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Gross-Neveu model
recovers the Peierls model
in the large limit of N
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We recover the Peierls model in the limit of a large N
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We study the low-lying spectrum of the bilinear-biquadratic Heisenberg model in the dimerized
and Haldane phases using a tensor renormalization method. At the critical point ✓ = �⇡/4 the finite-
size spectrum predicted by the Wess-Zumino-Witten (WZW) model can only partly be confirmed.
We find a singlet-singlet gap which does not fit into the WZW systematics. The results obtained are
compared to Bethe Ansatz, exact diagonalization, and DMRG calculations for specific parameters.

I. INTRODUCTION

The isotropic bilinear-biquadratic (BLBQ) Heisenberg
model plays a fundamental role in the theory of mag-
netism, and, more generally, for the understanding of
strongly interacting many body systems. For spin-1 sys-
tems in one spatial dimension the model is given by the
Hamiltonian

H =
NX

i=1

cos ✓(~Si ⌦
~Si+1) + sin ✓(~Si ⌦

~Si+1)
2
. (1)

The S
i
� are spin-1 matrix representations of SU(2) and

N denotes the system size. The model depends on the
parameter ✓, which governs the ratio between the bilin-
ear and biquadratic terms. In the present contribution
we concentrate on periodic one-dimensional (1D) systems
with nearest neighbour interactions only.

The 1D BLBQ model shows a rich phase structure with
various disordered phases. The 1D phase diagram di↵ers
from the one expected for higher dimensions [1] and is
shown schematically in Fig. 1 as a function of the pa-
rameter ✓. One finds three exotic phases: the massless
trimerized phase, the Haldane phase, and the dimerized
phase. In fact, in one dimension, due to Coleman’s theo-
rem [2], the only ordered phase is ferromagnetic since its
order parameter Sz is conserved.

This phase structure should be reflected in the excita-
tion spectrum of low lying states, with gaps closing at
the critical points ✓ = ±⇡/4, which separate the disor-
dered phases from each other. Here we will study the
spectrum on both sides of the critical point at ✓ = �⇡/4,
specifically from ✓ = �⇡/2 to ✓ = 0. The spectrum in
the whole region should be gapped except at the critical
point. The gaps are expected to be small and are not
easily determined precisely.

Previously, the ground state of the model was studied
using a variational method in Ref. [3]. For the excita-
tion spectrum there are rather old exact diagonalization
results [1], which encompass the Haldane and dimerized
phases. Furthermore, there is a systematic study of the
excitation spectrum of the BLBQ model in the Haldane
phase in Ref. [4] using tensor renormalization methods
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FIG. 1. Phase diagram of the spin-1 bilinear-biquadratic (BLBQ)
Heisenberg model as a function of ✓. There are four quantum
phases: the ferromagnetic phase, the critical (trimerized) phase,
the Haldane phase, and the dimerized phase.

with relatively small tensor sizes as well as various stud-
ies at isolated points in the Haldane phase (✓ = 0 [5, 6]
and AKLT point ✓ = arctan 1

3 [7]). Moreover, there are
Bethe Ansatz results for ✓ = �⇡/2 [8, 9] and for the
critical point ✓ = �⇡/4 [10–13].

We use the higher-order tensor renormalization group
(HOTRG) method [14] to determine the low-lying spec-
trum. Our variant of this method implements U(1) sym-
metry of the tensors explicitly. Tensor renormalization
is able to obtain spectra for relatively large systems, and
in a recent paper [15] we studied the XXZ chain in a
longitudinal homogeneous field and showed by compari-
son to Bethe ansatz results that the method accurately
determines the spectrum and the phase diagram.

The low lying spectrum is calculated from the trans-
fer matrix, which is obtained from the coarse grained
tensors. The renormalized tensor at each coarse grain-
ing step corresponds to a certain system size. Therefore,
one obtains the complete finite size dependence of the
spectrum required for the determination of the scaling
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Natan Andrei, Kondo impurity problems  in interacting environments 
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A. Klumper, Spin helix: possible possesses topological

Balazs S. Pozsgai : Free fermions beyond Jordan 
& Wigner--giving dynamical correlations  

The temporal decay of the transverse polarization of 
a spin helix in the XX model 

5

a0 = 1.2295± 2⇥ 10�5
.

The data were obtained by analyzing detA(t) for r 
170, and for times t < tm(r) = r/2.2� 0.19, data shown
in [16]. Eq.(32) corresponds to the S(t) asymptotics

lim
t!1

S(t) ⇡ 1.5117 e�
8
⇡ t

. (33)

Using that S(t) is even [18] we readily get the spin-
helix state decay rate from the asymptotics (33) and the
self-similarity (17):

�(Q) = � lim
t!1

(t�1logh�x

n
(t)iQ) =

8

⇡
| cos(Q)|, (34)

shown in Fig. 2 and directly comparable with the exper-
imental result, Fig. 3c of [2].

Conclusions– In this work we propose a chiral qubit
basis that possesses topological properties while retaining
a simple factorized structure and orthonormality. The
chiral basis at every site is represented by a pair of mu-
tually orthogonal qubit states and can be implemented
with usual binary code registers. We demonstrate the
e↵ectiveness of the chiral basis by applying it to an ex-
perimentally relevant physical problem. Our results in
Figs. 1 and 2 are comparable to the experimental data.

We discovered a universal function S(t) that governs
the relaxation of transversal spin helices with arbitrary
wavelengths in an infinite system under XX dynamics.
We obtained the explicit determinantal form (28) of S(t)
and calculated its Taylor expansion (25) and its large-t
asymptotics (33). The possibility to express correlation
functions in determinantal form is typical of integrable
systems, see e.g. [17, 20, 23–26]. We also obtained explicit
expressions for the spin-helix state relaxation of finite
systems of qubits (22) that may be useful to interpret
future experiments with ring-shaped atom arrays [27],
where periodic boundary conditions can be realized.

The chiral basis can be used to diagonalize any other
Hamiltonian that commutes with the winding number
operator V , Eq. (2). An important example is the
anisotropic XY Hamiltonian for which we expect to be
able to obtain e�cient formulae for the overlaps and,
most likely, also for the relaxation of spin helices. As
for the construction of the chiral basis, a generalization
to the XYZ case has been put forward in parallel to this
work by three of the authors and was recently published
in [28].
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104, L081410 (2021).
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Exact real time dynamics with free fermions in disguise
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We consider quantum spin chains with a hidden free fermionic structure, distinct from the Jordan-
Wigner transformation and its generalizations. We express selected local operators with the hidden
fermions. This way we can exactly solve the real time dynamics in various physical scenarios,
including the computation of selected dynamical two point functions and Loschmidt amplitudes, in
continuous or discrete time. In the latter case we build quantum circuits that can be implemented
on a quantum computer. With this we extend the family of classically simulable quantum many
body processes.

Introduction.— Free fermions play an important role
in multiple areas of theoretical physics, due to their ex-
act solvability and the simplicity of the computations
with them. The two-dimensional classical Ising model
is solvable by free fermions [1], just like many one dimen-
sional quantum spin chains, such as the Ising chain or
the XX model [2]. The free fermionic Kitaev chain [3] is
an important candidate for fault tolerant quantum com-
puting. In two dimensions the honeycomb lattice model
is a free fermionic system that hosts anyons [4]. Free
fermions are important also in quantum information the-
ory: quantum circuits based on the so-called matchgates
are free fermionic, and they enable classical simulability
of quantum processes [5–7]. Free fermions also appear in
the tensor network models of the holographic principle,
where they lead to an e�cient contraction of the tensor
network [8].

Given their importance it is natural to ask: What is
the widest class of physically meaningful models which
can be solved by free fermions? How can we construct
free fermionic operators in systems that are inherently
bosonic? And what is the true computational advantage
of the free fermions?

In quantum spin chains fermions can be constructed
using the Jordan-Wigner (JW) transformation [9] (for
generalizations see [10–14]). However, the JW trans-
formation does not encompass all possibilities. In the
last couple of years a number of models have been found
which can be solved by hidden free fermionic structures
[15–20] (for earlier examples see [21–23]). These mod-
els typically involve 4-body or higher interactions when
expressed using the JW fermions; but the Hamiltonian
can be diagonalized by the hidden fermionic operators.
These are highly non-local in the original spin operators,
but also in the JW fermions. The solution of hidden-
fermion models is also di↵erent from a generalized JW
transformation in that it is not possible to express ev-
ery term in the Hamiltonian as a bilinear in the hidden
fermions [13, 14, 18]. Previous works focused on com-
puting the spectrum and the ground state properties of
such models [24–28] but the practical advantage of the
free fermionic structures has not yet been demonstrated

beyond the computation of the spectrum.
In this work we establish contact with local physics, fo-

cusing on the “free fermions in disguise” (FFD) model of
Fendley [15]. We express selected local operators using
the hidden fermions, thereby partially solving the “in-
verse problem”. Afterwards many dynamical scenarios
become analytically tractable, demonstrating the useful-
ness of hidden free fermions.
Besides Hamiltonian dynamics we also consider dis-

crete time evolution in quantum circuits with special ge-
ometries, compatible with the FFD model. These circuits
can be realized in present day quantum computers. With
this we demonstrate that free fermions in disguise lead
to classically simulable quantum processes and this could
be used for benchmarking quantum computers.
Model.— We consider one dimensional quantum spin

chains and quantum circuits which are built on selected
representations of an abstract algebra. We call it the
FFD algebra. It is defined by the generators hj , j =

1, 2, . . . ,M which satisfy h
2
j
= 1, hj = h

†
j
and the com-

mutation relations

{hj , hj+1} = {hj , hj+2} = 0

[hj , hk] = 0, |j � k| > 2 .
(1)

These relations are understood without periodicity in the
indices, therefore the algebra always describes a system
with open boundaries.

We consider a family of models defined by the Hamil-
tonians

H =
MX

j=1

bjhj (2)

where bj 2 R are arbitrary coupling constants. We spec-
ify a representation of the abstract algebra on a spin 1/2-
chain of length L = M . The concrete operators are given
by h1 = X1, h2 = Z1X2, and

hj = Zj�2Zj�1Xj , j � 3 . (3)

Here and below Xj , Yj and Zj stand for the Pauli matri-
ces acting on site j of the spin chain. Other representa-
tions were treated in [15, 29].
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We consider quantum spin chains with a hidden free fermionic structure, distinct from the Jordan-
Wigner transformation and its generalizations. We express selected local operators with the hidden
fermions. This way we can exactly solve the real time dynamics in various physical scenarios,
including the computation of selected dynamical two point functions and Loschmidt amplitudes, in
continuous or discrete time. In the latter case we build quantum circuits that can be implemented
on a quantum computer. With this we extend the family of classically simulable quantum many
body processes.

Introduction.— Free fermions play an important role
in multiple areas of theoretical physics, due to their ex-
act solvability and the simplicity of the computations
with them. The two-dimensional classical Ising model
is solvable by free fermions [1], just like many one dimen-
sional quantum spin chains, such as the Ising chain or
the XX model [2]. The free fermionic Kitaev chain [3] is
an important candidate for fault tolerant quantum com-
puting. In two dimensions the honeycomb lattice model
is a free fermionic system that hosts anyons [4]. Free
fermions are important also in quantum information the-
ory: quantum circuits based on the so-called matchgates
are free fermionic, and they enable classical simulability
of quantum processes [5–7]. Free fermions also appear in
the tensor network models of the holographic principle,
where they lead to an e�cient contraction of the tensor
network [8].

Given their importance it is natural to ask: What is
the widest class of physically meaningful models which
can be solved by free fermions? How can we construct
free fermionic operators in systems that are inherently
bosonic? And what is the true computational advantage
of the free fermions?

In quantum spin chains fermions can be constructed
using the Jordan-Wigner (JW) transformation [9] (for
generalizations see [10–14]). However, the JW trans-
formation does not encompass all possibilities. In the
last couple of years a number of models have been found
which can be solved by hidden free fermionic structures
[15–20] (for earlier examples see [21–23]). These mod-
els typically involve 4-body or higher interactions when
expressed using the JW fermions; but the Hamiltonian
can be diagonalized by the hidden fermionic operators.
These are highly non-local in the original spin operators,
but also in the JW fermions. The solution of hidden-
fermion models is also di↵erent from a generalized JW
transformation in that it is not possible to express ev-
ery term in the Hamiltonian as a bilinear in the hidden
fermions [13, 14, 18]. Previous works focused on com-
puting the spectrum and the ground state properties of
such models [24–28] but the practical advantage of the
free fermionic structures has not yet been demonstrated
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In this work we establish contact with local physics, fo-

cusing on the “free fermions in disguise” (FFD) model of
Fendley [15]. We express selected local operators using
the hidden fermions, thereby partially solving the “in-
verse problem”. Afterwards many dynamical scenarios
become analytically tractable, demonstrating the useful-
ness of hidden free fermions.
Besides Hamiltonian dynamics we also consider dis-

crete time evolution in quantum circuits with special ge-
ometries, compatible with the FFD model. These circuits
can be realized in present day quantum computers. With
this we demonstrate that free fermions in disguise lead
to classically simulable quantum processes and this could
be used for benchmarking quantum computers.
Model.— We consider one dimensional quantum spin
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representations of an abstract algebra. We call it the
FFD algebra. It is defined by the generators hj , j =

1, 2, . . . ,M which satisfy h
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and the com-
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{hj , hj+1} = {hj , hj+2} = 0

[hj , hk] = 0, |j � k| > 2 .
(1)

These relations are understood without periodicity in the
indices, therefore the algebra always describes a system
with open boundaries.

We consider a family of models defined by the Hamil-
tonians

H =
MX
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bjhj (2)

where bj 2 R are arbitrary coupling constants. We spec-
ify a representation of the abstract algebra on a spin 1/2-
chain of length L = M . The concrete operators are given
by h1 = X1, h2 = Z1X2, and

hj = Zj�2Zj�1Xj , j � 3 . (3)

Here and below Xj , Yj and Zj stand for the Pauli matri-
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Introduction.— Free fermions play an important role
in multiple areas of theoretical physics, due to their ex-
act solvability and the simplicity of the computations
with them. The two-dimensional classical Ising model
is solvable by free fermions [1], just like many one dimen-
sional quantum spin chains, such as the Ising chain or
the XX model [2]. The free fermionic Kitaev chain [3] is
an important candidate for fault tolerant quantum com-
puting. In two dimensions the honeycomb lattice model
is a free fermionic system that hosts anyons [4]. Free
fermions are important also in quantum information the-
ory: quantum circuits based on the so-called matchgates
are free fermionic, and they enable classical simulability
of quantum processes [5–7]. Free fermions also appear in
the tensor network models of the holographic principle,
where they lead to an e�cient contraction of the tensor
network [8].

Given their importance it is natural to ask: What is
the widest class of physically meaningful models which
can be solved by free fermions? How can we construct
free fermionic operators in systems that are inherently
bosonic? And what is the true computational advantage
of the free fermions?

In quantum spin chains fermions can be constructed
using the Jordan-Wigner (JW) transformation [9] (for
generalizations see [10–14]). However, the JW trans-
formation does not encompass all possibilities. In the
last couple of years a number of models have been found
which can be solved by hidden free fermionic structures
[15–20] (for earlier examples see [21–23]). These mod-
els typically involve 4-body or higher interactions when
expressed using the JW fermions; but the Hamiltonian
can be diagonalized by the hidden fermionic operators.
These are highly non-local in the original spin operators,
but also in the JW fermions. The solution of hidden-
fermion models is also di↵erent from a generalized JW
transformation in that it is not possible to express ev-
ery term in the Hamiltonian as a bilinear in the hidden
fermions [13, 14, 18]. Previous works focused on com-
puting the spectrum and the ground state properties of
such models [24–28] but the practical advantage of the
free fermionic structures has not yet been demonstrated

beyond the computation of the spectrum.
In this work we establish contact with local physics, fo-

cusing on the “free fermions in disguise” (FFD) model of
Fendley [15]. We express selected local operators using
the hidden fermions, thereby partially solving the “in-
verse problem”. Afterwards many dynamical scenarios
become analytically tractable, demonstrating the useful-
ness of hidden free fermions.
Besides Hamiltonian dynamics we also consider dis-

crete time evolution in quantum circuits with special ge-
ometries, compatible with the FFD model. These circuits
can be realized in present day quantum computers. With
this we demonstrate that free fermions in disguise lead
to classically simulable quantum processes and this could
be used for benchmarking quantum computers.
Model.— We consider one dimensional quantum spin

chains and quantum circuits which are built on selected
representations of an abstract algebra. We call it the
FFD algebra. It is defined by the generators hj , j =

1, 2, . . . ,M which satisfy h
2
j
= 1, hj = h

†
j
and the com-

mutation relations

{hj , hj+1} = {hj , hj+2} = 0

[hj , hk] = 0, |j � k| > 2 .
(1)

These relations are understood without periodicity in the
indices, therefore the algebra always describes a system
with open boundaries.

We consider a family of models defined by the Hamil-
tonians

H =
MX

j=1

bjhj (2)

where bj 2 R are arbitrary coupling constants. We spec-
ify a representation of the abstract algebra on a spin 1/2-
chain of length L = M . The concrete operators are given
by h1 = X1, h2 = Z1X2, and

hj = Zj�2Zj�1Xj , j � 3 . (3)

Here and below Xj , Yj and Zj stand for the Pauli matri-
ces acting on site j of the spin chain. Other representa-
tions were treated in [15, 29].
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and compute the Cj . Afterwards we construct a family
of operators which are bilinears in the fermions.

Using the results of [15] we show in [35] that the ex-
pansion co-e�cients are

Cj = C�j =

s
PM\1(u2

j
)

�u
2
j
P

0
M
(u2

j
)
, (13)

where PM\1(x) stands for a polynomial which is obtained
analogous to (8) but with the substitution b1 = 0 and
the prime in P

0
M

denotes di↵erentiation with respect to
its argument.

It remains to be checked whether the expansion (12)
is indeed complete. We performed numerical tests for
small values of M and discovered that for M = 3k and
M = 3k+2 the model possesses a Majorana zero mode as
well. This is described by a Hermitian operator  0 with
the properties ( 0)2 = 1, [H, 0] = 0 and { 0, k} =
{ 0, �k} = 0 for k = 1, 2, . . . S.

If we add the zero mode as

�0 =
SX

j=�S

Cj j , C0 =

(
0 M 2 3N + 1 ,
Q

S

k=1
uk
ûk

else,

(14)
where ûk > 0 are the roots PM\1(û

2
k
) = 0, then numerical

tests and an analytic proof presented in [35] show that
the expansion is indeed complete, and we obtained the
solution of the inverse problem for �0.

We can now express other operators using the fermions,
by employing the FFD algebra together with (10). A
simple way is to construct a series of operators oj via
the recursion oj = [H, oj�1]/2, together with the initial
condition o0 = �0. This can be seen as a Krylov basis
in operator space. H is bilinear in the fermions, while
o0 = �0 is linear, therefore every oj is also linear in the
fermions. In the FFD algebra representation every oj

includes a factor of �0. Having found the oj , we construct
various products ojok and take their linear combinations,
to obtain a family of local operators that are bi-linear in
the fermions. It is crucial that �0 drops out from every
such product.

For the first element we find o1 = b1h1�0. Taking
the product o1�0 = b1h1 we compute h1 as a bi-linear
expression in the fermions. It follows from (10), (12),
and the fermionic algebra that

h1 = b
�1
1

SX

j,k=�S

"jCjCk j k . (15)

For the next element in the Krylov basis we find o2 =
((b2h2 + b3h3)b1h1 + b

2
1)�0, and using this result we can

eventually express the combination b2h2 + b3h3 as a bi-
linear in the fermions. However, we did not find a way
to express h2 and/or h3 individually using the fermions.
Afterwards the next simplest operator for which a bi-
linear expression is found is a linear combination of h4,

h5 and h2h3h5 [35]. Our method expresses more and
more complicated local operators using the fermions. At
present we do not have a full classification as to which
local operator is bi-linear, or perhaps of higher order in
the hidden fermions.
Dynamics.— We compute infinite temperature two-

point functions of operators localized around the bound-
ary. Our main example is

D(t) = hh1(t)h1(0)i ⌘ Tr(h1e
�iHt

h1e
iHt)/Tr(1) . (16)

This correlation function can be expressed as

D(t) =
1

4b21

⇣
(Ḃ(t))2 �B(t)B̈(t)

⌘
, B(t) = h�0(t)�0(0)i .

(17)
The time evolution of the fermionic modes is given by
 ±k(t) = e

±2i"kt ±k, and a standard computation yields

B(t) =
SX

k=0

C
2
k
cos(✓k) ,

D(t) =
1

4b21

SX

k,`=0

C
2
k
C

2
`

X

�=±
(✏k � �✏`)

2 cos(✓k + �✓`),

(18)

where ✓k = 2"kt.
Results.— The above formula can be evaluated in poly-

nomial time for every M and arbitrary set of coupling
constants. It is natural to consider parameters with a pe-
riod 3 staggering, in which case the model displays a rich
phase diagram [15]. We numerically evaluated the corre-
lation function D(t) for di↵erent values of M and various
choices of the staggered parameters. We found that the
correlation function can show various types of behaviour:
it can decay to zero with some power law, it can converge
to a non-zero value, and it can also show persistent os-
cillations around a non-zero value. Similar variation of
dynamical boundary correlations was observed earlier in
standard free fermionic systems [36–38]; a full analysis of
the behaviour of D(t) will be presented elsewhere.
Here we focus on the completely homogeneous case

with bk = 1 for k = 1, . . . ,M . This is a multi-critical
point in the phase diagram, where the energy gap (de-
termined by the smallest "k) scales as M�z with the un-
usual exponent z = 3/2. We computed a closed form
result for B(t) in the M ! 1 limit, by transforming the
finite sum into a contour integral. Our final result reads

B(t) =

Z
⇡

0
dp C

2(p) cos(2t✏(p)), (19)

where p is a momentum-like variable,

✏
2(p) =

sin3 p

sin (p/3) sin2 (2p/3)
, p 2 [0,⇡] (20)

and C
2(p) is a known function [35]. We also showed that

B(t) can be expressed alternatively using the generalized

Spin chains in cold atom experiments

FIG. 3 from [P. N. JEPSEN ET AL. NATURE PHYS. 8 (2022) 899]. Observa-
tion of phantom helix states. The decay rate g as a function of the wavevector
Q. Minimum / eigenstate condition in accordance with the phantom conditon

�= cos(Qa)

(from now on a = J = ~= 1)



II.  Confined & deconfined quasiparticles: massive quantum field theory
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eight massive states perturbed away from the 1D QCP.
Despite these inherent difficulties, the observation of the
lowest two E8 states (m1 and m2) at the 1D ferromagnetic
QCP of the quasi-1D magnet CoNb2O6 from inelastic
neutron scattering (INS) measurements provided evidence
of the quantum E8 spectrum [9] and motivated further
materials-based studies on this fascinating phenomenon
[10]. Recently, the quasi-1D Heisenberg-Ising antiferro-
magnetic (AFM) materials, e.g., BaCo2V2O8 (BCVO) and
SrCo2V2O8, have attracted numerous studies with rich
quantum phases and excitations induced by transverse or
longitudinal fields [11–18]. It is desirable to explore
whether this system can host a complete picture of E8

physics. Along this line, excitations up to the fifth E8

particle (m5) have been resolved by a recent terahertz
spectroscopy measurement on BCVO [19].
In this Letter, we report unambiguous identification of

the full E8 spectrum via a combination of NMR and INS
measurements on BCVO with a field along the [010]
direction. We use NMR to accurately locate the 1D QCP
[H1D

c in Fig. 1(b)], then perform the INS measurements to
present the full E8 spectrum for the first time. This result is
highly consistent with both the numerical calculations with
Eq. (1) for the BCVO material and the theoretical analysis
of the essential integrable part of the model, providing an
unambiguous evidence for the existence of the E8 physics.
Furthermore, our study also captures all the multiparticle
modes in the studied energy window. This rare experi-
mental realization of the E8 physics and other coherent
modes suggested by an integrable system provides a solid
experimental test bed for an exploring exotic feature of the
dynamics and the excitations in quantum magnets.

To begin with, BCVO can be described by the
Hamiltonian [13]

H ¼ J
X

n;i

½Szn;iSznþ1;i þ ϵðSxn;iSxnþ1;i þ Syn;iS
y
nþ1;iÞ&

þ J0
X

n;i≠j
Szn;iS

z
n;j − μB

X

n;i

g̃H · Sn;i; ð1Þ

which includes intrachain coupling J, the anisotropic factor
ϵ, and the weak interchain coupling J0, with the spin-1=2
operator Sμn;i (n and i=j are chain and site labels, respec-
tively) and the Landé factor tensor g̃. Detailed parameter
values are described in the Supplemental Material (SM)
[21]. Without the J0 term, the system reduces to decoupled
1D AFM chains which accommodate a QCP [H1D

c in
Fig. 1(b)] of TFIC universality [11,12,31]. Although the
existence of J0 hides the putative 1D QCP deeply inside the
AFM ordered phase, the renaissance of strong 1D quantum
fluctuation provides a finite temperature quantum critical
region which can be detected outside the AFM phase
through NMR experiments. On the other hand, at the
hidden 1D QCP of a TFIC universality basis, the weak J0

interaction provides a longitudinal background perfectly
satisfying all the prerequisites to exhibit exotic E8 excita-
tions [21], with the eight single-particle masses in units of
m1 shown in Fig. 1(c). Note that, due to the screw structure
[Fig. 1(a)], characterized by the g tensor g̃ [13], external
field H along the a axis induces an effective staggered in-
plane field to lower both H1D

c and H3D
c significantly.

We first determined the location of the putative 1D QCP
via carrying out 51V NMR measurements on BCVO with

(a) (b) (c)

FIG. 1. BaCo2V2O8 in a transverse magnetic field. (a) The
crystal structure of BaCo2V2O8. Co (O) is labeled by blue (red)
spheres. Note that the apical Co-O bond are tilted ∼5° from the
c axis [20]. (b) Schematic phase diagram of BCVO in trans-
verse field. Brown circles represent TN determined by 1=T1

[see Fig. 2(a),(b)], with a 3D QCP at H3D
C ¼ 10.4' 0.1 T and a

putative 1D QCP at H1D
C ¼ 4.7' 0.3 T. Blue ribbon area

covers the location of emergent exotic E8 phase. (c) An
illustration of E8 single particle masses mi (i ¼ 1; 2;…; 8)
along the energy axis (see also Tab. S1 in [21]). The digits label
the energy in units of m1.

(a) (b)

FIG. 2. 1D QCP of TFIC universality identified by NMR
measurements with field along the [010] direction. (a) The spin-
lattice relaxation rate 1=T1 as functions of temperatures measured
under different in-plane fields. Down arrows point at the peaked
position in 1=T1, which determine the TN . (b) The 1D gap Δ
obtained by fitting 1=T1 (see text) with temperature from 6 to
12 K. The solid line is a linear fit to ΔðHÞ, which gives the gap
closing field of 4.7' 0.3 T as the 1D QCP. Inset: An enlarged
view of the data in the low-temperature, paramagnetic regime in
the log-log scale, with a straight guide line 1=T1 ∼ T−0.75.
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Integral expression with dressed quantities:

Fractal (popcorn) dependence on the coupling!
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III. Boundary can be something: topology, boundary CFT, dissipative boundary… 
Junpeng Cao, Masaki Oshikawa, Chihiro Matsui, Yu-Peng Wang,  Wenli Yang
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DR

Topological 

Open boundaries
breaking U(1) symmetry 

Boundary dissipators

Many integrable models with general boundary conditions 
can be solved by T-Q relation,  T-W relation, T-𝜽 relation

Heisenberg spain chain, t-J model, Hubbard model, 𝐺!     

XXZ model:

Topological momentum

• Swapped entanglement exhibits a logarithmic scaling  

Bell-pair meansurement 
on a subsegment leads to 
entanglement beteen the 
unmeasured segments

• Entanglement Entropy in CFT: Boundary Scaling Dimension
Entanglement Entropy and BCFT
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Entanglement Swapping in Many-Body
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Initial state: ground state of 2 independent S=1/2 XXZ chain
～ 2 independent Tomonaga-Luttinger Liquids (TLLs) 

        = 2 component free boson field theory in 1+1dim

Bell-pair measurement on a subsegment of the system

Entanglement is induced between the 2 chains
                                      in the unmeasured segment!

(Oshikawa)

(Matsui)

(Wang)

(Cao, Yang)



IV. Quantum simulation: discovery of new physics in & out of equilibrium  
Xiao-Ling Cui, Marcos Rigol, Ovidiu Patu,  

Thermalization, Prethermal lization, Generalized Gibbs Ensemble, Generalized hydrodynamic, dynamical 
thermolization, Quantum Scar, … Prethermalization & thermalization (QNC Dysprosium)

Approach to thermal predictions:
º

º
º
º

I II

Consistent with FGR / U
2
total(✓)

Breaking integrability in the XXZ model (NLCEs)

Mallayya & MR, PRL 120, 070603 (2018).

Marcos Rigol (Penn State) Scars in near-integrable 1D dipolar gases November 4, 2024 15 / 43

Far from equilibrium: Separation of the time scales

Quickly relaxs to the thermal stat before eventually 
relaxing to the true thermal equilibrium:
Quench dynamycs, weakly breaking integrability,
Periodically driven….  

QUANTUM GASES

Topological pumping of a 1D dipolar gas into strongly
correlated prethermal states
Wil Kao1,2*, Kuan-Yu Li1,2*, Kuan-Yu Lin2,3, Sarang Gopalakrishnan4,5, Benjamin L. Lev1,2,3†

Long-lived excited states of interacting quantum systems that retain quantum correlations and
evade thermalization are of great fundamental interest. We create nonthermal states in a bosonic
one-dimensional (1D) quantum gas of dysprosium by stabilizing a super-Tonks-Girardeau gas against
collapse and thermalization with repulsive long-range dipolar interactions. Stiffness and energy-per-
particle measurements show that the system is dynamically stable regardless of contact interaction
strength. This enables us to cycle contact interactions from weakly to strongly repulsive, then strongly
attractive, and finally weakly attractive. We show that this cycle is an energy-space topological pump
(caused by a quantum holonomy). Iterating this cycle offers an unexplored topological pumping method
to create a hierarchy of increasingly excited prethermal states.

H
ighly excited eigenstates of interact-
ing quantum systems are generically
“thermal,” in the sense that they obey
the eigenstate thermalization hypothe-
sis (1): Physical observables behave in

these excited states as they would in thermal
equilibrium. For generic thermal systems, all
initial conditions give rise to locally thermal
behavior at times past the intrinsic dynamical
time scale. Systems in which thermalization
is absent are of great fundamental interest
because they violate equilibrium statistical
mechanics, and of technological interest be-
cause some quantum information in these
states evades decoherence. Nonthermal excited
states exist in integrable (2, 3) and many-body
localized (3, 4) systems. More recently, it has
been realized that even nonintegrable systems
might have special excited initial states for
which thermalization is absent; these states are
called quantum many-body scars (5–10). Both
integrability and scars are fine-tuned, and can
thus only be approximately realized in actual ex-
periments, in the form of long-lived prethermal
states. As anticipated in (10, 11), approximate
integrability can give rise to states that closely
resemble scars: i.e., atypical initial states with
unexpectedly long relaxation times. In such
prethermal states, one would expect observ-

ables to remain far from their thermal value
for long times. Much about the classification,
physical origins, and lifetimes of such atypical
initial states remains unclear.
In thiswork, we demonstrate a “topological”

pumping protocol for creating a hierarchy of
atypical prethermal states by cyclically varying
the short-range (contact) interaction strength
of a dipolar Bose gas confined in one dimen-
sion. The cycles are made possible through
dipolar stabilization of the gas. In a conven-
tional topological pump (12), the Hamiltonian
returns to itself after one cycle, but the state is
translated by one lattice site. In the present
setup, by contrast, the state is translated up
the many-body energy spectrum; thus, this
protocolmaps each eigenstate to an eigenstate
with an extensively higher energy. This effect
is called a “quantum holonomy” (13). A toy
example that illustrates this effect is a particle
subject to a d-function potential. The nth even-
parity eigenstate for an infinitely repulsive po-
tential is identical to the (n + 1)th even-parity
eigenstate for an infinitely attractive potential.
Hence, by cycling the potential from zero to
infinitely repulsive, to infinitely attractive and
back to zero, one can wind up the phase of
the wave function and create a sequence of
increasingly excited states (14). Here, we show

that dipolar interaction-stabilized approxi-
mate integrability allows one to implement a
many-body version of this cycle without simply
heating up the system. This many-body cycle
enables one to generate nonthermal highly
excited states with high fidelity.
The one-dimensional (1D) gas system forms

an attractively interacting, excited “super-
Tonks-Girardeau” gas (sTG) at an inter-
mediate stage of the many-body holonomy
cycle implemented here. The bosons in this
state are even more strongly anticorrelated
than free fermions (15–20). As one quenches
deeper into the sTG regime by making the
contact interactions less strongly attractive,
one expects the sTG to become unstable; this
is indeed seen in gases with purely short-range
interactions (18). Unexpectedly, however, even
though the dipole-dipole interaction (DDI)
breaks integrability (21), it enhances the sta-
bility of the sTG regime (relative to the purely
short-range case). This allows one to implement
the entire cycle, thus realizing this previously
unobserved topological pumping phenome-
non. [Dipolar sTGs have been predicted to
exist in contexts different from that realized
here; see (22) for discussion.]
We implement the following protocol. First,

we create a low-temperature dipolar 1D Bose
gas in a regime with weak repulsive contact
interactions. We then tune the scattering length
across confinement-induced resonances (CIRs)
of colliding atoms (23–26) in the following
stages. First, we ramp up the contact inter-
actions toward the resonance, so the gas
adiabatically enters the strongly antibunched
Tonks-Girardeau (TG) state (27–29). At this
point, we quench these interactions across the
resonance, from strongly repulsive to strongly
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Fig. 1. Experimental concept.
(A) Atoms are loaded into 1D traps
formed by a 2D optical lattice.
Atomic dipoles are aligned by a
magnetic field at angle q from x̂ in
the x–z plane. (B) The applied
field magnitude tunes the contact
interaction strength g1D (solid blue
line) and 1D scattering length a1D
(dashed red line) via two
confinement-induced resonances
(CIRs) located on the low-field side
of Feshbach resonances (FRs)
indicated by black dotted lines.
g1D < 0 measurements are labeled by numbers and letters for the first and second holonomy cycles, respectively.
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attractive, to create the sTG. As the attractive
interactions are tuned away from this unitary
contact regime, the sTG gas usually becomes
thermodynamically unstable because the bosons
can form soliton-like bound cluster states
(15, 16, 30), as has been observed in a non-
dipolar Cs gas (18). By contrast, our dipolar
system appears dynamically stable for very
long times. This allows us to then ramp the
attractive contact interaction strength toward
zero again to generate a weakly attractive Bose
gas in a highly excited nonthermal state. That
the system remains dynamically stable through-
out this procedure is a consequence of the
repulsive dipolar interactions, as we will dis-
cuss below. Repeating the cycle by crossing
anotherCIRproduces evenhigher excited states.
These claims are supported through gas stiff-
ness and energy-per-particle measurements at
various stages in the protocol.
We begin our experiments by preparing a

nearly pure Bose-Einstein condensate (BEC) of
highly magnetic Dy atoms at 26.69 G, just
shy of the CIRs employed. (162Dy’s magnetic
moment of m = 10 Bohr magnetons is 10 times
that of, e.g., Cs’s, yielding a DDI ∼100 times
stronger.) After adiabatically rotating the field
to a target angle qwith respect to the 1D axis
x̂ , we load the BEC into a 2D optical lattice
(21) whose first transverse excited-state energy
is ℏw⊥=kB ¼ 1180ð20Þ nK. The transverse fre-
quency is w⊥ ¼ 2p$ 24:6ð4Þ kHz; h ¼ 2pℏ is
Planck’s constant, and kB is the Boltzmann
constant. The lattice comprises an array of
~1000 1D optical traps with about 40 atoms
in the central tube and 30 atoms per tube on
average; see Fig. 1A and (22). Each tube ap-
proximates a 1D channel of finite length,
where the ratio of longitudinal versus trans-
verse oscillator lengths is a∥=a⊥ ¼ 25. The
field is then further ramped (in a few milli-
seconds) to the target magnitude at which
collective oscillation measurements are to be
performed; see (22) for details. Thesemeasure-
ments are consistent with zero-temperature
ground state predictions (22), which implies
that the temperature is sufficiently low to ob-
serve the sTG gas (31).
The system may be described with a Lieb-

Linger (LL) Hamiltonian (32, 33) augmented
by the magnetic DDI:

H ¼ % ℏ2

2m

XN

j¼1

@2

@x2j
þ

X

1≤i<j≤N

½g1Ddðxi % xjÞ þ V 1D
DDIðq; xi % xjÞ( ð1Þ

where the first two terms comprise the LL
model and the third is the 1D-regularized DDI
(22). Because the DDI scales as 1 − 3cos2q, we
can control its sign and strength by applying
an external magnetic field B to polarize the
dipoles at any q. The contact interaction

strength g1D is independently controlled by
setting the field magnitude B to be near a CIR
while holding q constant; see Fig. 1B.
A CIR appears when the bound state of the

first transverse motional excited state of the
1D trap is degenerate with the open-channel
transverse ground state. It modifies the con-
tact interaction strength as follows:

g1DðBÞ ¼ % 2ℏ2

ma1DðBÞ

¼ 2ℏ2a3DðBÞ
ma2⊥

1
1% Ca3DðBÞ=a⊥

ð2Þ

Here, C≈1 and a3D and a1D are the 3D and
1D scattering lengths, respectively (24). We
tune g1D by controlling a3D with a Feshbach
resonance at fixed a⊥ . Feshbach resonances
provide a means for tuning a3D through
control of B (34). The gas enters the unitary
contact-interaction regime g→ T∞ when B
sets a3D ¼ a⊥=C (35). The dimensionless LL
parameter is g ¼ g1Dm=ℏ2n1D , with n1D the
1D atomic density.
Although the DDI has been predicted to

affect CIRs (22, 36), we resolve no shift of
these resonances’ positions or widths versus
q in our molecular bound-state measurements

(22). Indeed, their positions are adequately
predicted by the nondipolar theory result
of Eq. 2. This simplifies the mapping of B
to a3D (and hence to g1D) by rendering it
q-independent. We implement the holonomy
cycle(s) by sweeping B up to a desired higher-
field value, thereby preparing a state with
a particular g1D. The second holonomy cycle
begins after point 5 in Fig. 1B, where g1D
turns positive again, and continues to point f
where g1D crosses zero again.
We measure gas stiffness through obser-

vations of collective oscillations of the atoms
along the 1D trap axis (18, 37, 38). The fre-
quency wB of the breathing mode of the gas
is sensitive to its inverse compressibility (stiff-
ness), and thus contains information about
correlations. Normalizing wB by the frequency
wD of the center-of-mass dipole (sloshing)mode
accounts for nonuniversal aspects of the 1D
potentials, such as trap frequencies (38). This
allows one to compare the stiffness of disparate
systems at different interaction strengths by
plotting R ¼ ðwB=wDÞ2 versus A2 ¼ Na21D=a

2
∥ .

Here, A is the universal form of the coupling
constant under the local density approximation
(38). At strong coupling (g1D → T∞ ), A2 → 0,
whereas it diverges atweak coupling (g1D → 0T).
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Fig. 2. Post-quench gas
stiffness R versus inter-
action parameter A2:

Shown is the attractive
g1D < 0 regime of the first
holonomy cycle for the
(A) nondipolar (q ¼ 55°)
and (B) attractive DDI (0°)
system, and for (C) the
repulsive, 90° DDI-stabilized
excited gas. In (A) and (B),
an sTG gas exists in the

unitary regime of A2 ≲ 10%3.
Beyond, however, the gas
softens before collapsing

near A2 ≈ 10%1 and 10%2,
respectively. For compari-
son, the dashed green
curve in (A) plots data from
the nondipolar variational
Monte Carlo simulation of
(15). Unexpectedly, the
repulsive DDI system in (C)
remains stable beyond the
unitary regime. This allows
correlated prethermal
states to emerge around
intermediate coupling
strengths, indicated by gray
shading, before crossing
over into the R ¼ 4 weakly attractive, excited Bose gas regime beyond A2 ≈ 10. The solid curve is the Bethe
ansatz prediction of (18). The vertical dotted line indicates where the contact and the short-range 1D-
regularized DDI contributions become approximately equal (21). Numbers refer to points in Figs. 1B and 3.
The error bars here and in subsequent figures represent the standard error.
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1 = 0: attractive
1 = 90: repulsive

Puzzle1: stability depending on 
the sign of dipole interaction

Tomeasure oscillations, we selectively excite
one of these two modes and hold the gas for
a variable amount of time before releasing to
image its width or center-of-mass in time-of-
flight absorption imaging. We repeat for the
other mode and fit the oscillations to extract
collective-mode frequencies and R values (22).
Figure 2 shows stiffness data for excited

states of the attractive (g1D < 0) dipolar LL
model at three different q. [Data for ground
states of the repulsive g1D > 0 model are in
(22).] We begin with the nondipolar case of
q ¼ 55° (at which the DDI vanishes along the
1D tube) in Fig. 1A, so as to compare to prior
nondipolar Cs measurements (18) and to non-
dipolar theory (16). After preparing a TG gas
(for whichR ¼ 4) by tuning g→þ∞ (22), we
quench into the attractive contact regimewhere
g→#∞,A2 → 0, and the TG gas crosses over
into the sTG gas. Tuning A2 larger causes
the stiffness to rise above R ¼ 4, indicating
that a stiffer—more strongly (anti)correlated—
sTG gas forms. At still larger A2, R rapidly
decreases as the gas softens, indicating an
imminent collapse into bound cluster states.
This trend resembles that reported for the Cs
system (18), though the exact point of collapse
differs from that exhibited in the Cs system.
It also differs from the collapse point in the
simplified nondipolar variational Monte Carlo
calculation of (15) (shown as a dashed curve);
see (22) for discussion. We additionally report
metastable states just below R ¼ 4 : These
might be gas-like states of clusters of two or
three bound atoms (17).
Why should this nondipolar gas collapse,

given that the attractive LL model remains

integrable for all A2? In the strictly integrable
limit, collapse does not occur, and instead the
stiffness rises above R ¼ 4 until A2 ≈ 1, then
decreases to 4 in the weakly attractive regime
(19). Many-body states with and without
clusters belong to separate sectors of Hilbert
space, and do not mix. However, in realistic
experiments [including nondipolar ones (18)],
imperfections such as the transverse and
longitudinal trap potentials break integrability
(39–41) and yield matrix elements (propor-
tional to the wave function overlap) between
the sTG state and the bound cluster states,
leading to collapse. In the strongly interacting
unitary limitA2 ≲ 10#3, antibunching strongly
suppresses wave function overlap, so the model
remains nearly integrable and stable despite
experimental imperfections. However, in the
intermediate interaction regime, cluster states
form and the nondipolar gas is dynamically
unstable, as seen in Fig. 2A.
The collapse ensues even earlier if an at-

tractive DDI is introduced by rotating to
q ¼ 0°: Figure 2B shows a collapse beginning
at roughly an order-of-magnitude lower in
A2 . Evidently, the attractive DDI acts to
break integrability at a point deeper within
the unitary regime. Indeed, previous work using
this experimental platform showed that DDIs
generically break integrability (21), with equil-
ibration lifetimes that are shortest at 90° .
From this perspective, one might also expect
an early collapse under a repulsive DDI. Un-
expectedly, however, this is not the case: The
q ¼ 90° data in Fig. 2C show that the sTG
remains stable orders of magnitude beyond
both that of the nondipolar gas and the 0°at-

tractive DDI gas. Indeed, the repulsive gas
never collapses:R ≳ 4 throughout the pumping
sequence, regardless of contact strength in the
first holonomy cycle. This includes the regime
of vanishing contact interactions wherein non-
dipolar sTG gases collapse. By contrast, dipolar
BECs in higher dimensions collapse whenever
the attractive contact exceeds the DDI (42),
and thus cannot be stably tuned through the
regime of intermediate contact interactions.
How the repulsive DDI inhibits the sTG

eigenstate from mixing with cluster eigen-
states is unclear. Variational Monte Carlo
simulations of a nondipolar gas in a harmonic
trap may provide some intuition. Such calcu-
lations exhibit an energy barrier to collapse
that shrinks as A2 grows (15), and the repulsive
(attractive) DDI may serve to raise (lower) this
barrier. However, given the relatively low DDI
energy scale, a more appropriate physical pic-
ture may be the following: The attractive and
repulsive DDIs induce opposite first-order cor-
rections to the wave function (leading to bunch-
ing in one case and antibunching in the other),
which respectively enhance or suppress the
effects of other integrability-breaking terms.
Indeed, the lowDDI energy scale does not seem
to change the Thomas–Fermi–to–TG crossover
of the ground states of the repulsive LL model
(22). Nevertheless, the DDI does have a pro-
nounced affect on the stability of the excited
states, rendering their R dependence quite
similar to that predicted by the Bethe ansatz
equations (19). Quantitative discrepancies are
not surprising, as the Bethe ansatz solutions
exclude effects caused by, e.g., the DDI, trap,
and imperfect state preparation.
Next, we explore those states obtained by

sweeping B past the second CIR, thereby
entering the second holonomy cycle in g1D as
reflected in the eigenenergy spectrum (13).
Energy per particle E=N is measured in time-
of-fight absorption imaging. The average mo-
mentum is determined from the expansion
time and gas width, ensemble averaged over
the 1D trap array (22). This is shown in Fig. 3,
whereE=N is plotted versusgalong with the
eigenenergy bands derived from the Bethe
ansatz equations (13, 19, 22).We see that crossing
the second CIR maps the system to higher-
energy eigenstates than those at the same
g1D in the previous topological pumping cy-
cle. The orientation of the quench cycle is
crucial: Reversing the sense of the cycle does
not implement the topological pump, but leads
to collapse (13, 22). The measured energies
are in good agreement with the Bethe ansatz
predictions.
In the regimebetween theunitary andweakly

interacting regimes—i.e., for 10#3 < A2 < 10
( 1 < g < 102 )—the states that we generate
form a hierarchy of long-lived, highly excited
states that exhibit persistent athermal beha-
vior. (In this respect, they resemble quantum

Kao et al., Science 371, 296–300 (2021) 15 January 2021 3 of 5

Fig. 3. Energy eigenstate
spectrum across two
complete quantum holo-
nomy cycles. Shown is the
energy per particle E=N for
q ¼ 90°. Black circles (blue
squares) are data taken for
positive (negative) g1D’s of
the repulsive (attractive)
LL model. Likewise, dotted
(solid) curves are solutions
to the Bethe ansatz equa-
tions for the repulsive
(attractive) nondipolar LL
model. In the g1D → 0 and
T∞ limits, these solutions
equal integer multiples of
1=3 times the Fermi energy

ℏ2ðpn1DÞ2=2m. Arrowheads
indicate direction of cycles.
The first cycle begins at the
point labeled “X” and
continues to point 5, where
the second cycle begins and
continues to f. The system passes through jgj→∞ twice as the field increases first through CIR 1, then CIR 2.
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A surprise: Ultrastable sTG gas with a weak dipole repulsion 

Puzzle2: weak dipole ---
sTG spectrum unchanged

Vdd=0

Vdd<0

Vdd>0

#!!(%) =
("

4*+#%$
(1 − 3/01"2)

Scar states of 1D dysprosium gases
1D Hamiltonian (neglecting the intertube DDI):

H =
NX

i=1


� ~2
2m

@
2

@x
2

i

+ UH(xi)

�
+

X

1i<jN

h
g
vdW

1D �(xi � xj) + U
1D

DDI(✓B, xi � xj)
i
.

Make g
vdW

1D attractive with U
1D

DDI repulsive.
Kao, Li, Lin, Gopalakrishnan & Lev, Science 371, 296 (2021).

Repulsive DDI stabilized scar states (N ⇡ 104):

Yang, Zhang, Li, Lin, Gopalakrishnan, MR & Lev,
Science 385, 1063 (2024).
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Possibility of sTG decaying to bound states:

EsTG ¼ E0 −
3J
2g

; ð6Þ

where Ψ0 is the fermionalized wave function in the hard-
core limit with total energy E0, and Ψ1 is from the first
order correction when a ↑-↓ pair comes close together [21].
For later comparisons, we have transformed Eqs. (5)
and (6) into the c.m. frame [21]. Figure 2(b) shows that
Eqs. (3) and (5) can indeed well approximate the two
branches far from their level crossings.
Importantly, Eqs. (3) and (5) suggest qualitatively differ-

ent real-space distributions between sTG and atom-dimer
states. To be concrete, all atom-dimer states have a
dominant weight when one ↑-↓ pair comes close to each
other, i.e., r → 0 or rþ ¼ ðrþ

ffiffiffi
3

p
ρÞ=2 → 0, given that

they contain very localized dimer components. In contrast,
the sTG state is dominated by the Ψ0 part which is much
more extended in real space, while it only has a little
weight along the dimer lines (∼Ψ1=g). Such difference is

numerically confirmed in Figs. 2(c1) and 2(c3), where we
have plotted real-space Ψ for different branches and the
results are consistent with theoretical predictions from
Eqs. (3) and (5) shown in Figs. 2(d1) and 2(d3).
The above wave-function analyses are crucial for under-

standing the loss mechanism of the sTG gas. As shown in
Fig. 2(b), at certain gc when the sTG state and one atom-
dimer branch have perfect energy match, they can hybridize
strongly and open an energy gap. Accordingly, an avoided
level crossing is generated near gc, and the resulted
eigenstate inherits all the key features from both branches
[Fig. 2(c2)]. Therefore, when driving the sTG gas to ∼gc, it
tends to develop a visible atom-dimer feature and accu-
mulate great possibilities when ↑-↓ come close together.
This leads to the instability of the sTG gas, since it can
easily undergo an inelastic decay to deep molecules and
cause atom loss. Similar inelastic loss due to couplings to
excited molecular states was also found previously for two
atoms in anharmonic potentials [24–26].

FIG. 2. Hybridization between the sTG branch and excited bound states for three harmonically trapped fermions (↑↑↓) without
dipolar interaction. (a) Spectrum in the center-of-mass frame, with the lowest repulsive branch highlighted in red (the part at 1=g < 0 is
the sTG gas). Indices “n ¼ 1; 2; 3…” mark the locations of the avoided level crossing between sTG and various excited atom-dimer
states from weak to strong couplings. (b) Magnified spectrum near the second avoided crossing (n ¼ 2). The RGB color map is provided
according to the wave function overlap with sTG [Eq. (5), red] and atom-dimer [Eq. (3), blue] states. (c1)–(c3) Contour plots of
normalized Ψðr; ρÞ for three typical coupling strengths as marked in (b). For comparison, (d1),(d3) show theoretical predictions to (c1),
(c3) based on Eqs. (3) and (5). (e1),(e2) show the location 1=gc and energy gap EG for each avoided level crossing. For comparison, the
theoretical prediction to 1=gc by comparing (4) and (6) is shown in (e1), and the wave function overlap between (3) and (5) is shown in
(e2). In all plots we take ω and l as the units of energy (E) and length (r, ρ). The units of g and Ψ are, respectively, ωl and l−1.
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Energy gap vs. inter-branch coupling

**Closer to resonance, smaller inter-branch coupling (reduced energy gap) à more stable sTG

res
Index of level crossing

Smaller interbranch coupling 
leads to a stable sTG state  

Correlators in the spin-incoherent regime

Spin-incoherent regime [Berkovich and Lowenstein 1987; Berkovich 1991; Cheianov and Zvonarev 2004,
Fiete and Balents 2004; Matveev 2004]

g = 1 (impenetrable particles) All states in a manifold described by q are degenerate
Or large but finite g if the thermal energy is much larger than the energy of the spin sector
Espin/g ⌧ T .

In both cases e�Espin(N,q,n)/gT ⇠ 1
Grandcanonical ensemble

⇢SILL
� (x , y) =

1
Z

1X

N=0

X

q1<···<qN

NX

N1=0

N�N1X

N2=0

· · ·
N�(N1+···+N�2)X

N�1=0

N!/[N1!···N!]X

n=1

⇥ e�
PN

j=1 "(qj )/T+
P

�0=1 µ�0N�0/T h�N,q,n| †
�(x) �(y)|�N,q,ni

Z grandcanonical partition function

Ovidiu I. Pâţu Numerical methods and analytic results ... MPQS 2024 19 / 24

Quantum holonomy (Cui) 

Quantum correlators in strongly interacting 
quantum gases (Patu)

(Rigol)



Boundary entropy / g-function

Closed boundary Open boundary

Finite temperature

Entropy Boundary entropy

T = 1/β

• Boundary entropy and g-function(Jiang)

Boundary entropy / g-function

Open channel Closed channel

For L ≫ 1

Boundary entropy / g-function

Open channel Closed channel

For L ≫ 1

V. String theory, confrormal field theory, topology: unifying physics  
Changrim Ahn, Jean Bourgine, Andrea Cappelli, Yun-Feng Jiang, Jian-Xin Lu,  Thomas Quella, Rui-Dong Zhu 

• M-thory: D-branes analogous to thre Schwinger pair production in QED
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Motivation/Introduction/ The open string rate and its enhancement The open stringy rate vs the QED rate On the QED vacuum picture Summary

The stringy rate vs the QED rate
For convenience, we rewrite the weak-field stringy rate (2.7) here again

W(String) =
2(eE)(eB)

(2π)2

[
cosh πB

E + 1
]2

sinh πB
E

e−
πm2(y)

eE , (3.1)

which, as discussed earlier, includes the contributions of 5 massive
charged scalar pairs, 4 massive charged spinor pairs and one massive
vector pair from our visible D3 brane perspective.

We therefore expect physically the following relation Lu’24

W(String) = WQED, (3.2)
where

WQED ≡ 5WQED
scalar + 4WQED

spinor + WQED
vector. (3.3)

with WQED
scalar,W

QED
spinor and WQED,

vector the respective QED rates if our
computations are indeed consistent and correct.

Jian-Xin Lu, ICTS, USTC Progress Report on the open string pair production in Type II Superstrings

Pairing production  =
Weak-field stringy rate :

• Symmetry-protected topological phases: from quantum group invariant

Phases of a spin-1 SU(2) quantum spin model

The bilinear-biquadratic SU(2) spin-1 chain
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Phase diagram [Läuchli,Schmid,Trebst’06]
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Analytic results:

A: AKLT model
B: SU(3) Uimin-Lai-Sutherland – SU(3)1 WZW
C: Babujian-Takhtajan – SU(2)2 WZW
D: Map to 9-state Potts model

Haldane phase:

Symmetry-protected topological order

[A✏eck,Kennedy,Lieb,Tasaki] [Klümper] [Barber,Batchelor’89]

Thomas Quella (The University of Melbourne) SPT phases with quantum group invariance 15/40

• Fractional quantum Hall effect: from quantum group invariant (Bourgine)

Introduction Derivation of the model Spin Calogero model Spectrum and eigenfunctions Fermionic formalism Discussion

Fractional quantum Hall e↵ect

• The explanation of the fractional QHE is of a di↵erent nature and involve interactions

between electrons which was previously neglected.

• The filling factor ⌫ takes a specific set of rational values. The first explanation of the FQHE

was proposed by Laughlin in 1983. He wrote the expression of an e↵ective ground state wave

function for the values filling factors ⌫ = 1/k with k odd,

 ( ) =
Y

a<b

(xa � xb)
ke�

eB
4~

P
a |xa|

2
.

• The model exhibits excitations called quasi-holes with the wave function

 (⇣i , ) =
Y

i<j

(⇣i � ⇣j )
1/k

⇥

Y

i

Y

a

(⇣i � xa)⇥
Y

a<b

(xa � xb)
ke�

eB
4~

P
a |xa|

2
,

They carry a fraction of the charge of the electrons. They also obeys a fractional statistics,

namely they are (Abelian) anyons!

𝝂 = 𝒑/(𝒌 + 𝒑𝒏)

Spin-1

• Bosonization &
     Duality in 2+1 D:

  
Exact bosonization of massless 1+1d fermion

Bosonic description: boundaryBosonic description: boundary

● boundary d.o.f.’s are dynamic: topological theory + Hamiltonian

● chiral boson, conformal field theory with                      

● chiral anomaly matches the Hall current

● anyons at the boundary described by vertex operators

 

1+1d scalar field

Hall current

anomaly inflow

charge

• Non-perturbative QFT (Ahn):

Hagedorn singularity

• At certain scale, fundamental d.o.f. fails to describe a system
• Signaling new physics (QCD) from nuclear hadronic states

Z ⇠

Z
dE e

��E
n(E ), n(E ) ⇠ e

bE
! �H = b

• Need non-perturbative methods for quantitative understanding
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(Lu)

(Quella)

• Integrability in 2D Supersymmetric QFT: Bethe/Gauge correspondence
      (Rui-Dong Zhu )

3D N=2* (k) gauge field  vacua eq.  XXZ spin chain with twist BC



VI. Cavity-QED & Quantum devices: From integrability to quasi-integrability 
Luigi Amico, Qinghu Chen , Henrik Johannesson, Jose M. P. Carmelo, Pedro Ribeiro 

Background and motivation… 

Quantum Rabi model

photon frequency level splitting 
(two-level atom)

Rabi coupling

E. T. Jaynes and F. W. Cummings, Proc. IEEE 51, 89 (1963)

”Rotating wave approximation” 
neglecting rapidly oscillating terms in the interaction picture of 

OK if  

Jaynes-Cummings model

easily solvable 
workhorse model in quantum optics! 

Background and motivation… 

• breakdown of the rotating wave approximation in cavity QED   

Renewed interest in the quantum Rabi model…

for a review, see

A. F. Kockum et al., Nat. Rev. Phys. 1, 19 (2019)

• exact solvability of the model  
D. Braak, Phys. Rev. Lett. 107, 100401 (2011)

”ultrastrong” coupling:

Quantum Rabi-Stark model

Stark coupling

A. L. Grimsmo and S. Parkins, Phys. Rev. A 87, 033814 (2013)

Quantum matter 
coupled with photons

Mathematical euqations 
describe the solutions of 
Cavity-QED

Quantum metrology 

J. Carmelo, Quantum transport in spin XXZ model and Hubbard model: 

Spectral function, dynamical structure factor, correlation lenth 
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Figure 2: The two (k,!)-plane lower and upper continuum regions where for the same spin densities as in Fig. 1 there is in
the thermodynamic limit more spectral weight in Sxx(k,!). The notations and the momenta associated with the reference
vertical lines are the same as in Fig. 1. The additional part of the lower continuum relative to that of S+�(k,!) in Fig. 1
stems from the contributions from S�+(k,!). As a result, for some k intervals the upper n-string continuum overlaps with the
lower continuum.

structure factors spectral features and the amount of spectral weight located near them: Negative exponents implies
the occurrence of singularities associated with a significant amount of spectral weight in their (k,!)-plane vicinity.

The use of this criterion, reveals that in the present thermodynamic limit and for magnetic fields 0 < h < hc, the
only significant contribution to S

+�(k,!) from excited energy eigenstates populated by n-particles refers to those
populated by a number N# � 2 of 1-particles and a single 2-particle. There is as well a much weaker contribution at
small spin densities from states populated by a number N# � 3 of 1-particles and a single 3-particle.

The only significant yet weak contribution to S
zz(k,!) from n-string states, refers to energy eigenstates populated

by a number N# � 2 of 1-particles and a single 2-particle. On the other hand, the contribution from such excited
energy eigenstates to S

�+(k,!) is found to be negligible, since all relevant exponents are both positive and large.
The contribution to S

+�(k,!) from energy eigenstates populated by a number N# � 3 of 1-particles and a single
3 particle that occurs for small values of the spin density is very weak. It is actually inexistent in the vicinity of
the (k,!)-plane singularities to which the analytical expressions obtained in our study refer to. Indeed, except for
very small spin densities, m ! 0, the latter very weak contributions occur in (k,!)-plane regions of higher excitation
energy !, above the gapped lower threshold of the spectrum continuum associated with energy eigenstates populated
by a number N# �2 of 1-particles and a single 2-particle whose expression is given below in Sec. III B. That spectrum
refers to the upper continuum shown in Fig. 1.

The above spectral-weight analysis refers to the thermodynamic limit. Its results are fully consistent with corre-
sponding results reached by a completely different method in the case of large finite-size systems [8].

The subspace of the quantum problem studied in this paper is thus spanned by an initial ground state for a given
spin density 0 < m < 1 and a corresponding longitudinal magnetic field 0 < h < hc and its following excited energy
eigenstates: States described by both real and complex non-real Bethe-ansatz rapidities populated by a number

2

of negativity of the momentum dependent exponents that control the (k,!)-plane line shape of the spin dynamical
structure factors near singularities and the amount of spectral weight existing in their vicinity, respectively, we confirm
that in the thermodynamic limit, as in the case of finite-size systems [8, 9], the only contribution from excited energy
eigenstates populated by n-strings that leads to a (k,!)-plane gapped continuum in the spectrum of the spin dynamical
structure factors refers to S

+�(k,!) and thus also to S
xx(k,!) = S

yy(k,!). On the other hand, the contribution
from n-strings states to S

zz(k,!) is found to be small at low spin densities and to become negligible upon increasing
it beyond a spin density, m̃ ⇡ 0.317. For the spin dynamical structure factor S�+(k,!), that contribution is found to
be negligible at any finite magnetic field.

The main goal of this paper is thus the study of the line shape of the spin dynamical structure factors S
+�(k,!),

S
xx(k,!), and S

zz(k,!) at and just above singularities located at the (k,!)-plane gapped lower thresholds of the
spectra associated with n-string states. To reach that goal, we extend the dynamical theory of Ref. [16] to a larger
subspace, which allows to account for the contribution from the latter states to the spin dynamical structure factors.
We then derive analytical expressions valid in the thermodynamic limit for line shape of these factors in the (k,!)-plane
vicinity of the singularities under consideration.

Complementarily and as a side result, in order to to provide an overall physical picture that includes the relative
(k,!)-plane location of all features with a significant amount of spectral weight, we account for the contributions
from all types of states that lead to gapped and gapless lower threshold singularities in the spin dynamical structure
factors. This includes both excited states with and without n-strings. (As mentioned above, the contribution from
the latter states, shortly revisited in this paper, is known to lead to the largest amount of spin dynamical structure
factors’s spectral weight [12–16].)

The paper is organized as follows. The model and the spin dynamical structure factors are the subjects of Sec. II.
In Sec. III the spectral functionals that control the extended dynamical theory’s general expressions of the dynamical
structure factors are introduced. Such factors’s spectra are studied in Sec. IV. The line shape near their singularities
is the issue addressed in Sec. V. The subject of Sec. VI is the limiting behaviors of the spin dynamical structure
factors. Finally, the discussion and concluding remarks are presented in Sec. VII. Two Appendices provide useful side
information needed for the studies of this paper.

II. THE MODEL AND THE SPIN DYNAMICAL STRUCTURE FACTORS

The spin-1/2 Heisenberg XXX chain with exchange integral J and length L ! 1 in a longitudinal magnetic field
h for spin densities m 2]0, 1[, which describes N =

P
�=",# N� physical spins 1/2 of projection �, is a paradigmatic

example of an integrable strongly correlated system [1, 2]. Its Hamiltonian is given by,

Ĥ = J

LX

j=1

X

a=x,y,z

Ŝ
a
j Ŝ

a
j+1 + 2µBh Ŝ

z
. (1)

For simplicity, we have taken here g = 2, ~̂Sj is the spin-1/2 operator at site j = 1, ..., N with components Ŝ
x,y,z
j , µB

is the Bohr magneton, and Ŝ
z =

PN
j=1 Ŝ

z
j is the diagonal generator of the global spin SU(2) symmetry algebra. We

denote the energy eigenstate’s spin projection by S
z = �(N"�N#)/2 2 [�S, S] where S 2 [0, N/2] is their spin. Units

of lattice spacing and Planck constant one are used in this paper.
Due to the rotational symmetry in spin space, off-diagonal components of the spin dynamical structure factors

vanish, S
aa0

(k,!) = 0 for a 6= a
0 where a and a

0 are given by x, y, z. In addition, the two transverse compo-
nents are identical, S

xx(k,!) = S
yy(k,!). In the present case of finite magnetic fields 0 < h < hc, one has that

S
zz(k,!) 6= S

xx(k,!). Here hc = J/µB is the magnetic field above which there is fully polarized ferromagnetism. The
corresponding magnetic energy scale, 2µB hc = 2J , is associated with the quantum phase transition to fully polarized
ferromagnetism. In the opposite limit of zero magnetic field, one has that S

zz(k,!) = S
xx(k,!).

The dynamical structure factors S
aa(k,!) are given by,

S
aa(k,!) =

NX

j=1

e
�ikj

Z 1

�1
dt e

�i!t
hGS|Ŝ

aa
j (t)Ŝa

j (0)|GSi

=
X

⌫

|h⌫|Ŝ
a
k |GSi|

2
�(! � !

⌧
⌫ (k)) for a = x, y, z . (2)

Here the spectra read !
aa
f (k) = (Eaa

⌫ � EGS), E
aa
⌫ refers to the energies of the excited energy eigenstates that

contribute to the aa = xx, yy, zz dynamical structure factors,
P

⌫ is the sum over such states, EGS is the initial



Atomitronics:  mesocopic systems of cold atoms  can be possibly realized as  quantum devices

Magneto-optical toroidal circuits 

internal states in what is referred to as a Raman process. In this case, it is possible for the
levels to be energetically resolved without a large momentum transfer, making it possible to
use collinearly propagating beams. As long as the energy di↵erence between the two selected
levels is not too large (as is generally true for coupling between di↵erent magnetic sublevels
levels in the electronic ground state) the linear momentum imparted to the atoms by a single
collinear pulse pair is small enough to be neglected. This Raman-beam approach to orbital
angular momentum control of a BEC was first demonstrated by Wright et al. [206] with a
simply-connected BEC, and was later used for some of the persistent current experiments
with ring-BECs at NIST [49] and at Cambridge [50].

There are some important factors to be considered in the use of these kinds of two-
photon techniques. With suitable laser intensities and moderate detunings from the D
lines of alkali metal atoms, the ⇡-pulse times can be made as short as a few microseconds,
but attention must be paid to keeping the single-photon scattering rate low enough to
prevent unacceptable levels of heating and loss. A second challenge in using two-photon
techniques is that it not generally safe to ignore the detuning and state-dependent light
shifts that occur when applying such fields, especially for single-photon detunings on the
order of the hyperfine splittings. Finally, any realistic experimental design must account
for the possibility of spatially-varying Rabi frequencies and light shifts, because the phase
singularities present in laser fields with nonzero orbital angular momentum necessarily make
them spatially inhomogeneous [206]. These drawbacks were less important in the earliest
experiments [49, 50], when techniques for detecting the circulation state of the ring were
less well developed, and it was advantageous to use a technique where the atomic orbital
angular momentum was guaranteed to change by a quantized amount, as long as it reached
the target state.

Figure 6: Experimental stirring of ring condensate via weak link. (a) Schematic showing the attractive
optical dipole trap. (b) Geometry of the barrier beam. (c) In situ absorption image of the ring condensate,
viewed from above. (d) In situ images showing the e↵ect of barrier at di↵erent times. Figure from Ref. [46].

Techniques for creating persistent currents with a single far-detuned single-frequency
laser field are comparatively simpler in many ways, and they have become more commonly

21

Experimental stiring of the ring

2m. While this technique has not yet been used with a toroidally trapped condensate, it
remains a possibility for the future.

3. Theoretical framework

This section covers the main theoretical tools used in the forthcoming parts of the re-
view. We discuss the one-dimensional limit of bosonic and fermionic quantum fluids, which
corresponds to simple models where persistent currents have been studied and where exact
solutions are available. Since the flow dynamics along the ring is quasi-1D, we have chosen
to focus mainly on the one-dimensional treatments, which account for several important
features of the system as flux quantization, phase slips, and structure of the read-out inter-
ference patterns. We also cover experimentally relevant situations of annular traps having
several radial modes occupied, which are described by a three-dimensional model at weak
interactions. In particular, this model allows us to cover the emergence of structures in the
transverse size of the ring, such as e.g. vortices. Examples of both 1D and 3D dynamics will
be provided in the forthcoming Sec. 4.

3.1. Bosons

Bosonic particles are characterized by having a wavefunction completely symmetric under
particle exchange. This important property ensures the possibility of occupying the same
single-particle state in the case of non-interacting bosons, leading to Bose-Einstein con-
densation, which corresponds to the creation of a giant matter-wave. Condensates display
o↵-diagonal long-range order (ODLRO), that corresponds to large-distance phase coherence.
In the case of interacting bosonic fluids, quantum depletion of the condensate state usually
occurs. Still, they display the phenomomenon of superfluidity, which may occur even in the
absence of Bose-Einstein condensation. In low dimensions, phase fluctuations and correla-
tions are enhanced, and coherence is degraded especially at large interactions. In this case,
only quasi-ODLRO is possible. In this section, we present the main theoretical tools that we
have at hand to describe interacting Bose fluids in a ring geometry, ranging from mean-field
approaches to e↵ective field theories and lattice models.

3.1.1. Mean-field theories

The general many-body Hamiltonian describing bosonic fluids pierced by a synthetic
gauge field in second quantization reads

H =

Z
 †(r)


1

2m
(�ı~r +A(r))2 + Vtoroidal(r) + Vlocal(r)

�
 (r)dr

+
1

2

Z
 †(r) †(r0)V(r � r

0) (r0) (r)drdr0, (29)

where  †(r) ( (r)) are the field operators that create (annihilate) a bosonic particle at
position r with V(r�r

0) being the interatomic potential of two-body collisions. The potential
Vlocal(r) takes into account a local o↵set that may be due to impurities and A(r) is the vector
potential.
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� as in Eq. (29), one finds the so-called Bose-Hubbard model (BHM):

HBH =
NsX

j=1


� J(b†jbj+1e

2ı⇡
Ns

�
�0 + h.c.) +

U

2
nj(nj � 1)

�
, (32)

where b†j (bj) creates (annihilates) a boson, and nj = b†jbj is the local particle number
operator for site j. The parameters J and U account for the hopping amplitude and on-site
interaction when restricting the particles to occupy the lowest Bloch band in each lattice site
respectively [228]. The elementary flux quantum is denoted by �0 and is taken to be 1 unless
explicitly stated. The BHM has been experimentally realized in experiments [63, 65, 229]
with remarkable control on the parameters of the systems and read-out of the particles
trapped in the lattice. With such a model, they probe the superfluid to Mott insulator
transition in a highly controllable environment. This model also provides a full many-body
description of the interacting bosons. However, due to its imposed restriction provided by
the lattice, the Hilbert space dimensions become approachable from a numerical perspective,
with techniques such as Exact Diagonalization or density matrix renormalization group
(DMRG) [230, 231].

Within the context of quantum technologies, lattice systems become an ideal playground
environment to investigate atomic circuits where matter-waves are transported trough the
lattice. Many proposals exist in this context, from fundamental studies of persistent currents
in rings [124, 142] to devices that exploit these phenomena to change the behavior of matter-
wave transport [232] or with applications to sensing [120]. These systems also provide us
with a reference model where the many-body character of the system can be investigated
and then compared to the continuum limit [119, 173, 233].

3.1.4. Quantum Phase Model

The BHM can be e↵ectively described with the quantum phase model (QPM) (also known
as quantum rotor model) [234, 235] for large average occupation per site. This model was
originally developed for understanding the behavior of arrays of Josephson junction where
the phase dynamics of the superconducting order parameter is the most relevant parameter,
while the fluctuations of the density are negligible for su�ciently low temperatures. An
heuristic argument can be followed to map the BHM to the QPM. In the limit n = Np/Ns �

1 the number fluctuations on each site become small compared to those of the phase such
that the annihilation operator can be written as aj ⇠

p
nei✓j . The QPM can then be written

as:

HQPM =
NsX

j=1


�2JQPM cos

✓
✓j � ✓j+1 �

2⇡�

Ns�0

◆
+

U

2
�n2

j

�
. (33)

Here, JQPM = nJ and �nj = n � nj are the e↵ective tunneling amplitude and the density
fluctuations respectively, with [�nj, ✓k] = i~�j,k. It’s noteworthy that a careful examination
of this mapping reveals significant inconsistencies [236] from the lower limit of the bosonic
number operators. However, these can be taken care of by a proper definition of the basis
[235] or by a path integral treatment [237].
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FIG. 3. Dependence of the free energy (left columns in units of t) and current (right columns normalized by I0(N�) + I0(N�))
on the magnetic flux and temperature for N = 8, N� = 2 and N = 10, N� = 2. From top row to bottom the temperatures are
T/Ts = 1.01 ; 48.1 ; 582 for N = 8 and T/Ts = 1.01 ; 48.1 ; 455 for N = 10. The density and interaction strength are n = 0.01
and U = 100.

tor is much smaller than the energy of the charge sec-
tor, which allows for direct computation of the canon-
ical partition function at low temperatures by sum-
ming over all the spin eigenstates and only some of
the charge excitations. For a dilute system (n < 0.1)
the relevant temperature scales are TF = ⇡2n2 for the
charge degrees of freedom and Ts = ⇡2n3/U for the
spin degrees of freedom. For temperatures T ⌧ TF

the partition function can be computed as Z(�) =P
relevant sets I

P
all sets J exp{�E({kj}, �)/T} and

gives the PC. This approach requires the knowledge of
the all CN

N�
states of the Heisenberg spin-chain with N

sites and N# spins down, which can be found in [49–51].
Using this method we were able to investigate the PC for
all systems with N  10 , N#  N/2 and T < 0.06 TF .
While below we focus on dilute systems, we note that
our results remain valid for all densities 0 < n < 1, if
U/n � 1 (see [48]).

The dependence of the PC on temperature in the
strongly interacting Hubbard model is very complex with
the polarization of the system playing an important role.
For a system with N = 8 and N# = 2, Fig. 3 shows that
while at very low temperatures the current is diamagnetic
with period 1/8, at higher temperatures the periodicity
changes to 1/4. At even higher temperatures the current
becomes paramagnetic with period 1. The evolution of
the current with increasing temperature for a system with
N = 10 and N# = 2 is similar (but note paramagnetic
current at intermediate temperatures): diamagnetic with
period 1/10, paramagnetic with period 1/5, and param-
agnetic with period 1. Therefore, we see the following
pattern: in the ground-state, the current is diamagnetic
with periodicity 1/N , and is followed at higher temper-
atures by the current with N#/N periodicity whose sign
is the same as the one at zero temperature, which can be
derived from (2). At very high temperatures, the current
should have the same characteristics as for free fermions

FIG. 4. Temperature dependence of the amplitudes (normal-
ized by I0(N�) + I0(N�)) for N = 6 and N = 10. Note that
for N = 6, N� = 3, and N = 10, N� = 5, there is an interval
in which the amplitude is increasing with temperature. For
all cases n = 0.01 and U = 100.

with spin, i.e., for both N#," even, paramagnetic with pe-
riod 1. This general pattern can be understood by noting
that an increase in temperature is qualitatively similar to
the decrease in U , and therefore the evolution of the cur-
rent with T mimics the evolution of the current at T = 0,
when interaction decreases. For instance, the doubling of
the current period from 1/N to N#/N in Fig. 3 can again
be related to the change of the rotation symmetry of the
electron system in real space, from full rotation at low
temperatures, to half of the rotation at the intermediate
temperatures, when the two spin-down electrons become
located symmetrically in the system.

Qualitatively, the amplitude of the PC is reduced expo-
nentially with increasing temperature. The quantitative
temperature dependence of the amplitude is plotted in
Fig. 4 for systems with N = 6 and N = 10, and shows
that there are di↵erent rates of decay associated with the

(a) (b)

Figure 27: Dependence of the persistent current I(�) on the interplay between temperature T and interaction
U . (a) Persistent current of a two-component fermionic system with strong repulsive interaction of U = 100
with Np/Ns = 0.1 with increasing T going down the panels. Figure adapted from [410]. (b) Persistent current
of a three-component fermionic system with strong attractive interactions at zero and finite temperature in
the top and bottom panels respectively. Figure reprinted from [86]. Qualitatively, the e↵ect of interaction
and temperature oppose each other, in that they cause the system to fractionalize and de-fractionalize,
which manifests in the current’s period.

ticles – Fig. 27. Relying on this feature, the persistent current has been utilized to probe
the celebrated BCS-BEC crossover in ultracold platforms [82] and distinguish between the
di↵erent types of bound states of SU(3) fermions [86]. The fractionalized nature of the
system can be inferred through the Bethe ansatz analysis of the GYS model in the limit of
L|U | � 1 [86]. For strong attractive interactions and equal number of particles per colour,
the Bethe equations simplify and give an exact expression for the persistent current

I(�) = �2N

✓
2⇡

L

◆2 nNX

a=1


Ka

N
+ �

�
, (99)

where nN is the number of maximally bound fermions for a given N -component system and
Ka being the corresponding quantum numbers. Essentially, the above equation behaves sim-
ilarly to Eq. (98) for repulsive fermions, where an increase in the e↵ective flux necessitating
a shift in the quantum numbers to counteract them and decrease the total energy resulting
in 1/N oscillations. Despite sharing various qualitative features, it is worth remarking that
Eq. (99) highlights the distinction between the two regimes. Whilst for repulsive fermions
the generation of a single spin excitation, shields the whole system from the flux piercing
the system, such is not the case for the attracting case. From Eq. (99), it is clear that as
U ! �1, the Bethe equations decouple from one another and that each quantum number
Ka is associated to a given N -body bound state. When it comes to small interactions,
it was demonstrated that for SU(2) fermions bound states are formed at arbitrarily small
interactions [82]. By solving the Bethe ansatz equations in the product form, one obtains
that the charge rapidities kj admit complex values for any U < 0. It must be stressed that
such a feature is parity dependent as for 4n (4n + 2) systems the rapidities are complex
when they correspond to the unfractionalized parabolas centered around � = 0.5 (� = 0).
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large repulsive interactions.
The qualitative and quantitative changes of the persistent current make it a suitable

probe to distinguish between the various and to map out the system’s phase diagram [85,
89]. The current exhibits critical behaviour during a quantum phase transition despite its
mesoscopic nature. For the case in question, the onset to the Mott phase transition in
SU(N > 2) Hubbard models was demonstrated to be captured with the persistent current
through finite-size scaling analysis [85]. Studies of Mott phase transitions with currents
were also extended to multi-orbital SU(N) Hubbard models to construct a conductivity-
based phase diagram [92–94]. In contrast with the single-band model, it was shown that the
current’s suppression with interaction is not always the case. Instead, it thrives in the deep
insulating state, and in certain regions known as Hund’s metal region, it is also enhanced
as the hopping processes across the di↵erent orbitals facilitate the fermions’ motion even at
strong interactions.

(a) (b)

Figure 26: Persistent current I(�) of attractively interacting N -component fermions against the e↵ective
magnetic flux �. (a) Monitoring the BCS-BEC crossover. Panels depict the current acquiring a halved
periodicity with increasing attractive interactions and the washing out of the parity e↵ect as is crosses
from the BCS to BEC side. Figure adapted from [82]. (b) Probe for bound states of three-component
fermions. Top (bottom) panel shows the persistent current for a colour superfluid (trion) configuration.
The reduced periodicity exhibited by the current reflects the number of particles forming the bound state.
Figure reprinted from [86].

Fractionalization is also present for attractively interacting fermionic systems and stems
from forming many-body bound states. While the mechanism that facilitates this phe-
nomenon is similar to bosons, the di↵erent particle statistics generate a di↵erent outcome
in that for fermions, the Pauli exclusion principle restricts the formation of bound states.
The current’s reduced periodicity dictated the bound state’s e↵ective mass, solely dependent
on the number of particles constituting the bound states, irrespective of the total number
of particles present in the system is given by 1/r with r being the number of bound par-
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apply to the bosonic Tonks-Girardeau gas [23].
In this letter we obtain the steady-state properties of a

chain of hard-core bosons coupled at its ends to leads in
the wide-band limit. We show that the quasi-condensed
state is unstable towards an applied bias and charac-
terize the ensuing NESS in terms of its single-particle
equal-time correlators. We analyze the correlation length
divergence in terms of the bias and determine how the
quasi long-range order is restored. It is demonstrated
that there are power-law corrections to the exponential
decay, which depend on the bias in a non-analytic way
once the thermodynamic limit is taken. As transport
setups can now be readily engineered in confined ultra-
cold atomic systems [24–26], a thorough understanding of
quasi-condensation in open systems far from equilibrium
is timely and topical. Such an understanding might also
shed new light on the similarities, and differences, be-
tween non-equilibrium transport in cold atoms and con-
densed matter setups.

Model and Method — We consider a tight-binding
chain of HCB of size L coupled to reservoirs at its edges,
modeled by the Hamiltonian, H = HC +

P
l (Hl +HC,l),

where HC = �J
P

hr,r0i b̂
†
r b̂r0 . HCB at the r-th site are

created (destroyed) by the operators b̂
†
r (b̂r), which ful-

fill the commutation relations [b̂r, b̂
†
r0 ] = �r,r0(1 � 2b̂†r b̂r).

Each of the two reservoirs Hl (l = L,R) is a semi-infinite
chain of HCB with hopping strength Jl and chemical po-
tential µl, held at zero temperature. In the following, we
will use µ = (µL + µR)/2 and V = µL � µR. As shown
in Fig. 1(a), the reservoirs are coupled (through HC,l)
to the very left (rL ⌘ 1) and right site (rR ⌘ L) of the
chain, with coupling strength JC,l. In the following we
make the simplifying assumption that the bandwidths of
the reservoirs, Jl, are much larger than all other energy
scales (‘wide band limit’). In this limit, the coupling to
each reservoir l is completely determined by �l = ⇡J

2
l ⇢l,

the hybridization energy scale, where ⇢l are the local den-
sities of states of the reservoirs, taken to be energy inde-
pendent.

The Hamiltonian H possess a fermionic representa-
tion which can be obtained through the Jordan-Wigner
mapping [27], b̂

†
r = e

i⇡
Pr�1

r0=1
ĉ†
r0 ĉr0 ĉ†r, where ĉ

†
r (ĉr) cre-

ates (annihilates) a spinless fermion at site r. This
yields a metallic chain in contact with baths of spin-
less fermions held at chemical potentials µl=L,R. As the
Jordan-Wigner-transformed Hamiltonian is quadratic in
its fermionic degrees of freedom, the nonequilibrium sys-
tem admits an exact solution in terms of single-particle
quantities. Thus, we employ the nonequilibrium Green
function formalism to compute correlation functions and
related observables. Steady-state observables can be ob-
tained from the single-particle correlation-function ma-
trix � ⌘ h ̂ ·  ̂

†
i, with  ̂

†
= (ĉ†1, . . . , ĉ

†
N ), which in turn

is obtained from the Keldysh Green function as described
in Ref. [28]. The method allows us to obtain mean val-

Figure 1. (a) Sketch of the HCB chain coupled to bosonic
reservoirs. (b) Maximum natural-orbital occupation �0 as
function of

p
L, for several chemical potential profiles V . The

inset shows the occupations �n(L̄), for L̄ = 800. (c) Scaling
collapse of �0L

� ⇥V L↵, for different system sizes L. Best fits
to the data are compatible with ↵ = 1 and � = �1/2.

ues of quadratic observables Ô =  ̂
†
· O ·  ̂ from the

relation hÔi = �tr [O · �]. Finally, the bosonic one-body
density matrix ⇢

B
r,r0 = hb̂

†
r b̂r0i can be computed from the

fermionic one, ⇢
F
r,r0 = hĉ

†
r ĉr0i = �r,r0 � �r0,r, using the

approach described, e.g., in Ref. [29]. One finds

⇢
B
r,r0 =

1

2
det

2

4
r�r0X

i,j=1

�
2⇢Fj+r0,i+r0�1 � �j+1,i

�
|ii hj|

3

5 , (1)

for r > r
0, and ⇢

B
r0,r =

�
⇢
B
r,r0

�⇤. The eigenvectors of the
matrix ⇢

B define the natural orbitals and the correspond-
ing eigenvalues, �n their occupations. Taking the �n in
decreasing order, the quasi-condensed state is character-
ized by a macroscopic occupation of its lowest orbital,
�0 /

p
Nb, where Nb / L in the macrocanonical ensem-

ble [1, 2]. On general grounds, the occupations behave as
�n(L ! 1) / n

�1/2 in the thermodynamic limit at zero
temperature (T ). In equilibrium, quasi-condensation is
destroyed at non-zero temperature or the presence of a
localization potential.

Results — Figure 1(b) shows the occupation of the
lowest natural orbital, �0, as a function of L, in the NESS
obtained for V 6= 0. In that case, �0 saturates with L

thus implying that the quasi-condensed state only exists
for V = 0. Nevertheless, the scaling �0 /

p
L is still ob-
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Figure 2. (a) Momentum distribution of the one-body density
matrix for various values of the bias V . Comparison between
the numerical and analytic results of the exponential decay
length ⇠�1 (b), the momentum displacement ' (c), and the
real (d) and imaginary (e) parts of the power-law decay ex-
ponent ⌫, defined in Eq. (2). Direct evaluation of Eq. (1)
(green) is contrasted with results based on the asymptotic
form in Eq. (4) (orange) and with the analytic expression of
Eq. (2) (blue).

served before the saturation scale is attained. The inset
shows the scaling of �n(L) with n, having fixed L = 800.
For sufficiently large values of n, we find �n / n

�1/2,
whereas, for small values, saturation ensues at finite val-
ues of V . These findings establish that V is a relevant
perturbation, such as T is in equilibrium. However, as
will be demonstrated, the NESS is fundamentally dif-
ferent from the finite-temperature state: Its critical be-
haviour, characterising the vicinity of the unstable quasi-
condensation fixed-point along the V direction, turns out
to be different from the equilibrium case. Figure 1(c) de-
picts the scaling collapse of �0L

� versus V L
↵ for differ-

ent values of L. Best fits to the data are compatible with
↵ = 1 and � = �1/2, which turn out to be the exact
exponents, see below. For small V L (V L  2), this re-
covers the V = 0 result, �0 /

p
L, whereas for V L large,

�0 / V
�1/2.

We now turn to the description of the NESS. For large
system sizes, the state in the middle of the chain displays
translational invariance and ⇢

B becomes diagonal in mo-
mentum space. In this case, the natural orbitals coincide
with the momentum states. We label their occupations
by �n(L � 1) ! n

B
k . Figure 2(a) depicts the Fourier

transform of the bosonic occupation in momentum space
in the middle of the chain. Here we also compare numer-
ical results (plot markers) for finite L = 800 to analytical
predictions (solid lines) valid for small V , discussed in
detail below. Clearly, both coincide for sufficiently small
V . The effect of V is twofold: (i) the 1/

p
k divergence of

n
B
k at V = 0 gets regularized at a scale 1/

p
V , and the

curve acquires a characteristic width to which we refer as
⇠
�1, illustrated in Fig. 2(a) (for the blue curve); (ii) the

maximum value of the peak shifts to finite momentum,
denoted '. Both quantities, together with a power-law
exponent ⌫ [see Eq. (2) below], characterize the depar-
ture from equilibrium of a quasi-condensate state, which
is induced via a particle number bias.

A proper definition of ⇠�1 and ' is given in terms of the
asymptotic dependence of the bosonic correlation func-
tion. In the limit r � r

0
! 1,

⇢
B
r�r0 ' E e�|r�r0|/⇠�i(r�r0)' (r � r

0)
�⌫

, (2)

where E is a constant. As we will discuss in detail,
this general dependence follows from taking the thermo-
dynamic limit, which brings ⇢

B
r,r0 to the form given in

Eq. (4) and allows us to apply the Fisher-Hartwig con-
jecture for Toeplitz matrices. Interestingly, the asymp-
totic behavior of ⇢B

r�r0 displays power-law corrections on
top of the exponential decay, where ⌫ is a complex-valued
critical exponent. The behavior of ⇠�1 and ' with V , ob-
tained by fitting the numerical ⇢B

r,r0 to Eq. (2), is given by
the green dots in Figs. 2(b) and (c), respectively. These
results agree (within the error bars) with our analyti-
cal formulae, given below. Furthermore, in Figs. 2(d)
and (e) we examine the power-law exponent ⌫. While
a finite value ⌫ = 1/2 is expected in equilibrium when
⇠
�1 = ' = 0, our analytic results show that ⌫ is discon-

tinuous at V = 0 and assumes a V -independent constant
for any non-vanishing value of the bias, e.g., V 6= 0. This
discontinuity only occurs in the thermodynamic limit.
Our numerical results show that ⌫ indeed remains con-
stant for a finite chain at a sufficiently large V but will
acquire strong finite size corrections as V is reduced, see
Figs. 2(d) and (e). Power-law corrections on top of the
exponential decay are hard to determine based on Eq. (1).
Results shown in both panels (d) and (e) are therefore ob-
tained by a numerical evaluation of Eq. (4) below, that
allows accessing much larger system sizes. Nevertheless,
we confirmed (see SM [30]) that the numerical results ob-
tained with Eq. (1) are fully compatible with the analytic
asymptotic form.

These findings constitute the main non-technical re-
sults of our work. In what follows, we explain the method
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