model with Nj sites, replacing N; bonds with other bonds, we find

\E;g;glz NNy, mp,, A) — NlEXXZ(Ng,mNQ,A)‘gNlC, C=2+|Al
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Similarly, comparing with No copies of the XXZ model with N; sites,
| B3, (N1 Ny iy, A) — No B3RS (N1, miy,, A)| < NoC.

Hence, if we define

1 .
eN(m7A) = N )r(n)lélZ(NvmaA)7 e(m7 A) = ]\/lgnoo eN(mN’A)

we can rewrite the last two inequalities as

C
|6N1N2(mNz‘7A)_eNi(mNmA)‘<ﬁa (7’: 172)7
so that
c C
‘eNl(mN17A>_eN2(mN27A)| Nl+N2+‘6N1N2(mN1’A)_eNlNg(mN27A)"

For the last step in the proof we need Lemma 3 from C.N. Yang and
C.P. Yang, Phys. Rev. 147, 303-306 (1966):
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Suppose we have ground state wave vector |V, ) and ground-state energy

ERin (N, m,A) for the XXZ chain on N sites in the sector with n down

spins, m = 1 — QW” Then we can use a;-—L|\Iln> as a variational trial wave

vector for [U,,+1) with m — m + £:
<\PH|U;FHXXZU;t|mn>
<an|0;_r‘7]i‘\yn>
<‘I’n|U;EU;EHxxz“I’n> +(Uplof [HXXZ7O-;'|:]|\IIH>
<\Ijn|‘7;‘FU;C|\Pn>
BB (N.m, A)(Wy|of o5 V) + (Ul [Hyxz: 07 )1 ¥0)
- <\I/n|0;.FUji|\I!n>
<‘I’n‘%—{ [HXXZ70;|:]|\IIH>
(Unlof o [W,)

IHxzs 07 (W0 o5 [ W) /2 (0 [ 0,) 2

E)rg(nZ(Nami%vA) <

< ERE,(N,m, A) +

< E;(n)l(nZ(Na m, A) +

<qln|ag‘$aj‘c|\1’n>
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Y

having used the Cauchy—Schwarz inequality in the last step. One can easily
check that ||[HXXZ,0;.—L]|| <C' =2+ 2|A|. Also, U;EJ;E = 5(1F 03), while from
the Perron—Frobenius theorem |W,,) is the unique ground state in the sector with

n= %N (1 — m) down spins and, therefore, translationally invariant. Hence,

min 2 min || [HXXZ7 0-;&] ||
Exxy(N,mE5, A) <EXRy (N, m, A) + n 173
<\I/n|aj$aj W),
min C/ /
<EXxz(N,m, A) + ————, " =2+2[A]
1T m)

If m not too close to 1 or, more precisely, both numbers of up spins and down
spins must be at least Ne for all m considered, then 3(1Fm) > e > 0. If we
now apply the inequality repeatedly, we find

|E§(n)1(nZ(N7 m, A) - E;(n}i(nZ(Na m/7 A)' <

— ‘eNlNQ(le’A) - eNlNQ(mN27A)‘ < 2\/5 ‘mN]_ - mN2| .
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Putting it all together,

c C O ||Nm] |Nem|
A) — A< — 4+ = _
e, (M, A) = ey, (Mg, A) A PR A N,

C’ 1 1
< 4 ).
h <C+ 2\/5> <N1 +N2)

The thermodynamic limit exists as we have a converging Cauchy sequence
when |m| < 1, while e (£1,A) = —1A for all N.

e Yang and Yang give several more properties in their Phys. Rev. 147 paper.
Some are required by thermodynamics or by symmetry. As Hxxz commutes
with [[; o7, while ), o7 anticommutes with it, we have

E}ng)ing(N’ m, A) = E)I?)i(nZ(Nv —m, A)v 6(m7 A) = e(—m, A)

Also, e(m,A) is convex in m and concave in A. (Yang and Yang use the
now less common ‘concave upward’ and ‘convex upward’.) We have,

e(m,A) = —%A, for A>1, e(0,A) <e(m,A), for A<1, m#0.
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Coordinate Bethe Ansatz for Quantum Lattice Gas

We can express the wave vector in terms of basis vectors, with |x1,xa, -, x,)
denoting the state with particles on sites x1,x2,---,x,. Then each n-particle
state can be expressed as

Wy = SN flanma,w) oy wa, o a),

1< <o <xy <N

with wave function f(zq,x2,---,x,). We may also write

) = ZZZ Fl@r, @0, xn) |21, T2, -+, @),

I<zi <z < <2y <N

provided we set f(x1, 2, --,2,) = 0 when to coordinates are equal, (z; = x;41),
as we allowed no two particles to occupy the same site.

(Note that we only say if a particle is at = or not, not which particle.)
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Remember we had

N N
52
_ — — —\ 7t -+ - _+
HaqLe = T 9ma? Z (0ip1 T 0,4 —20; )0 — 2AZ‘71 0; 0i410+1>
i=1 =1
with % =1. As a;r gives zero unless there is a particle at z;, this translates
into
Azx?

j=1 J

7:( = — - QAZ 53,’j,.’13j+17 7:(.]E = EQLGf7
71=1

with z,4+1 = x1. Therefore,

-> —]; —2A Nunf = Equa f

where, for any function ¢(z;),

A2¢ =

A—xg E¢(Ij+1)+¢(xj_1)_2¢(xj) and Nnn(xlax%"'?xn) :Z 5wj,$j+1
J j=1

counts the number of nearest-neighbor pairs among z1,x2, -, Ty,.
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Therefore, we have the non-interacting second-order linear partial difference
equation

—Z A—x]; = Equaf|, (1)

with two kinds of boundary conditions:

1° Equal coordinate/nearest-neighbor conditions,

f(wlf"7$j+1a$j—|—17"')$n)+f($17"'7xj7$j+1_17"'7$n)

=2A f(x1, -, 2j,Zj41, -, Tyn), Wwhenever x4 = x;. (2)

2° Periodic boundary conditions,

f(0,$2,$3,"',$n) = f(.TQ,LUg,"',.Tn,N),
f(iL'l,QZQ, ce ,iL'n_l,N-l-l) = f(l,l’l,l'g, ce ,l’n_l). (3)

Condition 2° is self-evident. Let us explain condition 1°:
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Let us start with the three terms of H are relevant if Tjp1 =x; + 1

2 2
B R ey
J J+1
:_(f($1,"',33j+1;1'j+1,"';fEn)‘|‘f($1,"',$j_1,$j+1;"',xn)
—2f<$1,"',ij,xj+1,"',$n))
—(f(i??l,'"733j,33j+1‘|‘17"'7$n)+f(xl,'",$j>$j—|—1_1,"',33n)
_2f<x17'"7$j;$j+17"',$n))
—QAf(ﬂh,"',Z'j,$j+1,"',37n)

= _(f(:El’...,$j+1’$j_|_1’...7$n)_|_f(3;1’...’xj_1,$j+1,...7xn)
—Qf(l'l,'",-Tj,xj‘i‘l,"',xn))
—(f(fﬂl,"',xj,iﬂj‘f‘z,"',l'n)‘f‘f(xl,"';fﬂjyxj,"';fﬂn)
—2f<$1,‘",«Tj;xj+1,"',$n))
—2A f(xy, -, zj,x+1, -, zp).

The term 2A f is absent in the noninteracting equation (1), while the two terms

flz1,- - 25+, 2;+1,- -, z,) and f(z1, -, 25,25, -, %,) are zero there.
19
Since we only need f(z1,---,2,) for 1 < - <z; <zjy; <- - <xp, We can

alter the value of f when two coordinates are the same. Making the choice (2)
incorporates the nearest-neighbor interaction —2A into the equation

n
A%f
—2_ .7 = Fawaf|, (1)
j=1 =77
for the non-interacting QLG with infinite on-site repulsion, just setting
f(xb'"7xj+17xj—|—17"'7xn) +f($17'"7xj7xj+l_17"'7$n)
=2Af(x1, -, %5, Tj41, -+, %y), Whenever z;1 = x;. (2)

The solution of the Schrodinger equation for our QLG is fully determined by
these two equations and

f(oax27$3a"' ,I’n) = f(l'g,&?;g,"',xn,N),
f(xlaw?: e 7xn—laN+1) = f(17x17x27 e 73771—1)- (3)
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By the separation-of-variables method, the general solution of equation (1) is a
linear combination of plane waves of the form

1 n
f(:cl,---,xn):—exp<i km),
n FZI 55

such that

n

Eqrc = 2(2 —2cosk;) = Z4sin2 ?‘7
j=1

j=1
The wave vectors k; could be complex, as there could be bound states.
The two cases n = 0 or 1 are easy:

If n = 0 we have the vacuum state |()) and f(0) =1, EqLc = 0.
If n =1 we have f(0) = f(N) from (3), so that

1 . o k 27/
f(a:l):\/—ﬁelklwl, EQLG:4sm251, klz—Nl, (6 =0,1,---,N — 1),
21

If n > 1, we find from (2) that with the ordered set of wave vectors [ki,-- -, k]
we also need the set with k; and k;y; interchanged. From (3) we see that we
need all cyclic permutations of ki,---,k,. At minimum we shall need all n!
permutations P, i.e., all n! choices [kzp(l), cee kp(n)], so that we end up with the
Bethe Ansatz:

Frs ) = /%/ ;Q(P)exp (ij:ilkp(j)xa , (4)

with n wave vectors k; and n! coefficients a(P) to be determined. [Here N is a
normalization that could be absorbed into the a(P).]

Substituting (4) into (2), we have

Z a(P) ezf;ﬁj,jﬂ 1kp(r)Te {eikP(j) (z;4+1) + ikp(jqr) (7 +1)
P

1 elfp()j +ikpi11)T5 g eikp()Ti + ik‘P(j+1>(ij+1)} —0.

22




or

> a(P) o2t g PP GilkpGythe ()T {eikP(ﬁ ket 11 _9A eik‘P(jH)} — 0.
P

Equating the coefficients of similar exponentials in the z; we find
> a(P’){eikP’(j)+ikP’(j+1) +1-2A eikp/(j+1)} =0,
P’/=P,P*

where now P and P* are any fixed pair of permutations that only differs in the
action on j and j + 1:

P@G) =P (G +1),
P(j+1) =P*(j),
P(0) =P*(0), £ #j, 5+ 1,

kp(j) = kpe(j+1) = D,
kp(+1) = kpe) = ¢

23

Putting this in the equation relating a(P) and a(P*), we find

a(P)(e?H 4+ 1 — 2Ae?) + a(P*) (P19 4+ 1 — 2Ae?) = 0,

Or . . .
a(P) _ _2Ae?p —-1- efpfq _ 00
a(P*) 2Ael? — 1 — elPtiq
where O(p, q) is also given by (exercise)
© tan £ — tan £
tan (pq) _ : an 5 lan2 S— (5)
2 (1-%x)+ 1+ x)tan tan§
We can solve a(P) as
i
a(P) = (~1)" [T exp | = 50(kp (). kpp)] |, (6)
0<j

To see this, just calculate a(P)/a(P*) and use O(p,q) = —6(q, p).
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It remains to solve the periodic boundary conditions (3), in order to determine
the wave vectors k;. We only need to solve

f(0a$27x37"'7xn) :f($27x37"'7$n7N)7
as the other equation is equivalent to
f(17$2+17x3+17"'7xn+1):f($2+1)$3+17"'7$n+1aN+1>7

which after substituting Bethe Ansatz (4) reduces to the first one after taking
out a common factor exp(i)_; k;) from every term. Therefore, both give

n—1

Z a(P) exXp (1 Z kfp(j)wj) = Z CL(P/) exp <1 Z ]{?p/(j)il?j+1 + lkp/(n)N>
P Jj=2 P’ J=1
= Z CL(P’) exp (1 Z kp(j):cj + lk’p(l)N) ,
P

J=2

identifying P’(n) = P(1) and P'(j) =P(j+ 1) for j=1,---,n— 1.

25

Equating coefficients of similar exponentials,
a(P) = a(P") exp (ikp(1)N) = a(PP,) exp (ikp1)N),
introducing the cyclic permutations P, satisfying
Pu(j)=j+1, forj<t,  Pyi)=1,  Pyj)=3j, forj>¢,
so that P’ = PP,,.

In cycle notation, indicating how objects in an ordered set move their positions,
P,=(123---4)71 ie, 1«2« ...« £« 1, and Py is the identity P1(j) = j.
Let also P; ; = (ij) be the interchange ¢ «» j. Then one can easily check

Py=P, Py, or (123---4—1)"1 (1) = (123-.-¢)~ 1.
Therefore,
P’ =PP,, =PPy,P1 1 P13P1 2,
and
a(P")  a(PP,) a(PP,) a(PP,_1) a(PPy) ~ a(PPy)
aP)  a(P)  a(PPn_1) a(PPn_2)  a(P) Hail

26




Action of the various permutations PPy, (PP; = P):

1 2 3 4 {—2 /-1 /¢ n—1 n
P |P(1) PR P@B) PM) P((—2) P(t—1) P(0) P(n—1) P(n)
PP, |P(2) P(1) P(3) P(4) --- P((—2) P—1) P(() P(n—1) P(n)
PPy | P(2) P(3) P(1) P(4) --- P((—2) P—1) P(() P(n—1) P(n)
PP, |P(2) P(3) P() P() P((—2) P((—1) P(0) P(n—1) P(n)
PP, | P2) P(3) P(:4) P(:5) . P((—1) PO1) P() - Pn-1) P(:n)
PP, |PQ) P(B3) PMA) P(B) --- P(—1) PE) P1) --- Pn-1) P(n)
PP, |P(2) P(B3) P(4) P(5) -.- P(t—1) P(t) PE+1) --- P(n) P

The actions of PP,_; and PP, differ only by the interchange of P(1) and P(¥).

27

We had for P and P* only differing by their actions on j and j + 1,

—iO(p, _ _ _ _
apy - C PO, p=kpg) = ke, 4= kg = kpeg).
Therefore,
M — _e_le(paq) — _e_le(kP(l)akP(Z)) — _ele(kP(£)7kP(l))
a(PPg) ’

after use of

p=kpp,_,(—1) = kpp,(0) = kp1), 4= kpp,_,(t) = kPP,(t—1) = kpP(1);

so that

/ n n
—ikp1) N — a(P ) — a(PPn) — a’<PP£) — . —ie(kp(g)J{}P(]_))
¢ a(P) ~ a(P) 11 [[[-e J

28




Replacing P(1) =— j and P(¢) =— ¢ and using ©(p, p) = 0, we have

n
eV — (—1)n—! Heie(ke’kj), for j =1,2,---,n|.
/=1

(7)

Taking the logarithm we find, following Yang and Yang [Phys. Rev. 150, 321-327

(1966)],

Nkj=2rl;+ Y O(kek;), j=1,--,n,
=1
with I; integer for n odd,

half-integer for n even.

(8)

Just like in Kaufman’s 1949 solution of the two-dimensional Ising model, we have
two sectors, (n even or odd), nowadays called the Ramond and Neveu-Schwarz

sectors.

29

Continuum Limit of Quantum Lattice Gas

Remember we started with

h2 N N
Hore = —5 5 > (051 +0i, =20, )of =20 070t o000,

from which we got

hQ n AQ n

Before we chose dimensionless variables setting

h2

=1.
2ma?

but now we have reintroduced the lattice constant a, so that we can take the

continuum limit letting a | 0.

30




Let us replace the coordinates and other variables as follows:

(a)

position : T — z; =ax;
lattice : 1,2,---,N — a,2a,---,Na=1L
wave function :  f(z1,29, -+, 2,) — f(“)(:vga), xéa), e a:%a))
domain : I<oi<m< - <2, — 0<a<x§a)<xga)<---<:1:£La)<Na:L
energy : Eqra(N,n,A) — iy Equa(N,n,A) = B (N,n,A)
gy : QLG s 1y 29m.a2 QLG s 1y = QLG s Iy
a k;
wave vector : k; — kj( R
a
interaction : A — Al =1 %ac
h? h?
its : =1 — =1
LS 2ma? 7 om
31

Then in the limit a | 0, N — oo, such that Na = L,
1 A2f A2f(a)

@@ A (2]

f(“)(---,$§“)+a,---) _|_f(a)(__.’x§a)_a’

) _Qf(a)(...’x§a)’...)

= —
2 f(O)
(0)2”
Ox;
so that equation (1) transforms as

- > 5 =FEqaf —
jzzl Az?

al0

> o
_ e
j=1 51’5’ )
or, dropping the superscripts (0),
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We can also rewrite

f('rl:'"7':Uj+17$j+17"'7'rn)+f(xlf"7xj7xj—|—1_17"'7xn) (2)
=2A f(x1, -, 2j, %41, -, Tpn), whenever x4 = x;,
as
Af(a) Af(a) B f(a)(7x§a)+ aaxgtfl))_f(a)(71”‘50‘)7&750_]_)17)
Axga) —Aac;(fr)l a
f(a)(...,xg,a), ;0:31 a, ) — f@(.. ’ga) ﬁ)p'“)
a
2(A —1 a a
:—( - )f(a)(-- , ()xgﬁl,---), forxgﬁl—x()—l-a

In the limit a | O this becomes

of©®  9fO
8$§0) 8555221

- _Cf(o (‘ng)v 75[7510))

20 (0)
@ L 7ifale;

Y
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or, again dropping the superscripts (0),

of  of

8xj+1 835‘j

—cf . (2")

Tj41=2;

Tj41=2;

Even more directly, in the limit a | 0,

f(0,$2,$3,"’,$n) Ef(l’g,il?g,"',a?n,N),

3
f(xlax27 e 7xn—laN+1) = f(17x17x27 T 7xn—1)- ( )

becomes

f(O,.TQ,Z'g,"',.Tn)Ef(l’z,l’g,"',ﬂ?n,[/) : (3/)

Equations (1’), (2') and (3') are equations (2.1a), (2.4a) and (2.8a) in the paper
of E.H. Lieb and W. Liniger [Phys. Rev. 130, 1605-1616 (1963)].

Therefore, in the continuum limit described the quantum lattice gas model and
the XXZ model reduce to the Bose gas with delta interaction.
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The Bethe Ansatz for the wave function
1 —
f(xlf"?xn) = N’ ZCL(P) €xp <1ka(j)$3> ) (4)
P j=1

agrees with (2.9) of Lieb and Liniger.

Using k§a) =k;j/aork; = akj(.a), we rewrite

tan 8(12)’ < - (1— —)lelq—l—_ t{;r’tagngtam2 ’ (5)
A 2 2
as
OO, @) tan(a’y") — tan(a’y")
2 (1— %)+ (1+ %) tan(a®5") tan(a5")
Lt )= _M,
—5ac 2 c
and
35
~ 2k (a) ak;”
Eqrc = ;4SIH 5 as Eora(N,n, A) ma2 Z4sm
so that
0 (p, q) = —2arctan (?) =60(q—p), (5")

2 n
o _ N 2 _
Eore = %ZI% = ELL,
j:

agreeing with (2.13b) and (2.10) of Lieb and Liniger. Finally, we similarly get

)P Hexp [ 0(kp(j) — kP(é))] : (6)
1<y
oikil — (1)1 HeiQ(kj—kz), for j =1,2,---,n. (7)

L]{j :27le+ze(kj_k£)a jZl,'--,’)’L, /
et (8)

with I; integer for n odd, half-integer for n even.
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