
WIPM Lectures on Models in Statistical Mechanics

Lecture 4: 2D Ising Model and 1D Quantum Ising Model II
Jacques H. H. Perk, Oklahoma State University

Last lecture we set up the transfer matrix for the 2-dimensional Ising model. We
also started calculations for the related quantum Ising chain in transverse field.
Today:

⇤ We first finish the set up for the 1D quantum Ising model, deriving the pair
correlation of two Gamma operators in the thermodynamic limit.

⇤ This then gives us immediately the internal energy per site and then the
free energy per site by integration.

⇤ Next we have an intermezzo, mentioning some problems of current interest
related to a recent experiment related to finite-size scaling.

⇤ After this we shall start similar calculations for the 2D Ising model, to find
the pair correlation of two Gamma operators in the same row.
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Review of Transverse-Field Ising Chain from Last Lecture

Because of the Bogolyubov inequality applied to the free energy per site in the
thermodynamic limit,

��f = lim
M!1

1
M

log Tr e��H = lim
M!1

1
M

log Tr e��Hc ,

we can replace the spin-cyclic Hamiltonian

H = �J
MX

m=1

�x
m�x

m+1 �B
MX

m=1

�z
m, �x

M+1 ⌘ �x
1 ,

with the cyclic (periodic) fermion Hamiltonian

Hc = �J
MX

m=1

i�2m�2m+1 + B
MX

m=1

i�2m�1�2m, �2M+1 ⌘ �1.

This Hc can be written more compactly as

Hc = i
2MX
k=1

2MX
l=1

Ck,l�k�l = i�·C·�.
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Matrix C is block-cyclic. We give here the case M = 6 as an example:

2C =

0
BBBBBBBBBBBBBBBBBBBBBBBB@

0 B 0 0 0 0 0 0 0 0 0 J

�B 0 �J 0 0 0 0 0 0 0 0 0
0 J 0 B 0 0 0 0 0 0 0 0
0 0 �B 0 �J 0 0 0 0 0 0 0
0 0 0 J 0 B 0 0 0 0 0 0
0 0 0 0 �B 0 �J 0 0 0 0 0
0 0 0 0 0 J 0 B 0 0 0 0
0 0 0 0 0 0 �B 0 �J 0 0 0
0 0 0 0 0 0 0 J 0 B 0 0
0 0 0 0 0 0 0 0 �B 0 �J 0
0 0 0 0 0 0 0 0 0 J 0 B

�J 0 0 0 0 0 0 0 0 0 �B 0

1
CCCCCCCCCCCCCCCCCCCCCCCCA

3



Indeed, the nonzero elements of C are given by

C2m,2m+1 = �C2m+1,2m = �1
2J, C2m�1,2m = �C2m,2m�1 = 1

2B, (16m<M),
C2M,1 = �C1,2M = �1

2J.

From the free energy per site

��f = lim
M!1

1
M

log Tr e��Hc ,

we get the internal energy per site

u(�) = lim
M!1

1
M

⌦
Hc

↵
=

@

@�

�
�f
�
, �f = � log 2 +

Z �

0
u(�0)d�0,

where we used

��f |�=0 = lim
M!1

1
M

log Tr1 = lim
M!1

1
M

log 2M = log 2.
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For the equal-time xx-correlation in the large-M limit, we have

⌦
�x

m�x
m+p

↵
H =

*
m+p�1Y

k=m

�
i�2k�2k+1

�+
Hc

= ip Pf
2m6i<j<2m+2p

�⌦
�i�j

↵
Hc

 
.

We can calculate h�i�jiHc after first diagonalizing Hc. But there is an easier
way using the KMS property, first stated by Kubo, Martin and Schwinger. In
our case it is just the cyclic property of trace,

⌦
�j�i

↵
Hc

=
Tr �j�ie��Hc

Tr e��Hc
=

Tr �ie��Hc�j

Tr e��Hc
=

Tr e�Hc�ie��Hc�je��Hc

Tr e��Hc

=
Tr �i(�i�) �je��Hc

Tr e��Hc
=
⌦
�i(�i�) �j

↵
Hc

,

using the time evolution (in h̄ = 1 units)

O(t) = eitHcOe�itHc , Hc = i�·C·�.
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Now,

d
dt

�i(t) =
d
dt

e�t�·C·� �i et�·C·� = e�t�·C·� [�i,�·C·�] et�·C·�,

and

[�i,�·C·�] =
2MX
k=1

2MX
l=1

Ck,l [�i, �k�l]

=
2MX
l=1

Ci,l (�i�i�l � �i�l�i) +
2MX
k=1

Ck,i (�i�k�i � �k�i�i) = 4
2MX
k=1

Ci,k �k.

Thus,

d
dt

�(t) = 4C · �(t) with �(0) = � =) �(t) = e4tC · � ,

and
�(�i�) = e�4i�C · �.
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Using the anticommutation relation and the KMS result just derived,⇤

{�i, �j} = 2�i,j ,
⌦
�j�i

↵
=
⌦
�i(�i�) �j

↵
, �(�i�) = e�4i�C · �,

we find ⌦
�i�j

↵
+
⌦
�j�i

↵
=
⌦
�i�j

↵
+
⌦
�i(�i�) �j

↵
= 2�i,j ,

(1 + e�4i�C) ·
⌦
��
↵

= 2 1 =)
⌦
��
↵

= 2(1 + e�4i�C)�1 ,

or ⌦
�i�j

↵
= 2
⇥
(1 + e�4i�C)�1

⇤
i,j

.

We can rewrite this as

⌦
��
↵

=
�
1 + e�4i�C

�
+
�
1� e�4i�C

�
1 + e�4i�C

= 1 + tanh(2i�C),

⌦
�i �j

↵
= �i,j +

⇥
tanh(2i�C)

⇤
i,j .

⇤ From this point we write hOi as short hand for hOiHc until said di↵erently.
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Since C is a block-cyclic matrix with 2-by-2 blocks, the problem can be reduced
immediately to 2-by-2 matrices using discrete Fourier transform.

Introducing the 2-by-2 matrices

c0 = c±M =
✓

0 B
�B 0

◆
, c1 = c1�M =

✓
0 J
0 0

◆
, c�1 = cM�1 =

✓
0 0
�J 0

◆
,

ck = 02 =
✓

0 0
0 0

◆
for 1�M <k<�1 and 1<k<M�1, 12 =

✓
1 0
0 1

◆
,

we have, when M = 6 for example,

2C =

0
BBBBB@

c0 c�1 02 02 02 c1

c1 c0 c�1 02 02 02

02 c1 c0 c�1 02 02

02 02 c1 c0 c�1 02

02 02 02 c1 c0 c�1

c�1 02 02 02 c1 c0

1
CCCCCA

,

or
2C2(k�1)+p,2(l�1)+q = (ck�l)p,q, (k, l = 1, · · · ,M, p, q = 1, 2).
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We apply discrete Fourier transform by the similarity transform

Ĉ = UCU�1, U2(k�1)+p,2(l�1)+q =
e2⇡ikl/M

p
M

�p,q.

Now
MX
l=1

e2⇡ikl/M

p
M

e�2⇡ilk0/M

p
M

=
MX
l=1

1
M

e2⇡i(k�k0)l/M = �k,k0 , or U† = U�1,

so U is unitary. Therefore,

2Ĉ2(k�1)+p,2(k0�1)+q =
MX
l=1

MX
l0=1

e2⇡ikl/M

p
M

(cl�l0)p,q
e�2⇡il0k0/M

p
M

=
1
M

MX
l0=1

e2⇡il0(k�k0)/M
MX
l=1

e2⇡ik(l�l0)/M (cl�l0)p,q

= �k,k0

MX
l=1

e2⇡ikl/M (cl)p,q = �k,k0
�
ĉ(�k)

�
p,q

, �k =
2⇡k

M
.

We reduced the matrix size: 2M ! 2M ! 2 ! essentially done!
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We immediately get

ĉ(�k) = ei�kc1 + c0 + e�i�kc�1 =
✓

0 B + Jei�k

�B � Je�i�k 0

◆

= i(J sin�k)�x + i(B + J cos�k)�y,

and Ĉ = UCU�1 is block diagonal with the 2-by-2 blocks 1
2 ĉ(�k) on the diagonal

for k = 1, · · · ,M . For example, for M = 6,

2Ĉ =

0
BBBBB@

ĉ(�1) 02 02 02 02 02

02 ĉ(�2) 02 02 02 02

02 02 ĉ(�3) 02 02 02

02 02 02 ĉ(�4) 02 02

02 02 02 02 ĉ(�5) 02

02 02 02 02 02 ĉ(�6)

1
CCCCCA

.

Note that
ĉ(�M ) = ĉ(�0) = ĉ(0).
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Similarly, from
G =

⌦
��
↵

= 1 + tanh(2i�C)

we find that Ĝ = U h��iU�1 is block diagonal with the M 2-by-2 blocks
ĝ(�k) = 12 + tanh

�
i�ĉ(�k)

�
on the diagonal. Now tanh is an odd function. A function f(x) is odd, if
f(�x) = �f(x). For such a function, using (a·�)2 = |a|2,

f(a·�) =
a·�
|a| f(|a|),

as follows from Mclaurin expansion f(x) = c1x + c3x3 + · · ·. Let

⇤(�k) ⌘
p

J2 + 2BJ cos�k + B2,
�
i ĉ(�k)

�2 = ⇤(�k)212.

Then

ĝ(�k) = 12 +
i ĉ(�k)
⇤(�k)

tanh
�
�⇤(�k)

�
,

and
Ĝ2(k�1)+p,2(k0�1)+q = �k,k0

�
ĝ(�k)

�
p,q

.
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Having
Ĝ2(l�1)+p,2(l0�1)+q = �l,l0

�
ĝ(�l)

�
p,q

explicitly, we can now apply the inverse block-Fourier transform
G = U�1ĜU

and obtain

G2(k�1)+p,2(k0�1)+q =
MX
l=1

MX
l0=1

e�2⇡ikl/M

p
M

�l,l0
�
ĝ(�l)

�
p,q

e2⇡il0k0/M

p
M

=
1
M

MX
l=1

e2⇡il(k0�k)/M
�
ĝ(�l)

�
p,q

=
1
M

MX
l=1

ei(k0�k)�l
�
ĝ(�l)

�
p,q

=
1
2⇡

Z 2⇡

0
d� ei(k0�k)�

�
ĝ(�)

�
p,q

, as M !1.

We have � = 2⇡
M l, so that �� = 2⇡

M �l = 2⇡
M in the large-M limit.
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Taking p = 1 and q = 2,

G2k�1,2k0 =
i

2⇡

Z 2⇡

0
d� ei(k0�k)� B + Jei�

⇤(�)
tanh(�⇤(�)),

while for p = 2 and q = 1,

G2k,2k0�1 = � i
2⇡

Z 2⇡

0
d� ei(k0�k)� B + Je�i�

⇤(�)
tanh(�⇤(�)).

This is consistent with the anticommutation relation {�2k�1, �2k} = 0, as one
can show that G2k0,2k�1 = G2k�1,2k0 holds by replacing � ! ��.

We can evaluate the internal energy per site

u(�) = lim
M!1

1
M

⌦
Hc

↵
= lim

M!1

1
M

D
� J

MX
m=1

i�2m�2m+1 + B
MX

m=1

i�2m�1�2m

E

= �iJG2k,2k+1 + iBG2k�1,2k,

independent of k. We find:
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u(�) = � 1
2⇡

Z 2⇡

0
d�

J(Bei� + J) + B(B + Jei�)
⇤(�)

tanh(�⇤(�))

= � 1
2⇡

Z 2⇡

0
d�

J2 + 2JB cos� + B2

⇤(�)
tanh(�⇤(�))

= � 1
2⇡

Z 2⇡

0
d� ⇤(�) tanh(�⇤(�))

,

as the imaginary part vanishes. The free energy per site is given by

�f = � log 2 +
Z �

0
u(�0)d�0 = � log 2� 1

2⇡

Z 2⇡

0
d� log cosh(�⇤(�)).

Remark: The same method can be used for the full one-dimensional XY model.
Because we evaluated h�i�ji, we also have the equal-time correlations explicitly
as Pfa�ans and determinants. However, for time-dependent correlations like
h�x

i (t)�x
j i one cannot just replace H by Hc as we have done.
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Some problems to think about during your break
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The scaling hypothesis:
Near the critical temperature Tc, we find that the specific heat cv, spontaneous
magnetization M0 = h�i (for T < Tc), and the susceptibility � behave as

cv ⇠ |t|�↵,

M(T ) ⇠ |t|� ,

�(T ) ⇠ |t|�� ,

where t ⌘ T

Tc
� 1.

For the 2-dimensional Ising model ↵ = 0(log), � = 1/8, � = 7/4. More precisely,
the specific heat diverges logarithmically, cv ⇠ log |t|, which diverges slower than
any power of 1/|t|.

In the absence of such a log, according to scaling theory, the leading singular
part of the free energy behaves as

fs(t, B) = |t|2�↵�
⇣ B

|t|�+�

⌘
, as t and B ! 0,

so that fs/|t|2�↵ is a function of the single variable B/|t|�+� . Also we are to
have

↵ + 2� + � = 2.
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Moreover, the spin-spin correlation decays exponentially as

h�0�Ri ⇠
e�R/⇠

R(d�1)/2
, (T > Tc), h�0�Ri ⇠

1
Rd�2+⌘

, (T = Tc),

where ⇠(T ) is the correlation length, which diverges at the critical point, while
at T = Tc, the correlation function decays algebraically.

⇠(T ) ⇡ ⇠0/|t|⌫ with t = (T/Tc)� 1 ! 0,

where ⌫ is a characteristic critical exponent. In 2d Ising ⌫ = 1, ⌘ = 1/4.

If T < T c we have to take the ‘connected pair correlation’, subtracting the
square of the magnetization. In two dimensions this behaves anomalously:

h�0�Ric ⌘ h�0�Ri � h�i2 ⇠
e�2R/⇠

Rd
, (T < Tc).

There is no ‘one-particle band’, so that the ‘two-particle continuum’ dominates.
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Finite-size scaling
For a system limited in size by a finite length N , the scaling hypothesis

asserts, in general terms, that when N and ⇠(T ) are large enough, the critical
point singularities are primarily controlled by the ratio x = N/⇠(T ), so that

C(N ;T ) ⇡ N↵/⌫ [Q(x)�Q0]
↵

,

where Q(x) is the scaling function while the scaled temperature is

N1/⌫t / x1/⌫ = [N/⇠(T )]1/⌫ .

The exponent ↵ in the denominator allows for the limit ↵ ! 0, which yields,
with Q(0) ! Q0, a logarithmic singularity as is appropriate for 2D Ising systems.
More generally, to account for the finite-size behavior of the specific heat per
site cv = C/Nd, (which diverges in the bulk as |t|�↵), when ↵ is typically small
(or even negative), the basic scaling hypothesis may be expressed as the above

C(N ;T ) ⇡ N↵/⌫ [Q(x)�Q0]/↵.
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From Ferdinand and Fisher [Phys. Rev. 185, 832–846 (1969)]: Specific heat of
Ising model on an N ⇥N torus.

The maximum is to the right of Tc, but as N
increases the logarithmic singularity for N = 1
becomes apparent.
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From Au-Yang and Fisher [Phys. Rev. B 11, 3469–3486 (1975)]: Specific heat
of Ising model on an n⇥1 strip.

The maximum is to the left of Tc,
but as N increases the logarithmic
singularity for N = 1 becomes
apparent.
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Hard homework:

Can you calculate the specific heat of an Ising system like this?

S1 S2

− +−− ++ M

L

L0

(Figure from the paper by Abraham and Macio lek [arXiv:1405.5367])
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Also [arXiv:1405.5367]?

x
y

(a) (b)

Sj

K1

0 x
M

L
L0

This is more like the experiment:
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Reason for the calculation is the liquid helium experiment of Gasparini:

(Figure provided by Gasparini)
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Some other geometries for hard homework:

M ⇥ L square

M ⇥ L rectangle

M ⇥ L or 1⇥ L cylindrical strip

Infinite strip repeatedly wide and narrow
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Two-Dimensional Ising Model
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Two-Dimensional Ising Model

We can now do the analogous calculation for the 2D Ising model, for which

Tn+ 1
2

= T1 =
�
2 sinh(2K0)

�M/2 exp

 
K0⇤

MX
m=1

�z
m

!
,

Tn = T2 = exp

 
K

MX
m=1

�x
m�x

m+1

!
,

where
K⇤ ⌘ artanh e�2K , tanhK⇤ = e�2K

and
Z = Tr

�
T1T2

�N
.
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After the Jordan–Wigner transformation, we get

Tn+ 1
2

= T1 =
�
2 sinh(2K0)

�M/2 exp

 
K0⇤

MX
m=1

i�2m�1�2m

!
,

Tn = T2 = exp

 
K

MX
m=1

i�2m�2m+1

!
, �2M+1 ⌘ �1,

where we can again justify the use of cyclic fermion boundary conditions using
the calculations that follow.

We define

Gi,j =
⌦
�i�j

↵
=

Tr
⇥
�i�j(T2T1)N

⇤
Tr (T2T1)N

in analogy with was done before. We again use the KMS property:
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We again use the KMS property:

Gj,i =
⌦
�j�i

↵
=

Tr
⇥
�j�i(T2T1)N

⇤
Tr (T2T1)N

=
Tr
⇥
�i(T2T1)N�j

⇤
Tr (T2T1)N

=
Tr
⇥
(T2T1)�N�i(T2T1)N�j(T2T1)N

⇤
Tr (T2T1)N

=
⌦
(T2T1)�N�i(T2T1)N�j

↵
.

Here T1 and T2 have the same form as e��Hc for the transverse-field Ising chain.

We finish this next time.
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