
WIPM Lectures on Models in Statistical Mechanics

Lecture 3: 2D Ising Model and 1D Quantum Ising Model
Jacques H. H. Perk, Oklahoma State University

Last lecture we introduced the transfer matrix method to solve the 1-dimensional
Ising model. We also proved the Perron–Frobenius theorem and the Bogolyubov
variational inequality. Today:

⇤ We shall first set up the transfer matrix for the 2-dimensional zero-field
Ising model.

⇤ We next shall see that the model is closely related to the Ising chain in a
transverse field.

⇤ Then we need to apply the Jordan–Wigner transformation to translate the
model into a fermionic Gaussian problem.

⇤ We shall also show that the 2-dimensional Ising model in a field and the
3-dimensional Ising model can not be solved by fermionic Gaussian methods.
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Review of Last Lecture on Periodic Ising Chain
The one-dimensional periodic Ising chain is defined by the Hamiltonian

��H = K
NX

j=1

�j�j+1 + H
NX

j=1

�j , with �N+1 ⌘ �1, K ⌘ �J, H ⌘ �B.

Its partition function is

Z =
X
{�}

e��H =
X

�1=±1

X
�2=±1

· · ·
X

�N=±1

T1(�1,�2)T2(�2,�2)T1(�2,�3)

⇥ T2(�3,�3) · · ·T1(�N�1,�N )T2(�N ,�N )T1(�N ,�1)T2(�1,�1)

= Tr (T1T2)N ,

with
T1(�,�0) ⌘ exp

�
K��0

�
, T2(�,�0) ⌘ exp

�
H�
�
��,�0 ,
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or

T1 =
✓

eK e�K

e�K eK

◆
=
p

2 sinh(2K) eK⇤�x
, T2 =

✓
eH 0
0 e�H

◆
= eH�z

,

where
K⇤ ⌘ artanh e�2K , tanhK⇤ = e�2K .

Indeed, we can write T1 in terms of Pauli matrices:

T1 = eK1 + e�K�x = eK
�
1 + e�2K�x

�
= eK

�
1 + �x tanhK⇤�

=
eK

coshK⇤
�
1 coshK⇤ + �x sinhK⇤� =

p
2 sinh(2K) eK⇤�x

.

The following identities are also important for the 2-dimensional case:

tanhK⇤ = e�2K , tanhK = e�2K⇤
, sinh(2K) sinh(2K⇤) = 1,

cosh(2K⇤) = coth(2K), cosh(2K) = coth(2K⇤).

Also, ✓
eK

coshK⇤

◆2

=
1

tanhK⇤ cosh2 K⇤ =
2

sinh(2K⇤)
= 2 sinh(2K).
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Two-Dimensional Ising Model in Zero Field
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We start with a periodic rectangular lattice with sites (m,n), with horizontal
component m = 1, 2, · · · ,M and vertical component n = 1, 2, · · · , N . Spins
�mn = ±1 live on these sites and the interaction energy H is given by

��H =
MX

m=1

NX
n=1

�
Km,n�m,n�m+1,n + K0

m,n�m,n�m,n+1

�
.

This defines an Ising model with non-uniform (inhomogeneous) interactions on a
torus, i.e., with periodic boundary conditions in both directions. If we set either
KM,n ⌘ 0 or Km,N ⌘ 0, we have an Ising model on a cylinder, namely with
periodic boundary conditions in one direction and free boundary conditions in
the other direction. If KM,n ⌘ Km,N ⌘ 0, we have an Ising model with free
boundary conditions in both directions.

The Ising model on other planar lattices (no crossing bonds/pair interactions)
are included in this general setup as special limiting cases, setting certain K’s
equal to 0 (removing an interaction) or 1 (identifying spins).

Onsager’s original 1944 solution has all Km,n ⌘ K and K0
m,n ⌘ K0.
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Row-to-Row Transfer Matrices

Let us introduce a notation for the collection of all spin values in row n,

�(n) ⌘ {�1,n,�2,n, · · · ,�M,n}.

Then the total Boltzmann factor for all interactions within that row n is

Wn = W2

�
�(n)

�
= exp

 
MX

m=1

Km,n�m,n�m+1,n

!
,

whereas the Boltzmann factor for the interaction between rows n and n + 1 is

W
n+ 1

2
= W1

�
�(n),�(n+1)

�
= exp

 
MX

m=1

K0
m,n�m,n�m,n+1

!
.

Now compare with what we did for the Ising chain in magnetic field, if we orient
it vertically:
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�N+1 = �1

�N

�N�1

......

�3

�2

�1

· · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · ·

......

· · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · ·

T1

T 1
2

TN

TN� 1
2

TN�1

TN� 3
2......

T 7
2

T3

T 5
2

T2

T 3
2

T1

T 1
2

T2

T1

T2

T1

T2

T1
......

T1

T2

T1

T2

T1

T2

T1
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For the Ising chain in a field we have the corresponding weights and transfer
matrices (now going in the vertical direction):

W
n+ 1

2
= W1

�
�n,�n+1

�
= exp

�
K�n�n+1

�
, Wn = W2

�
�n

�
= exp

�
H�n

�
.

T1 =
✓

eK e�K

e�K eK

◆
=
p

2 sinh(2K) eK⇤�x
, T2 =

✓
eH 0
0 e�H

◆
= eH�z

,

where K⇤ ⌘ artanh e�2K , tanhK⇤ = e�2K .
Similarly, for the two-dimensional Ising model, Wn for row n corresponds

to a diagonal transfer matrix, just replacing �m,n ! �z
m,

Tn = exp

 
MX

m=1

Km,n�z
m�z

m+1

!
,

whereas now

Tn+ 1
2

=
✓

eK1,n e�K1,n

e�K1,n eK1,n

◆
⌦
✓

eK2,n e�K2,n

e�K2,n eK2,n

◆
⌦ · · ·⌦

✓
eKM,n e�KM,n

e�KM,n eKM,n

◆
,

or
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Tn+ 1
2

=

 
MY

m=1

2 sinh(2K0
m,n)

!1/2

exp

 
MX

m=1

K0⇤
m,n�x

m

!
,

Tn = exp

 
MX

m=1

Km,n�z
m�z

m+1

!
,

and

Z = Tr
NY

n=1

�
TnTn+ 1

2

�
.

At this point it is now tradition to make the rotation in spin matrix space,�
�x

m,�y
m,�z

m

�
!
�
�z

m,��y
m,�x

m

�
.

This can be done by the unitary similarity transform U = exp(1
4⇡i�y) exp(1

2⇡i�x).
Then we can use the identical Jordan–Wigner transform as in the XY model.
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Also, let us choose the fully homogeneous case Km,n = K, K0
m,n = K0

Tn+ 1
2

= T1 =
�
2 sinh(2K0)

�M/2 exp

 
K0⇤

MX
m=1

�z
m

!
,

Tn = T2 = exp

 
K

MX
m=1

�x
m�x

m+1

!
,

Z = Tr
�
T1T2

�N
.

This is clearly related to the Ising chain in transverse field with Hamiltonian

H = �J
MX

m=1

�x
m�x

m+1 �B
MX

m=1

�z
m,

in the “time-continuum” limit K / K0⇤ ! 0.
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Indeed setting K = �J/n and K0⇤ = �B/n and dropping all front factors�
2 sinh(2K0)

�M/2, we can use the Trotter identity

lim
n!1

�
eA/neB/n

�n = eA+B

to obtain

lim
n!1

 
T1T2�

2 sinh(2K0)
�M/2

!n

= e��H.

By taking a suitable anisotropic limit of the 2-dimensional Ising model with
K ! 0 and K0 ! 1, while taking a the number of transfer matrix steps also
infinitely large, we can reproduce properties of the Ising chain in a field in the
transverse direction. This process changes the discrete coordinate in the vertical
direction into a continuous variable, the so-called imaginary time, related to the
inverse temperature variable �.
Therefore, one calls this process the time-continuum limit, or also sometimes the
Suzuki limit. Masuo Suzuki wrote about this in the 1970s relating d-dimensional
quantum systems with (d + 1)-dimensional classical systems. His works also
became the basis for the quantum Monte Carlo method.
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Remark: For the two-dimensional Ising model in a field,

��H =
MX

m=1

NX
n=1

�
K�m,n�m+1,n + K0�m,n�m,n+1 + H�m,n

�
,

the two transfer matrices are

T1 =
�
2 sinh(2K0)

�M/2 exp

 
K0⇤

MX
m=1

�z
m

!
,

T2 = exp

 
K

MX
m=1

�x
m�x

m+1 +
MX

m=1

H�x
m

!
,

with T1 giving again the Boltzmann weight contributions between two successive
rows and T2 all contributions from interactions within one row. Again we have,

Z = Tr
�
T1T2

�N
.

We leave this all as an exercise.
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Remark: For the three-dimensional Ising model in zero field,

��H =
LX

l=1

MX
m=1

NX
n=1

�
K1�l,m,n�l+1,m,n + K2�l,m,n�l,m+1,n + K3�l,m,n�l,m,n+1

�
,

the two transfer matrices are

T1 =
�
2 sinh(2K3)

�LM/2 exp

 
K⇤

3

LX
l=1

MX
m=1

�z
l,m

!
,

T2 = exp

 
K1

LX
l=1

MX
m=1

�x
l,m�x

l+1,m + K2

LX
l=1

MX
m=1

�x
l,m�x

l,m+1

!
,

with T1 now giving the Boltzmann weight contributions between two successive
horizontal planes and T2 all contributions from interactions within one horizontal
plane. Of course,

Z = Tr
�
T1T2

�N
.

We leave this also as an exercise.
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Now we need to use the Jordan–Wigner transform of lecture 1:

�2j�1 =

"
j�1Y
k=1

(��z
k)

#
�x

j , �2j =

"
j�1Y
k=1

(��z
k)

#
�y

j , {�p,�q} = 2�pq1.

Its inverse is given by

�x
j =

"
j�1Y
k=1

(i�2k�1�2k)

#
�2j�1, �y

j =

"
j�1Y
k=1

(i�2k�1�2k)

#
�2j , �z

j = �i�2j�1�2j .

As now �z
m is already quadratic in �’s, we now first work out �x

m�x
m+1 for

16m < M :

�x
m�x

m+1 =

"
m�1Y
k=1

(i�2k�1�2k)

#
�2m�1

"
mY

k=1

(i�2k�1�2k)

#
�2m+1

=

"
m�1Y
k=1

(i�2k�1�2k)

#2

�2m�1

�
i�2m�1�2m

�
�2m+1 = i�2m�2m+1.

The case m = M has to be treated separately:
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�x
M�x

1 =

"
M�1Y
k=1

(i�2k�1�2k)

#
�2M�1�1

=

"
MY

k=1

(i�2k�1�2k)

# �
i�2M�1�2M

�
�2M�1�1

= �
"

MY
k=1

(i�2k�1�2k)

#
i�2M�1 = �i�2M�1P.

with

P ⌘
MY

k=1

�
i�2k�1�2k

�
=

MY
k=1

�
� �z

k

�

being the product of all M Jordan–Wigner sign factors. It involves the product
of all 2M �’s and thus it commutes with any even product of � operators and
anticommutes with any odd product,

[P,�i�j ] = 0, {P,�i} = 0, P2 = 1 .
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Because of these special properties, the presence of this P can be handled as
shown by Bruria Kaufman in 1949. Since the first round of superstring theory
about 1970 one talks about Ramond and Neveu–Schwarz sectors.

If P is present, one has to introduce two sectors (or subspaces) on one of
which the P acts as +1 and on the other as �1. This causing either periodic or
antiperiodic boundary conditions for the fermion operators, i.e.,

�m+2M = +�m (periodic) or �m+2M = ��m (antiperiodic).

We have derived the Bogolyubov variational inequality and this shows that the
free energy is independent of boundary conditions in the thermodynamic limit.
Thus, for the free energy may ignore the P complication and impose cyclic
(periodic) boundary conditions from now on.

However, for spin-spin correlations in the 2-dimensional Ising model and for
time-dependent correlations in the transverse Ising chain, one cannot ignore the
e↵ects of the P, even in the thermodynamic limit.
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For the 2-dimensional Ising model in a field and the related (in Suzuki’s time-
continuum limit) Ising chain in parallel and transverse field,

H = �J
MX

m=1

�x
m�x

m+1 �B?

MX
m=1

�z
m �Bk

MX
m=1

�x
m,

it is not possible to find a Jordan-Wigner transformation to make this quadratic
in fermion operators, except for the very special case of Yang and Lee with B
an integer multiple of 1

2⇡ikBT in the 2D case.⇤

Indeed, if one could find a working Jordan-Wigner transformation, one has
to make all �x

m and �z
m quadratic in �’s and thus also all �y

m = i[�z
m,�x

m], as the
commutator of two quadratic expressions is again quadratic.

There are also indications that there is no Yang–Baxter method available,
so that there may not be an exact solution. Still one can get very accurate
approximations using series, Monte Carlo, corner transfer matrices, etc.

⇤ This special case can be mapped into the product of two zero-field Ising models.
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For the 3-dimensional Ising model in zero field and the related (in Suzuki’s
time-continuum limit) 2-dimensional Ising model in transverse field,

H = �
LX

l=1

MX
m=1

(J�x
l,m�x

l+1,m + J 0�x
l,m�x

l,m+1 + B?�z
l,m),

it is also not possible to find a Jordan-Wigner transformation to make this
quadratic in fermion operators.

Indeed, we have to order all sites linearly, (l,m) ! (m � 1)M + l, for
example. Then,

�z
l,m = �i�2(m�1)M+2l�1�2(m�1)M+2l, �x

l,m�x
l+1,m = i�2(m�1)M+2l�2(m�1)M+2l+1,

but

�x
l,m�x

l,m+1 =
mM+l�1Y

k=(m�1)M+l

�
i�2k�2k+1

�
6= i�2(m�1)M+2l�2mM+2l�1,

with the last member being an error often made, most recently by Z.-D. Zhang.
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Remarks:

⇤ Some of the best approximate results for the scaling function of the two-
dimensional Ising model in a field have been obtained by the ANU group in
Canberra using Baxter’s variational corner-transfer-matrix method, see the
thesis https://digitalcollections.anu.edu.au/handle/1885/9860 by Dudalev
and Phys. Rev. E 81, 060103(R) (2010) [arXiv:1002.4234].

⇤ In 1991, for the 2-dimensional Ising model in the field theory limit near
the critical point, Zamolodchikov has conjectured an exact result for the
magnetic field dependence based on the Lie group E8.

⇤ For the 3-dimensional Ising model at the critical point, there are some very
interesting approximate recent results obtained using conformal invariance
arguments, see arXiv:1403.4545 by El-Showk et al., (to be published in
J. Stat. Phys.).

⇤ The susceptibility of the 2-dimensional Ising model is known to extremely
high precision, see J. Stat. Phys. 145 (2011) 549–590 [arXiv:1012.5272],
but complications (like a natural boundary) make it unlikely that a nice
formula for the free energy in a field exists.
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For the calculation of the free energy per site in the thermodynamic limit for
the system with Hamiltonian

H = �J
MX

m=1

�x
m�x

m+1 �B
MX

m=1

�z
m,

we may use the cyclic (periodic) fermion Hamiltonian

Hc = �J
MX

m=1

i�2m�2m+1 + B
MX

m=1

i�2m�1�2m,

with �2M+1 ⌘ �1. This follows, as was said, from the Bogolyubov inequality.
Then,

��f = lim
M!1

1
M

log Tr e��Hc .

The internal energy per site is

u(�) = lim
M!1

1
M

⌦
Hc

↵
=

@

@�

�
�f
�
, �f = � log 2 +

Z �

0
u(�0)d�0.
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To calculate the equal-time xx-correlation in the large-M limit, we rewrite it as

⌦
�x

m�x
m+p

↵
H =

*
m+p�1Y

k=m

�
i�2k�2k+1

�+
Hc

.

This can be evaluated as a Pfa�an using the thermodynamic Wick theorem, as
soon as we know all h�i�ji.

We can calculate h�i�ji after first diagonalizing Hc. But there is an easier
way using the KMS property, first stated by Kubo, Martin and Schwinger. In
our case it is just the cyclic property of trace,

⌦
�j�i

↵
Hc

=
Tr�j�ie��Hc

Tr e��Hc
=

Tr�ie��Hc�j

Tr e��Hc
=

Tr e�Hc�ie��Hc�je��Hc

Tr e��Hc

=
Tr�i(�i�)�je��Hc

Tr e��Hc
=
⌦
�i(�i�)�j

↵
Hc

,

using the time evolution (in h̄ = 1 units)

O(t) = eitHcOe�itHc .
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We can write

Hc = i
2MX
k=1

2MX
l=1

Ck,l�k�l = i�·C·�,

with C the antisymmetric block-cyclic 2M -by-2M matrix. Its nonzero elements
are given by
C2m,2m+1 = �C2m+1,2m = �1

2J, C2m�1,2m = �C2m,2m�1 = 1
2B, (16m<M),

C2M,1 = �C1,2M = �1
2J.

Now,
d
dt

�i(t) =
d
dt

e�t�·C·� �i et�·C·� = e�t�·C·� [�i,�·C·�] et�·C·�,

and

[�i,�·C·�] =
2MX
k=1

2MX
l=1

Ck,l [�i,�k�l]

=
2MX
l=1

Ci,l (�i�i�l � �i�l�i) +
2MX
k=1

Ck,i (�i�k�i � �k�i�i) = 4
2MX
k=1

Ci,k �k.
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Thus,
d
dt

�(t) = 4C · �(t), �(t) = e4tC · �.

Using the anticommutation relation and the KMS result derived earlier,

{�i,�j} = 2�i,j , or
⌦
�i�j

↵
+
⌦
�j�i

↵
=
⌦
�i�j

↵
+
⌦
�i(�i�)�j

↵
= 2�i,j ,

we find

(1 + e�4i�C) ·
⌦
��
↵

= 2 1 or
⌦
��
↵

= 2(1 + e�4i�C)�1 ,

or ⌦
�i�j

↵
= 2
⇥
(1 + e�4i�C)�1

⇤
i,j

,

which is the (i, j) element of the inverse of a simple function of a block-cyclic
matrix with 2-by-2 blocks. We shall see how this can be worked out using
discrete Fourier transform.
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Matrix A is an example of an n-by-n Toeplitz (or Töplitz) matrix:

A =

0
B@

a b c d
e a b c
f e a b
g f e a

1
CA

It has the property Ai,j = a(i� j), depending only on the di↵erence of the two
indices.

Matrix B is an example of an n-by-n cyclic matrix:

B =

0
B@

a b c d
d a b c
c d a b
b c d a

1
CA

It has the property Bi,j = b(i � j) = b(i � j ± n). It depends only on the
di↵erence of the two indices and it is periodic modulo n.
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Matrix C is block-cyclic. We give here the case M = 6 as an example:

2C =

0
BBBBBBBBBBBBBBBBBBBBBBBB@

0 B 0 0 0 0 0 0 0 0 0 J

�B 0 �J 0 0 0 0 0 0 0 0 0
0 J 0 B 0 0 0 0 0 0 0 0
0 0 �B 0 �J 0 0 0 0 0 0 0
0 0 0 J 0 B 0 0 0 0 0 0
0 0 0 0 �B 0 �J 0 0 0 0 0
0 0 0 0 0 J 0 B 0 0 0 0
0 0 0 0 0 0 �B 0 �J 0 0 0
0 0 0 0 0 0 0 J 0 B 0 0
0 0 0 0 0 0 0 0 �B 0 �J 0
0 0 0 0 0 0 0 0 0 J 0 B

�J 0 0 0 0 0 0 0 0 0 �B 0

1
CCCCCCCCCCCCCCCCCCCCCCCCA
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