
WIPM Lectures on Models in Statistical Mechanics

Lecture 6: Quantum Lattice Gas and Bethe Ansatz
Jacques H. H. Perk, Oklahoma State University

In the previous lectures we discussed the 2D Ising model and the 1D quantum
Ising chain in transverse field. Even though much more can be said, we leave it
with that. Today we start a series on Bethe Ansatz and Yang–Baxter equations.

⇤ We first introduce the one-dimensional quantum lattice gas (QLG) with
nearest-neighbor interactions.

⇤ Next we shall show how this QLG model relates to the one-dimensional
Heisenberg–Ising model (also called XXZ chain).

⇤ After this we shall discuss the coordinate Bethe Ansatz method.

⇤ Finally we shall show how these models in the limit � ! 1 reproduce the
Lieb-Liniger 1D Bose gas with delta interaction.
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One-Dimensional Quantum Lattice Model

Yang and Yang⇤ mention the paper† of Matsubara and Matsuda on the quantum
lattice gas model as a principal motivation to study the Heisenberg–Ising model.
The connection with the Bose gas with delta interaction and the Bethe Ansatz
solution come out more naturally if we treat the 1D QLG first:‡

As indicated in the figure, we have a direct map between a
spin model and a hard-core particle model:

Spin up or + corresponds with a hole (or 0), while spin down
or � corresponds with a particle present (or 1).

We can represent the creation of a particle at site j by ��j
and its annihilation by �+

j .

⇤ C.N. Yang and C.P. Yang, Phys. Lett. 20, 9–10; Phys. Rev. 147, 303–306, 150 321–327 (1966).
† T. Matsubara and H. Matsuda, Progr. Theor. Phys. 16, 569–582 (1956).
‡ J.H.H. Perk’s Scriptie (University of Amsterdam, June 1974) contains unpublished details.
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FIG. 2. p-T diagram with zero-point energy correction [Eq. {7')] in molecule. ar field approximation, for A=
—3, a/d = ~. The solid portion of the & curve lies within the liquid phase and '

1
' th' . Th hn is rea in is case. The broken por-

tion, in the unstable two-phase region, is not real.

in & & as a Bose condensation of holes. Note,
however, that in contrast to the ideal Hose gas,
the present system has a phase transition also
in the two-dimensional case (thin film), the
X temperature being re'duced (i.n the molecular
field approximation) by R factor
For negative A (negative scattering length;

bound many-body ground state), the situation
is quite different. Except for negligible sur-
face terms the ground-state energy per parti-
cle is -3 IA (n, so that the system tends to max-
imum density (n=. l). For N/M&1 (i.e., IS"'I
i& —,M~, the system separates into two phases

(domains): a condensed high-density phase
with, at T=O, n~=1 (pseudospins "down"),
and a low-density gas phase with, at T=G, n
=0 (pseudospins "up"). .For finite T the phase
equilibrium is given. by

where the chemical potential is g= Sf/Sn, and
the pressure ri(=md'P/h') =nlJ. f. In the "m-o--
lecular field" approximation [Eq. (7)] the solu-
tion of (9) is again a Brillouin function symme-
tx ic about n = '

n, (T) =1-n (T),

This is shown in Fig. 1(b). The critical point
is at nl, =n( =-2, Tc =(-,')(1+ IA I) =(I+ I& I)Ty'.
The essential feature is that for any A&0 the
curve (10) is everywhere outside the x curve (8),
so that no X transition occurs (the "superfluid"
region lies in the unstable two-phase portion
of the p-T diagram): In the gas phase there
are not enough particles, in the condensed phase
not enough holes, for Hose condensation to occur.
Modified Hamiltonian. —Any modification of

the Hamiltonian (5) which makes the ground-
state density of the liquid phase, n~, less than
1 and produces an intersection of the ~ curve
with the liquid-gas coexistence curve in the
p-T plane will result in a phase diagram show-
ing both the X transition and the liquid-gas tran-
sition. This may be accomplished in several
ways. The simplest and, I believe, physically
correct way is to note that the finite difference
approximation (3) for the kinetic energy smoothes
out the short-wavelength behavior of the wave
field and thus does not give the high-density
pole in the zero-point energy'. Zo/N —~'8'/
2m(r-a)', as x—a-0 (x =nearest-neighbor dis-
tance). In the molecular field approximation
this may be written as Ko/N —(~'5'/2m)o'"(I

Interestingly, P.R. Zilsel [Phys. Rev. Lett. 15, 476–479 (1965)] got this phase
diagram in the mean-field approximation applied to the Quantum Lattice Gas.
It semiquantitatively represents the phase diagram of Helium-4.
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For a one-dimensional system of spinless bosons interacting via pair potential
V (x) we can write the Hamiltonian in second quantized form as

H =
h̄2

2m

Z L

0
dx

d †

dx

d 
dx

+
1
2

Z L

0
dx

Z L

0
dy V (|x� y|) †(x) †(y) (y) (x)

= � h̄2

2m

Z L

0
dx † d2 

dx2
+

1
2

Z L

0
dx

Z L

0
dy V (|x� y|) †(x) †(y) (y) (x),

where  †(x) creates a particle at position x and  (x) annihilates it.

Following Matsubara and Matsuda, we can discretize it assuming a periodic
lattice of N sites and lattice spacing a, so that L = Na. We also assume pair
potential V (xi, xj) = V (xj , xi) given by

V (i, i) = +1
V (i, i± 1) = �2�

V (i, i± t) = 0, if 26 t6N � 2

9>=
>; i = 1, 2, · · · , N.

We then have to replace the integration
R L
0 dx by the summation

PN
i=1 and the
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di↵erentiations by di↵erences according to

df

dx
! �f

�x
=

fi+1 � fi

a
,

d2f

dx2
! �2f

�x2
=

fi+1 + fi�1 � 2fi

a2
.

Since we have infinite on-site repulsion, we can have only no or one particle on
each site. Considering the vacuum as all spins up and a particle as a down spin,
we thus also have to replace

 † ! ��i ,  ! �+
i ,

so that we arrive at the quantum-lattice-gas Hamiltonian

HQLG =
h̄2

2ma2

NX
i=1

(��i+1 � ��i )(�+
i+1 � �+

i ) +
1
2

NX
i=1

NX
j=1

i6=j

V (i, j)��i �+
i ��j �+

j

= � h̄2

2ma2

NX
i=1

(��i+1 + ��i�1 � 2��i )�+
i � 2�

NX
i=1

��i �+
i ��i+1�

+
i+1,

with the periodic boundary condition �i+N ⌘ �i.
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Next we follow the convention of choosing units such that h̄2

2ma2 = 1 and we may
also replace

�±
j = 1

2 (�x
j ± i�y

j ), ��j �+
j = 1

2 (1� �z
j ),

and find

HQLG = �
NX

i=1

�
�+

i ��i+1 + ��i �+
i+1 + 2���i �+

i ��i+1�
+
i+1 � 2��i �+

i

�

= �1
2

NX
i=1

�
�x

i �x
i+1 + �y

i �y
i+1 +��z

i �z
i+1

�
+

NX
i=1

⇥
(�� 1)�z

i + 1� 1
2�
⇤
,

or
HQLG = HXXZ + (�� 1)Mz + N � 1

2N�

= HXXZ � 2(�� 1)N� + 1
2N�

with

HXXZ = �1
2

NX
i=1

�
�x

i �x
i+1+�y

i �y
i+1+��z

i �z
i+1

�
, Mz =

NX
i=1

�z
i , N� =

NX
i=1

��i �+
i .
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Here N� counts the number of particles (or down spins) in a given state and
Mz = N � 2N� is the magnetization (in some special unit system).

One can easily check that the operators HQLG, HXXZ, Mz, and N� form a set
of mutually commuting Hermitian operators, e.g.,

H†
XXZ = HXXZ, [HXXZ,Mz] = 0, etc.

Thus they have common eigenvectors | i

HQLG| i = EQLG| i, N�| i = n| i,

HXXZ| i = EXXZ| i, Mz| i = Nm| i, Nm = N � 2n,

EQLG �EXXZ = (�� 1)Nm + N � 1
2N� = �2(�� 1)n + 1

2N�,

where m = h |Mz| i/N is the average magnetization per site and n = h |N�| i
the number of particles (down spins) in state | i.

7



XXZ Hamiltonian
Remarks:

• For the XYZ Hamiltonian,

HXYZ(Jx, Jy, Jz) = �1
2

NX
i=1

�
Jx�x

i �x
i+1 + Jy�y

i �y
i+1 + Jz�

z
i �z

i+1

�
,

to have the same particle picture we need [HXYZ,Mz] = 0, or Jx = Jy.

• If N is even, we can choose Jx to be positive, as

HXYZ(Jx, Jy, Jz) = AHXYZ(�Jx,�Jy, Jz)A�1, A ⌘
N/2Y
j=1

�z
2j .

• Therefore, if N is even and Jx = Jy 6= 0, it is su�cient to study

HXXZ = �1
2

NX
i=1

�
�x

i �x
i+1 + �y

i �y
i+1 +��z

i �z
i+1

�
, � =

Jz

|Jx|
,

as we can always choose Jx > 0 and HXYZ(|Jx|, |Jx|, Jz) = |Jx|HXXZ.
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• HXXZ(��) is unitarily equivalent to �HXXZ(�), as
AHXYZ(1, 1,�)A�1 = HXYZ(�1,�1,�) = �HXYZ(1, 1,��).

• We have the following special cases of HXXZ(��):8>>>><
>>>>:

� = 0 : Isotropic XY Hamiltonian,

� = +1 : Isotropic ferromagnet,

� = �1 : Isotropic antiferromagnet,

� = ±1 : One-dimensional Ising model.

• For fixed magnetization m and finite N :8<
:

1� The ground state of HXXZ is nondegenerate.
2� Its energy EN (m,�) is analytic in �.
3� Corresponding eigenvector | 0(m,�)i has only positive elements.

The proof uses the Perron–Frobenius theorem applied to (�1 � HXXZ)k,
which is strictly positive for � and k large enough. (In the given sector any
basis state is connected with any other basis state by a string of nonzero
o↵-diagonal elements of the non-negative matrix �1�HXXZ.)

9



• Rewriting HXXZ as

HXXZ = �1
2
N�1� 1

2

NX
i=1

�
�x

i �x
i+1 + �y

i �y
i+1 +��z

i �z
i+1 ��1

�
,

we see that it is the sum of �1
2N�1 and N matrices based on

�1
2
(�x⌦�x + �y⌦�y +��z⌦�z ��14⇥4) =

0
B@

0 0 0 0
0 � �1 0
0 �1 � 0
0 0 0 0

1
CA ,

having eigenvalues 0 and �± 1. Therefore, for all allowed m or n values

EXXZ > � 1
2
N�+ N min{0,�� 1}> � 1

2
N�, if �> 1.

• Taking trial state |�i =
��## · · · #| {z }

n

"" · · · "| {z }
N�n

↵
=
��• • · · · •| {z }

n

� � · · · �| {z }
N�n

↵
, we find

then, for any n = 1
2N(1�m),

�1
2
N�6Emin

XXZ 6 h�|HXXZ|�i = �
1
2
N�+ 2�, if �> 1.
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• For the XXZ model we can define the ground-state energy per site in the
thermodynamic limit as

e(m,�) = lim
N!1

1
N

Emin
XXZ(N,mN ,�), mN ⌘

bNmc
N

,

where bNmc is the integer part of Nm. We know e(m,�) = �1
2�, if �> 1.

• The existence of the limit follows from the variational principle (or the
“Bogolyubov Inequality at T = 0”):
Let |�ii be a ground state of Hi, with i = 1 or 2. Then,

h�i|Hi|�ii6 h�j |Hi|�ji = h�j |Hj |�ji+ h�j |Hi�Hj |�ji,

=)
��Emin

1 �Emin
2

��6 kH1 �H2k .

• Comparing the case with N1N2 sites with the case with N1 copies of the
XXZ model with N2 sites, replacing N1 bonds with other bonds, we find��Emin

XXZ(N1N2,mN2 ,�)�N1E
min
XXZ(N2,mN2 ,�)

��6N1C, C ⌘ 2 + |�|.
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Similarly, comparing with N2 copies of the XXZ model with N1 sites,
��Emin

XXZ(N1N2,mN1 ,�)�N2E
min
XXZ(N1,mN1 ,�)

��6N2C.

Hence, if we define

eN (m,�) ⌘ 1
N

Emin
XXZ(N,m,�), e(m,�) = lim

N!1
eN (mN ,�)

we can rewrite the last two inequalities as

��eN1N2
(mNi ,�)� eNi

(mNi ,�)
��6 C

Ni
, (i = 1, 2),

so that
��eN1

(mN1 ,�)�eN2
(mN2 ,�)

��6 C

N1
+

C

N2
+
��eN1N2

(mN1 ,�)�eN1N2
(mN2 ,�)

��.
For the last step in the proof we need Lemma 3 from C.N. Yang and
C.P. Yang, Phys. Rev. 147, 303–306 (1966):
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Suppose we have ground state wave vector | ni and ground-state energy
Emin

XXZ(N,m,�) for the XXZ chain on N sites in the sector with n down
spins, m = 1 � 2n

N . Then we can use �±
j | ni as a variational trial wave

vector for | n⌥1i with m! m± 2
N :

Emin
XXZ(N,m± 2

N ,�)6
h n|�⌥j HXXZ�±

j | ni
h n|�⌥j �±

j | ni

=
h n|�⌥j �±

j HXXZ| ni+ h n|�⌥j [HXXZ,�±
j ]| ni

h n|�⌥j �±
j | ni

=
Emin

XXZ(N,m,�)h n|�⌥j �±
j | ni+ h n|�⌥j [HXXZ,�±

j ]| ni
h n|�⌥j �±

j | ni

6Emin
XXZ(N,m,�) +

�����
h n|�⌥j [HXXZ,�±

j ]| ni
h n|�⌥j �±

j | ni

�����
6Emin

XXZ(N,m,�) +
k[HXXZ,�±

j ]kh n|�⌥j �±
j | ni1/2h n| ni1/2

h n|�⌥j �±
j | ni

,
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having used the Cauchy–Schwarz inequality in the last step. One can easily
check that k[HXXZ,�±

j ]k6C0 ⌘ 2 + 2|�|. Also, �⌥j �±
j = 1

2 (1⌥ �z
j ), while from

the Perron–Frobenius theorem | ni is the unique ground state in the sector with
n = 1

2N(1�m) down spins and, therefore, translationally invariant. Hence,

Emin
XXZ(N,m± 2

N ,�)6Emin
XXZ(N,m,�) +

k[HXXZ,�±
j ]k⌦

 n|�⌥j �±
j | n

↵1/2

6Emin
XXZ(N,m,�) +

C0q
1
2 (1⌥m)

, C0 = 2 + 2|�|.

If m not too close to ±1 or, more precisely, both numbers of up spins and down
spins must be at least N" for all m considered, then 1

2 (1⌥m) > " > 0. If we
now apply the inequality repeatedly, we find

|Emin
XXZ(N,m,�)�Emin

XXZ(N,m0,�)|6 NC0

2
p

"
|m�m0|,

=)
��eN1N2

(mN1 ,�)� eN1N2
(mN2 ,�)

��6 C0

2
p

"
|mN1 �mN2 | .
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Putting it all together,
��eN1

(mN1 ,�)� eN2
(mN2 ,�)

��6 C

N1
+

C

N2
+

C0

2
p

"

����bN1mc
N1

� bN2mc
N2

����
6
✓

C +
C0

2
p

"

◆✓
1

N1
+

1
N2

◆
.

The thermodynamic limit exists as we have a converging Cauchy sequence
when |m| < 1, while eN (±1,�) = �1

2� for all N .

• Yang and Yang give several more properties in their Phys. Rev. 147 paper.
Some are required by thermodynamics or by symmetry. As HXXZ commutes
with

Q
j �x

j , while
P

j �z
j anticommutes with it, we have

Emin
XXZ(N,m,�) = Emin

XXZ(N,�m,�), e(m,�) = e(�m,�).

Also, e(m,�) is convex in m and concave in �. (Yang and Yang use the
now less common ‘concave upward’ and ‘convex upward’.) We have,

e(m,�) ⌘ �1
2
�, for �> 1, e(0,�) < e(m,�), for � < 1, m 6= 0.
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Coordinate Bethe Ansatz for Quantum Lattice Gas

We can express the wave vector in terms of basis vectors, with |x1, x2, · · · , xni
denoting the state with particles on sites x1, x2, · · · , xn. Then each n-particle
state can be expressed as

| i =
XX

· · ·
X

1 6 x1<x2<···<xn 6 N

f(x1, x2, · · · , xn) |x1, x2, · · · , xni,

with wave function f(x1, x2, · · · , xn). We may also write

| i =
XX

· · ·
X

1 6 x1 6 x2 6 ···6 xn 6 N

f(x1, x2, · · · , xn) |x1, x2, · · · , xni,

provided we set f(x1, x2, · · · , xn) = 0 when to coordinates are equal, (xj = xj+1),
as we allowed no two particles to occupy the same site.

(Note that we only say if a particle is at x or not, not which particle.)
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Remember we had

HQLG = � h̄2

2ma2

NX
i=1

(��i+1 + ��i�1 � 2��i )�+
i � 2�

NX
i=1

��i �+
i ��i+1�

+
i+1,

with h̄2

2ma2 = 1. As �+
i gives zero unless there is a particle at xi, this translates

into

Ĥ = �
nX

j=1

�2

�x 2
j

� 2�
nX

j=1

�xj ,xj+1 , Ĥf = EQLGf,

with xn+1 ⌘ x1. Therefore,

�
nX

j=1

�2f

�x 2
j

� 2�Nnnf = EQLGf ,

where, for any function �(xj),

�2�

�x 2
j

⌘ �(xj +1)+�(xj�1)�2�(xj) and Nnn(x1, x2, · · · , xn) =
nX

j=1

�xj ,xj+1

counts the number of nearest-neighbor pairs among x1, x2, · · · , xn.
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Therefore, we have the non-interacting second-order linear partial di↵erence
equation

�
nX

j=1

�2f

�x 2
j

= EQLGf , (1)

with two kinds of boundary conditions:

1� Equal coordinate/nearest-neighbor conditions,

f(x1, · · · , xj +1, xj+1, · · · , xn) + f(x1, · · · , xj , xj+1�1, · · · , xn)
= 2� f(x1, · · · , xj , xj+1, · · · , xn), whenever xj+1 = xj . (2)

2� Periodic boundary conditions,

f(0, x2, x3, · · · , xn) ⌘ f(x2, x3, · · · , xn, N),
f(x1, x2, · · · , xn�1, N+1) ⌘ f(1, x1, x2, · · · , xn�1). (3)

Condition 2� is self-evident. Let us explain condition 1�:
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Let us start with the three terms of Ĥ are relevant if xj+1 = xj + 1:

� �
2f

�x 2
j

� �2f

�x 2
j+1

� 2� f

= �(f(x1, · · · , xj +1, xj+1, · · · , xn) + f(x1, · · · , xj�1, xj+1, · · · , xn)
� 2f(x1, · · · , xj , xj+1, · · · , xn))

� (f(x1, · · · , xj , xj+1+1, · · · , xn) + f(x1, · · · , xj , xj+1�1, · · · , xn)
� 2f(x1, · · · , xj , xj+1, · · · , xn))

� 2� f(x1, · · · , xj , xj+1, · · · , xn)
= �(f(x1, · · · , xj +1, xj +1, · · · , xn) + f(x1, · · · , xj�1, xj +1, · · · , xn)

� 2f(x1, · · · , xj , xj +1, · · · , xn))
� (f(x1, · · · , xj , xj +2, · · · , xn) + f(x1, · · · , xj , xj , · · · , xn)

� 2f(x1, · · · , xj , xj +1, · · · , xn))
� 2� f(x1, · · · , xj , xj +1, · · · , xn).

The term 2� f is absent in the noninteracting equation (1), while the two terms
f(x1, · · · , xj +1, xj +1, · · · , xn) and f(x1, · · · , xj , xj , · · · , xn) are zero there.
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Since we only need f(x1, · · · , xn) for x1 < · · · < xj < xj+1 < · · · < xn, we can
alter the value of f when two coordinates are the same. Making the choice (2)
incorporates the nearest-neighbor interaction �2� into the equation

�
nX

j=1

�2f

�x 2
j

= EQLGf , (1)

for the non-interacting QLG with infinite on-site repulsion, just setting

f(x1, · · · , xj +1, xj+1, · · · , xn) + f(x1, · · · , xj , xj+1�1, · · · , xn)
= 2�f(x1, · · · , xj , xj+1, · · · , xn), whenever xj+1 = xj . (2)

The solution of the Schrödinger equation for our QLG is fully determined by
these two equations and

f(0, x2, x3, · · · , xn) ⌘ f(x2, x3, · · · , xn, N),
f(x1, x2, · · · , xn�1, N+1) ⌘ f(1, x1, x2, · · · , xn�1). (3)
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By the separation-of-variables method, the general solution of equation (1) is a
linear combination of plane waves of the form

f(x1, · · · , xn) =
1
N exp

✓
i

nX
j=1

kjxj

◆
,

such that

EQLG =
nX

j=1

(2� 2 cos kj) =
nX

j=1

4 sin2 kj

2
.

The wave vectors kj could be complex, as there could be bound states.

The two cases n = 0 or 1 are easy:
If n = 0 we have the vacuum state | ; i and f(;) = 1, EQLG = 0.
If n = 1 we have f(0) = f(N) from (3), so that

f(x1) =
1p
N

eik1x1 , EQLG = 4 sin2 k1

2
, k1 =

2⇡`1
N

, (`1 = 0, 1, · · · , N � 1).

21



If n > 1, we find from (2) that with the ordered set of wave vectors [k1, · · · , kn]
we also need the set with kj and kj+1 interchanged. From (3) we see that we
need all cyclic permutations of k1, · · · , kn. At minimum we shall need all n!
permutations P, i.e., all n! choices [kP(1), · · · , kP(n)], so that we end up with the
Bethe Ansatz:

f(x1, · · · , xn) =
1
N
X
P

a(P) exp
✓

i
nX

j=1

kP(j)xj

◆
, (4)

with n wave vectors kj and n! coe�cients a(P) to be determined. [Here N is a
normalization that could be absorbed into the a(P).]

Substituting (4) into (2), we have
X
P

a(P) e
P

6̀=j,j+1 ikP(`)x`
n
eikP(j)(xj +1) + ikP(j+1)(xj +1)

+ eikP(j)xj + ikP(j+1)xj � 2�eikP(j)xj + ikP(j+1)(xj +1)
o

= 0.
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or
X
P

a(P) e
P

6̀=j,j+1
ikP(`)x` ei(kP(j)+kP(j+1))xj

n
eikP(j)+ikP(j+1)+1�2�eikP(j+1)

o
= 0.

Equating the coe�cients of similar exponentials in the xj we find

X
P0=P,P⇤

a(P0)
n
eikP0(j)+ikP0(j+1) + 1� 2�eikP0(j+1)

o
= 0,

where now P and P⇤ are any fixed pair of permutations that only di↵ers in the
action on j and j + 1:

P(j) = P⇤(j + 1),

P(j + 1) = P⇤(j),

P(`) = P⇤(`), ` 6= j, j + 1,

9>>=
>>;

kP(j) = kP⇤(j+1) ⌘ p,

kP(j+1) = kP⇤(j) ⌘ q.
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Putting this in the equation relating a(P) and a(P⇤), we find

a(P)(eip+iq + 1� 2�eiq) + a(P⇤)(eip+iq + 1� 2�eip) = 0,

or
a(P)
a(P⇤)

= �2�eip � 1� eip+iq

2�eiq � 1� eip+iq
⌘ �e�i⇥(p,q).

where ⇥(p, q) is also given by (exercise)

tan
⇥(p, q)

2
=

tan q
2 � tan p

2

(1� 1
� ) + (1 + 1

� ) tan q
2 tan p

2

. (5)

We can solve a(P) as

a(P) = (�1)P
Y
`<j

exp
h
� i

2
⇥(kP(`), kP(j))

i
. (6)

To see this, just calculate a(P)/a(P⇤) and use ⇥(p, q) = �⇥(q, p).
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It remains to solve the periodic boundary conditions (3), in order to determine
the wave vectors kj . We only need to solve

f(0, x2, x3, · · · , xn) = f(x2, x3, · · · , xn, N),

as the other equation is equivalent to

f(1, x2 + 1, x3 + 1, · · · , xn + 1) = f(x2 + 1, x3 + 1, · · · , xn + 1, N + 1),

which after substituting Bethe Ansatz (4) reduces to the first one after taking
out a common factor exp(i

P
j kj) from every term. Therefore, both give

X
P

a(P) exp
✓

i
nX

j=2

kP(j)xj

◆
=
X
P0

a(P0) exp
✓

i
n�1X
j=1

kP0(j)xj+1 + ikP0(n)N

◆

=
X
P

a(P0) exp
✓

i
nX

j=2

kP(j)xj + ikP(1)N

◆
,

identifying P0(n) = P(1) and P0(j) = P(j + 1) for j = 1, · · · , n� 1.
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Equating coe�cients of similar exponentials,
a(P) = a(P0) exp

�
ikP(1)N

�
= a(PPn) exp

�
ikP(1)N

�
,

introducing the cyclic permutations P` satisfying
P`(j) = j + 1, for j < `, P`(`) = 1, P`(j) = j, for j > `,

so that P0 = PPn.

In cycle notation, indicating how objects in an ordered set move their positions,
P` = (1 2 3 · · · `)�1, i.e., 1 2 · · · ` 1, and P1 is the identity P1(j) ⌘ j.
Let also Pi,j = (ij) be the interchange i$ j. Then one can easily check

P` = P`�1P1,` or (123 · · · `�1 )�1 (1`) = (123 · · · `)�1.

Therefore,
P0 = PPn = PP1,nP1,n�1 · · ·P1,3P1,2,

and
a(P0)
a(P)

=
a(PPn)
a(P)

=
a(PPn)

a(PPn�1)
a(PPn�1)
a(PPn�2)

· · · a(PP2)
a(P)

=
nY

`=2

a(PP`)
a(PP`�1)

.
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Action of the various permutations PP`, (PP1 ⌘ P):

1 2 3 4 · · · `� 2 `� 1 ` · · · n� 1 n

P P(1) P(2) P(3) P(4) · · · P(`�2) P(`�1) P(`) · · · P(n�1) P(n)

PP2 P(2) P(1) P(3) P(4) · · · P(`�2) P(`�1) P(`) · · · P(n�1) P(n)

PP3 P(2) P(3) P(1) P(4) · · · P(`�2) P(`�1) P(`) · · · P(n�1) P(n)

PP4 P(2) P(3) P(4) P(1) · · · P(`�2) P(`�1) P(`) · · · P(n�1) P(n)
...

...
...

...
...

...
...

...
...

...
...

PP`�1 P(2) P(3) P(4) P(5) · · · P(`�1) P(1) P(`) · · · P(n�1) P(n)

PP` P(2) P(3) P(4) P(5) · · · P(`�1) P(`) P(1) · · · P(n�1) P(n)
...

...
...

...
...

...
...

...
...

...
...

PPn P(2) P(3) P(4) P(5) · · · P(`�1) P(`) P(`+1) · · · P(n) P(1)

The actions of PP`�1 and PP` di↵er only by the interchange of P(1) and P(`).
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We had for P and P⇤ only di↵ering by their actions on j and j + 1,

a(P)
a(P⇤)

= �e�i⇥(p,q), p = kP(j) = kP⇤(j+1), q = kP(j+1) = kP⇤(j).

Therefore,

a(PP`�1)
a(PP`)

= �e�i⇥(p,q) = �e�i⇥(kP(1),kP(`)) = �ei⇥(kP(`),kP(1)),

after use of

p = kPP`�1(`�1) = kPP`(`) = kP(1), q = kPP`�1(`) = kPP`(`�1) = kP(`),

so that

e�ikP(1)N =
a(P0)
a(P)

=
a(PPn)
a(P)

=
nY

`=2

a(PP`)
a(PP`�1)

=
nY

`=2

⇥
� e�i⇥(kP(`),kP(1))

⇤
.
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Replacing P(1) =! j and P(`) =! ` and using ⇥(p, p) = 0, we have

eikjN = (�1)n�1
nY

`=1

ei⇥(k`,kj), for j = 1, 2, · · · , n . (7)

Taking the logarithm we find, following Yang and Yang [Phys. Rev. 150, 321–327
(1966)],

Nkj = 2⇡Ij +
nX

`=1

⇥(k`, kj), j = 1, · · · , n,

with Ij integer for n odd,

half-integer for n even.

(8)

Just like in Kaufman’s 1949 solution of the two-dimensional Ising model, we have
two sectors, (n even or odd), nowadays called the Ramond and Neveu-Schwarz
sectors.
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Continuum Limit of Quantum Lattice Gas
Remember we started with

HQLG = � h̄2

2ma2

NX
i=1

(��i+1 + ��i�1 � 2��i )�+
i � 2�

NX
i=1

��i �+
i ��i+1�

+
i+1,

from which we got

Ĥ = � h̄2

2ma2

nX
j=1

�2

�x 2
j

� 2�
nX

j=1

�xj ,xj+1 , Ĥf = EQLGf.

Before we chose dimensionless variables setting

h̄2

2ma2
= 1.

but now we have reintroduced the lattice constant a, so that we can take the
continuum limit letting a # 0.
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Let us replace the coordinates and other variables as follows:

position : xj �! x(a)
j = axj

lattice : 1, 2, · · · , N �! a, 2a, · · · , Na = L

wave function : f(x1, x2, · · · , xn) �! f (a)(x(a)
1 , x(a)

2 , · · · , x(a)
n )

domain : 16x1 < x2 < · · · < xn �! 0< a6x(a)
1 < x(a)

2 < · · · < x(a)
n 6Na = L

energy : EQLG(N,n,�) �! h̄2

2ma2
EQLG(N,n,�) ⌘ E(a)

QLG(N,n,�)

wave vector : kj �! k(a)
j =

kj

a

interaction : � �! �(a) = 1� 1
2ac

units :
h̄2

2ma2
= 1 �! h̄2

2m
= 1
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Then in the limit a # 0, N !1, such that Na = L,
1
a2

�2f

�x 2
j

=
�2f (a)�
�x(a)

j

�2

=
f (a)(· · · , x(a)

j + a, · · ·) + f (a)(· · · , x(a)
j � a, · · ·)� 2f (a)(· · · , x(a)

j , · · ·)
a2

a # 0�! @2f (0)

@x(0)
j

2 ,

so that equation (1) transforms as

�
nX

j=1

�2f

�x 2
j

= EQLGf �! �
nX

j=1

@2f (0)

@x(0)
j

2 = E(0)
L (n, c)f (0),

or, dropping the superscripts (0),

�
nX

j=1

@2f

@x2
j

= EL(n, c)f . (10)
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We can also rewrite

f(x1, · · · , xj +1, xj+1, · · · , xn) + f(x1, · · · , xj , xj+1�1, · · · , xn)
= 2� f(x1, · · · , xj , xj+1, · · · , xn), whenever xj+1 = xj ,

(2)

as

�f (a)

�x(a)
j

+
�f (a)

��x(a)
j+1

=
f (a)(· · · , x(a)

j + a, x(a)
j+1, · · ·)� f (a)(· · · , x(a)

j , x(a)
j+1, · · ·)

a

+
f (a)(· · · , x(a)

j , x(a)
j+1� a, · · ·)� f (a)(· · · , x(a)

j , x(a)
j+1, · · ·)

a

=
2(�� 1)

a
f (a)(· · · , x(a)

j , x(a)
j+1, · · ·), for x(a)

j+1 = x(a)
j + a .

In the limit a # 0 this becomes 
@f (0)

@x(0)
j

� @f (0)

@x(0)
j+1

!�����
x(0)

j+1#x
(0)
j

= �c f (0)(x(0)
1 , · · · , x(0)

n )

�����
x(0)

j+1#x
(0)
j

,
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or, again dropping the superscripts (0),

@f

@xj+1
� @f

@xj

����
xj+1=xj

= c f
���
xj+1=xj

. (20)

Even more directly, in the limit a # 0,

f(0, x2, x3, · · · , xn) ⌘ f(x2, x3, · · · , xn, N),
f(x1, x2, · · · , xn�1, N+1) ⌘ f(1, x1, x2, · · · , xn�1).

(3)

becomes
f(0, x2, x3, · · · , xn) ⌘ f(x2, x3, · · · , xn, L) . (30)

Equations (10), (20) and (30) are equations (2.1a), (2.4a) and (2.8a) in the paper
of E.H. Lieb and W. Liniger [Phys. Rev. 130, 1605–1616 (1963)].

Therefore, in the continuum limit described the quantum lattice gas model and
the XXZ model reduce to the Bose gas with delta interaction.
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The Bethe Ansatz for the wave function

f(x1, · · · , xn) =
1
N
X
P

a(P) exp
✓

i
nX

j=1

kP(j)xj

◆
, (4)

agrees with (2.9) of Lieb and Liniger.

Using k(a)
j = kj/a or kj = ak(a)

j , we rewrite

tan
⇥(p, q)

2
=

tan q
2 � tan p

2

(1� 1
� ) + (1 + 1

� ) tan q
2 tan p

2

, (5)

as

tan
⇥(a)(p(a), q(a))

2
=

tan(a q(a)

2 )� tan(ap(a)

2 )

(1� 1
� ) + (1 + 1

� ) tan(a q(a)

2 ) tan(ap(a)

2 )

�! 1
�1

2ac

a

2
(q(0) � p(0)) = �q(0) � p(0)

c
,

and
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EQLG =
nX

j=1

4 sin2 kj

2
as E(a)

QLG(N,n,�) =
h̄2

2ma2

nX
j=1

4 sin2
ak(a)

j

2
,

so that
⇥(0)(p, q) = �2 arctan

⇣q � p

c

⌘
= ✓(q � p), (50)

E(0)
QLG =

h̄2

2m

nX
j=1

k 2
j = ELL,

agreeing with (2.13b) and (2.10) of Lieb and Liniger. Finally, we similarly get

a(P) = (�1)P
Y
`<j

exp
h
� i

2
✓(kP(j) � kP(`))

i
. (60)

eikjL = (�1)n�1
nY

`=1

ei✓(kj�k`), for j = 1, 2, · · · , n . (70)

Lkj =2⇡Ij +
nX

`=1

✓(kj � k`), j = 1, · · · , n,

with Ij integer for n odd, half-integer for n even.

(80)
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