
WIPM Lectures on Models in Statistical Mechanics

Lecture 2: More Techniques and 1D Ising Model
Jacques H. H. Perk, Oklahoma State University

Last lecture was technical at times, but let me first summarize what the theorems
are that we should remember of the technical part, leaving out the details of the
proofs. First some general remarks:

⇤ We want to discuss both classical 2-dimensional models and 1-dimensional
quantum chain models in parallel. Therefore, we shall use operator methods.

⇤ For the Ising-type models we must use the Jordan–Wigner transformation
to change from mixed commutation rules to fermion operators.

⇤ To deal with the fermion operators we have to use Wick theorems and
Pfa�ans. (Pfa�ans appear also in most non-operator approaches.)

⇤ We also need to introduce transfer matrices and that is most easily done
treating the 1-dimensional Ising model first.
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Pfa�ans of triangular arrays

Pf A ⌘
X

P
P(2i�1)<P(2i)

P(2i�1)<P(2i+1)

0 (�1)P
sY

i=1

AP(2i�1),P(2i) , Pf({APi,Pj}) = (�1)PPf A

A antisymmetrically extended
.

det A = (Pf A)2 for antisymmetric matrix A
extending triangular array A ,

Pf A =
2sX

j=2

(�1)jA1j Pf A[1, j] .

Pf A =
1
s

XX
16l<m62s

(�1)l+m�1Alm Pf A[l,m] ,

A[l,m] obtained by deleting rows and columns l and m from triangular array A.
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Example of Evaluating Pfa�an by First Row

If you evaluate a determinant by rows, then you take a sum of ± products of an
element times the determinant with the corresponding row and column deleted.
Now you have to strike out two columns and rows each time:

Pf A =
|A12 A13 A14

A23 A24

A34

������

= A12

|A12 A13 A14

A23 A24

A34

������ �A13

|A12 A13 A14

A23 A24

A34

������ + A14

|A12 A13 A14

A23 A24

A34

������

= A12A34 �A13A24 + A14A23.

3



General Fermionic Wick Theorem
Case s = 2:

Tr(Q1Q2Q3Q4) Tr(�1Q1�2Q2�3Q3�4Q4)
= Tr(�1Q1�2Q2Q3Q4) Tr(Q1Q2�3Q3�4Q4)
� Tr(�1Q1Q2�3Q3Q4) Tr(Q1�2Q2Q3�4Q4)
+ Tr(�1Q1Q2Q3�4Q4) Tr(Q1�2Q2�3Q3Q4).

Each Qj is a product of factors that are either exponentials of quadratic forms
or linear expressions in fermion operators. The �j are fermion operators.

General case s> 2:

 
Tr

2sY
k=1

Qk

!s�1

Tr
2sY

k=1

�pkQk = Pf
16k<l62s

⇢
Tr
✓Y

i<k

Qi

◆
�pkQk

✓ Y
k<i<l

Qi

◆
�plQl

✓Y
i>l

Qi

◆�
.
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Remark: Compound Pfa�ans

If we introduce the notation

Pf(S) ⌘ Pf
{i,j}⇢S

i<j

({Aij}),

with S an index set of even size and A a triangular array, then the general Wick
theorem can be seen to be equivalent to

Pf(S1 [ S2)
Pf(S2)

= Pf
{i,j}⇢S1

✓⇢
Pf({i, j} [ S2)

Pf(S2)

�◆
.

This is a compound Pfa�an theorem : A Pfa�an of Pfa�ans is a Pfa�an.

Though not widely known, this version is particularly useful in approaches
to Ising-class models when one does not use operator techniques. It can be
shown to be equivalent to the general Wick theorem. The smallest nontrivial
example has S1 having size 4 and S2 size 2.
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Example of Compound Pfa�an Identity

Take S1 = {1, 2, 3, 4} and S2 = {5, 6}, then the compound Pfa�an theorem says

Pf A[1, 2, 3, 4] Pf A

= Pf A[3, 4] Pf A[1, 2]� Pf A[2, 4] Pf A[1, 3] + Pf A[2, 3] Pf A[1, 4],

which is a Pfa�an of Pfa�ans. Indeed, we have (exercise):

A5,6

⇣
A1,2A3,4A5,6 �A1,2A3,5A4,6 + A1,2A3,6A4,5 �A1,3A2,4A5,6

+ A1,3A2,5A4,6 �A1,3A2,6A4,5 + A1,4A2,3A5,6 �A1,4A2,5A3,6

+ A1,4A2,6A3,5 �A1,5A2,3A4,6 + A1,5A2,4A3,6 �A1,5A2,6A3,4

+ A1,6A2,3A4,5 �A1,6A2,4A3,5 + A1,6A2,5A3,4

⌘
=(A3,4A5,6 �A3,5A4,6 + A3,6A4,5) (A1,2A5,6 �A1,5A2,6 + A1,6A2,5)
� (A2,4A5,6 �A2,5A4,6 + A2,6A4,5) (A1,3A5,6 �A1,5A3,6 + A1,6A3,5)
+ (A2,3A5,6 �A2,5A3,6 + A2,6A3,5) (A1,4A5,6 �A1,5A4,6 + A1,6A4,5) .
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One-Dimensional Ising Model
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Open Ising Chain in Zero Field
We have N spins �j = ±1 on sites j = 1, · · ·N . Nearest neighbors are coupled
with energy �J if they are parallel and �J otherwise. Thus the interaction
energy is

H = �J
N�1X
j=1

�j�j+1.

The partition function is

Z =
X
{�}

e��H =
X

�1=±1

X
�2=±1

· · ·
X

�N=±1

e��H,

with the sum over all allowed spin configurations and � = 1/(kBT ). Commonly
one uses the dimensionless inverse temperature

K = �J =
J

kBT
,

so that
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Z =
X

�1=±1

X
�2=±1

· · ·
X

�N=±1

eK�1�2+K�1�2+···+K�N�1�N .

We can next go to the new spin variables

⌧j = �j�j+1, for j = 1, · · · , N � 1, and ⌧N = �N ,

with the inverse transformation

�j =
NY

k=j

⌧k,

making

H = �J
N�1X
j=1

⌧j ,

and
Z =

X
⌧1=±1

eK⌧1
X

⌧2=±1

eK⌧2 · · ·
X

⌧N�1=±1

eK⌧N�1
X

⌧N=±1

1

= 2
✓X

⌧=±1

eK⌧
◆N�1

= 2 (2 coshK)N�1 = e��F ,
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with F the total free energy. The free energy per site f = F/N is given by

��f = log(2 coshK)�N�1 log(coshK) ! log(2 coshK), as N !1.

The O(N�1) term vanishes in the thermodynamic limit. The pair correlation
function can also easily be obtained:

h�j�j+pi ⌘

X
{�}

e��H�j�j+p

X
{�}

e��H
=

X
{⌧}

e��H
j+p�1Y

k=j

⌧k

X
{⌧}

e��H

=

✓X
⌧=±1

⌧ eK⌧
◆p✓X

⌧=±1

eK⌧
◆N�p�1 X

⌧=±1

1

✓X
⌧=±1

eK⌧
◆N�1 X

⌧=±1

1
=
✓

2 sinhK

2 coshK

◆p

=
�
tanhK

�p
.

The results are very simple, as the interaction is ‘pure gauge’ (�j�j+1 = �j�
�1
j+1).

10



Periodic Ising Chain in Nonzero Field
The interaction energy with scaled magnetic field B is

H = �J
NX

j=1

�j�j+1 �B
NX

j=1

�j , with �N+1 ⌘ �1.

Writing H = �B and symmetrizing the magnetic field term (convenient but not
needed), we have

��H =
NX

j=1

✓
K�j�j+1 +

1
2
H(�j + �j+1)

◆
,

so

Z =
X
{�}

e��H =
X

�1=±1

X
�2=±1

· · ·
X

�N=±1

T (�1,�2)T (�2,�3) · · ·T (�N�1,�N )T (�N ,�1),

with

T (�j ,�j+1) ⌘ exp
⇣
K�j�j+1 +

1
2
H(�j + �j+1)

⌘
.
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Thus we have defined the transfer matrix T:

T (�,�0) = eK��0+ 1
2 H(�+�0), T =

✓�0 = +1 �0 = �1
� = +1 eK+H e�K

� = �1 e�K eK�H

◆
,

and

Z =
X

�1=±1

X
�2=±1

· · ·
X

�N=±1

T (�1,�2)T (�2,�3) · · ·T (�N�1,�N )T (�N ,�1)

=
X

�1=±1

TN (�1,�1) = TrTN = � N
1 + � N

2 .

The eigenvalues �1 and �2 of T satisfy

det
✓

eK+H � � e�K

e�K eK�H � �

◆
= 0,

so that
�1,2 = eK coshH ±

p
e2K sinh2 H + e�2K .
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Using the Pauli matrices

�x ⌘
✓

0 1
1 0

◆
, �y ⌘

✓
0 �i
i 0

◆
, �z ⌘

✓
1 0
0 �1

◆
, �0 ⌘

✓
1 0
0 1

◆
,

we can also rewrite T as

T =
✓

eK+H e�K

e�K eK�H

◆
= (eK coshH)�0 + e�K�x + (eK sinhH)�z,

and use the well-known fact that the eigenvalues of a0 �0 + ~a · ~� are ao ± |~a|.
Clearly, �1 > 0 and |�2| < �1, so that

��f =
1
N

log(� N
1 +� N

2 ) = log �1+
1
N

log
✓

1 +
⇣�2

�1

⌘N
◆
! log �1, as N !1.

Thus
lim

N!1
(��f) = log

⇣
eK coshH +

p
e2K sinh2 H + e�2K

⌘
.
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If one also calculates the eigenvectors of T, then one can also obtain the pair-
correlation function h�j�ki and solve the open-chain problem with fixed or free
boundary conditions.

For the open chain

H = �J
N�1X
j=1

�j�j+1 �B
NX

j=1

�j .

Then with

T =
✓

eK+H e�K

e�K eK�H

◆
, TH =

✓
e 1

2 H 0
0 e� 1

2 H

◆
,

we have
Z = h�1|THTN�1TH |�2i, with h�1| = |�1i†,

and |�1,2i =
�1

1

�
for a free boundary and

�1
0

�
or
�0

1

�
for a fixed boundary. This

is easily worked out and extended to the pair correlation function. We leave the
further details as an exercise.

It may be good to mention two important theorems now:
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The Theorem of Perron–Frobenius: A square matrix with only positive elements
has a unique eigenvalue with largest absolute value �0, which is positive and its
corresponding eigenvector suitably normalized has only positive elements.

Here we shall only give a simple proof assuming that T is symmetric and positive,
i.e., Tkl = Tlk > 0 for all k and l. Then all eigenvalues are real and we have a
complete orthonormal set of real eigenvectors v(j) satisfying

Tv(j) = �jv(j) or
X

l

Tklv
(j)
l = �jv

(j)
k and v(j) ·v(j0) = �j,j0 .

Reality follows, since with v(j) also Rev(j) and Imv(j) are eigenvectors. From
orthonormality we can have only one eigenvector with only positive elements. It
cannot be positive or zero, as application of T then produces a strictly positive
vector. From an eigenvector v(j) with negative components and with |�j | = �0

maximal, one could show a contradiction for v0, with components v0k = |v(j)
k |:

|Tv0|2 =
X

k

✓X
l

Tkl|v
(j)
l |
◆2

>
X

k

✓X
i

Tklv
(j)
l

◆2
= � 2

0

X
k

�
v(j)

l

�2 = � 2
0 |v0|2,

while we must have |Tv0|6�0|v0|.
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Remarks:

⇤ The Perron–Frobenius theorem can be proved for more general cases with
T not symmetric and even (under specific conditions) with several zero
elements. (See, for example, the Wikipedia article on the Perron–Frobenius
theorem for more discussion and references.)

⇤ The eigenvalues of transfer matrix T are solutions of a polynomial equation.
They are analytic, if T is analytic, except at branchpoints, where two of more
eigenvalues coincide. In classical one-dimensional models with short-range
interactions there are generally no phase transitions at finite temperature,
as degeneracy is forbidden by Perron–Frobenius.

⇤ Perron–Frobenius does not apply when T has too many zero elements or
becomes infinite, which typically happens at zero temperature.

⇤ Perron–Frobenius often fails, when the dimension of the space on which T
acts becomes infinite. This failure happens with mean-field models in one
dimensions with infinite-range interactions and the two-dimensional Ising
model in the thermodynamic limit.
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The Bogolyubov Inequality:

Given two interaction energies or Hermitian Hamiltonians H and H0, then

F [H]� F [H0]6 hH�H0iH0
,

where we used the notations for any H and O:

F [H] ⌘ ���1 log Tr e��H, hOiH ⌘ TrO e��H

Tr e��H .

Remarks:
⇤ Here Tr stands for trace in the quantum case and for the sum over all

configurations in the classical case.

⇤ This inequality is useful to show convergence and independence of boundary
conditions in the thermodynamic limit. If H�H0 is bounded and growing
slower than the system size, then the free energies per site f [H] and f [H0]
become equal in the large system limit.
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Proof: We first introduce

H(�) ⌘ H0 + �(H�H0), H(0) = H0, H(1) = H,

and derive

@

@�
e��H(�) = �

Z �

0
d⌧ e�⌧H(�)(H�H0)e�(��⌧)H(�)

,

which is needed when H and H0 do not commute. In the commuting case it
simplifies to ��(H�H0)e��H(�), as it should.

The simplest way to see this is to write

@

@�
e��H(�) =

@

@�
lim

n!1

nY
j=1

e�
1
n �H(�)

= lim
n!1

nX
k=0

 kY
j=1

e�
1
n �H(�)

�
@

@�

⇣
� 1

n
�H(�)

⌘ nY
j=k+1

e�
1
n �H(�)

�

and then replace the sum by an integral setting ⌧ = k
n�.
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Use this and the cyclic property of trace, TrABC = TrCAB, to find

@

@�
F [H(�)] = ���1 @

@�
log Tr e��H(�) =

R �
0 d⌧ Tr e�⌧H(�)(H�H0)e�(��⌧)H(�)

� Tr e��H(�)

=
R �
0 d⌧ Tr (H�H0)e��H(�)

� Tr e��H(�)
=

Tr (H�H0)e��H(�)

Tr e��H(�)
= hH�H0iH(�).

Taking another derivative,

@2

@�2
F [H(�)] = �

Z �

0
d⌧

"
Tr (H�H0)e�⌧H(�)(H�H0)e�(��⌧)H(�)

Tr e��H(�)

�
�
Tr (H�H0)e��H(�)

�2
�
Tr e��H(�)

�2
#

= �
Z �

0
d⌧
D⇣

H�H0�hH�H0iH(�)

⌘
e�⌧H(�)

⇣
H�H0�hH�H0iH(�)

⌘
e⌧H(�)

E
H(�)

.
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If we write A ⌘ e� 1
2 ⌧H(�)

�
H�H0�hH�H0iH(�)

�
e 1

2 ⌧H(�), then we get

@2

@�2
F [H(�)] = �

Z �

0
d⌧
⌦
A†A

↵
6 0, or F [H(�)] is concave.

This means that any tangent to the curve F [H(�)] lies above the curve, or

F [H(�)]6F [H(0)] + �
⇣ @

@�
F [H(�)]

���
�=0

⌘
.

Setting � = 1, we get

F [H]6F [H0] +
⌦
H�H0

↵
H0

,

which is the Bogolyubov inequality.

Remark: This implies also
��F [H]� F [H0]

�� 6 ||H�H0|| ,

with ||O|| the norm of O.
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One More Setup for Periodic Ising Chain in Nonzero Field
As a finger exercise to prepare for the two-dimensional case, we revisit the one-
dimensional periodic case with

��H = K
NX

j=1

�j�j+1 + H
NX

j=1

�j , with �N+1 ⌘ �1, K ⌘ �J, H ⌘ �B.

The partition function is

Z =
X
{�}

e��H =
X

�1=±1

X
�2=±1

· · ·
X

�N=±1

T1(�1,�2)T2(�2,�2)T1(�2,�3)

⇥ T2(�3,�3) · · ·T1(�N�1,�N )T2(�N ,�N )T1(�N ,�1)T2(�1,�1)

= Tr (T1T2)N ,

with
T1(�,�0) ⌘ exp

�
K��0

�
, T2(�,�0) ⌘ exp

�
H�
�
��,�0

,
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or

T1 =
✓

eK e�K

e�K eK

◆
=
p

2 sinh(2K) eK⇤�x
, T2 =

✓
eH 0
0 e�H

◆
= eH�z

,

where
K⇤ ⌘ artanh e�2K , tanhK⇤ = e�2K .

Indeed, we can write T1 in terms of Pauli matrices:

T1 = eK1 + e�K�x = eK
�
1 + e�2K�x

�
= eK

�
1 + �x tanhK⇤�

=
eK

coshK⇤
�
1 coshK⇤ + �x sinhK⇤� =

p
2 sinh(2K) eK⇤�x

.

One can easily check the equivalence of (exercise)

tanhK⇤ = e�2K , tanhK = e�2K⇤
, sinh(2K) sinh(2K⇤) = 1,

cosh(2K⇤) = coth(2K), cosh(2K) = coth(2K⇤).

Also, ✓
eK

coshK⇤

◆2

=
1

tanhK⇤ cosh2 K⇤ =
2

sinh(2K⇤)
= 2 sinh(2K).
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Next: Two-Dimensional Ising Model in Zero Field
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