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Introduction

e 1920, Wilhelm Lenz, to explain the physical phenomenon that the magnetism of

magnet disappears when the temperature is larger than a critical value
N
H=J Z 0j0jt+1
j=1

1. two kinds of states in nature: ordered and disordered.
paramagnetic and ferromagnetic states

normal and superfluid states

normal and superconductive states

2. the transition between two states.

1920, Ising, 1D
1944, Onsager, 2D

Open a new field: Ising model has many applications in many fields such as the
folding of DNA in organisms, the spread of viruses, artificial intelligence, activation and

deactivation of brain nerve cells, weather forecast, forest fire, social sciences, finance.
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e 1928, Heisenberg model

N
H=J) 5 5n

spin exchanging interaction
quantum magnetism: AFM, FM
coordinate Bethe ansatz

quantum inverse scattering method
spinon, fractional excitations

anisotropic couplings, magnetic ordered states, quantum phase transitions
N
H= =3 (0] + ool + Bo7ef,)
j=1
|A| < 1, gapless phase; |A| > 1, gapped phase; |A| =1, critical points.

A = —1, first order phase transition; A =1, KT phase transition
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e 1931, Bethe ansatz
1 & 1 &,
H= EJ;UJ “Oj+1 — Eh;o‘j,
Eigenstates

0= he® - Tn,
N
k) = %(x)S.10),

x=1

N
|k, ko) = Z Y(x1, %)S, S, [0),
X1,X=1
N
koo km) = > W(xa, e ,xm)Sy -+ S 0).

v om =1

Eigen-equation

M
ID D plas g+ xum) + (h = 2)Ma(xa, - -, xwm)

j=1 6=+1

+2JZ (xt, - Xm)[0x 341 + Ox,x—1] = (E — Eo)P(xa, -+ - 5 xm)-

i<j
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Bethe ansatz

LM
Plxi, o xm) = Y Ape' T U 0(xg, < - < xq,,),
PQ

where P and @ are the permutations.
When only two filliped spins are neighbor, substituting the Bethe ansatz into

eigen-equation, we obtain the scattering matrix

Apl...P 1P Py ei(kpi+kp"1)+1—2eikp"1
1P

API"'PiPr\I"'PM ei(kP’JrkP"”)-Fl—zekar '

Spp =

When more then two filliped spins are neighbor, the Bethe wave functions are also the

eigen-wave functions of the Hamiltonian.
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Ideas:
1. The multi-particle scattering process can be decomposed into the product of
two-particle scatterings.

Si2..mlke, ko, oy km) = S12(Ki, ke)S1a(ka, k3) -+ - Stum(ke, k).

2. The two-particle scattering should satisfy the Yang-Baxter equation

512513523 = $23513512-

J. Cao (IOP) Gy model

7/

65



From the eigen-equation, the eigenvalues of the Hamiltonian are

M
E— E=2J) (cosk; — 1)+ Mh.
j=1
From ¢(--- ,xj+ N,---) =9(--- ,xj,-- ), the k; should satisfy the Bethe ansatz

equations

M
N =T]st j=1-- .M.
1]

Explanations:
o Diagonalization a 2V matrix — Solving N algebraic equation, which can be done.

© Thermodynamic limit, density of state, physical quantities, finite temperature
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Exactly solvable models:

1. interacting particles with 6 -function

2. spin chain and spin ladder

3. Hubbard, supersymmetry t-J, Kondo

N
|
:z{ ’PZ CoCitl, o+ He)P+J(S; S/f17’1”11”1+|)}

4. 1, Chiral Potts, vertex model o=41
N/2 8 N/2-1 8
HPo == ZQ}* ZR;‘R}LII‘
1=1 k=1 =1 k=1
5. long range interaction ; . 25052
— 9057 S
H, =2gS; + ng"; F——
Gaudin model (1/r) ) N
Homm—D gt 5% D&
o - 92 . 0 )2
Calogero-Sutherland model (1/r2,continue case) S0 S (i)
N
Haldane-Shastry model (1/r2, lattice case) Hys = Z % s
o s GG -1
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e Now, quantum integrable system (number of degrees of freedom = number of
conserved quantities) is an important branch of condensed matter physics, statistical

physics, theoretical and mathematical physics.

© New physics by the well-known integrable models
¢ New integrable models

¢ New method to obtain the exact solutions
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e The quantum integrable systems with U(1) symmetry have been studied
extensively.

e There exists another kind of quantum integrable systems which donot possess the
U(1) symmetry.

Examples: the anisotropic XYZ Heisenberg model with periodic boundary condition,

and some models with anti-periodic boundary condition or the unparallel boundary fields.

In these cases, the U(1) symmetry is broken.

¢ Lacking the reference state

Due to the U(1) symmetry-broken, there is no obvious reference state. Traditional
Bethe ansatz does not work. Although the model has been proved to be integrable, the

exact solutions are difficult to be obtained.
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Methods: off-diagonal Bethe ansatz, Separation of variables, Onsager algebra, - - -
e Basic idea of ODBA is the polynomial analysis
The Hamiltonian is generated by

_10 Int(u)
G

H= T{u:o,{e,}:o -

<05
where t(u) is transfer matrix, the generating functional of all the conserved quantities
t(u) = tro To(u), periodic
t(u) = to{MTo(u)}, anti — periodic, M : twisted matrix
t(u) = tro{ Ky (u) To(u)Ky (u) To(u)},  open
To(u) = Ron(u — On)Ro,v—1(u — On—1) - - - Ro,1(u — 61),
To(u) = Ro1(u+ 01)Ro2(u + 02) - - - Ron(u + On),
Koi(u) : boundary reflection matrix

[H, t(u)] = 0.

From the definition, we know that t(u) is a operator polynomial of u. If the degree of

t(u) is M, the value of t(u) can be determined by the M + 1 constraints of t(u).
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In order to obtain these constraints, we use the method of fusion.

The main idea of fusion is as follows. If the R-matrix of the system has a degenerate
point —a, at which the R-matrix can be written as Ri(—a) = P95, where P{g) is a
d-dimensional projector and Si; is a constant matrix. The Yang-Baxter equation at the

degenerate point gives
R12(7OZ)R13(U — CV)R23(U) = R23(u)R13(u - Oé)Rlz(fa). (1)

Multiplying Eq.(1) with the projector Pg) from left and using the property

PRy, (—a) = Ria(—a), we have

Riz(—a)Rys(u — @) Ros (1) = P Ros(u)Ris(u — @) Ria(—a). 2)
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Comparing the right hand sides of Egs.(1) and (2), we obtain

PL3 Res(u) Rus(u — @) Plg) = Res(u) Rus(u — @) PY) = Riszya () = Ris(u). 3)
Explanations:
1) The operator Rs(u)Ris(u — ) defined in the tensor space Vi ® Vo ® V3 can be

projected into the subspace V(15 ® V3, where V(15 is the projected d-dimensional
subspace of Vi ® Va.

2) The fused R-matrix Ry,(u) also satisfies the Yang-Baxter equation, which means

that the fusion does not broke the integrability.
3) Fusion is used to obtain the high-dimensional representation of certain algebras.

4) If we take the fusion both in auxiliary and in quantum (physical) spaces, from the

resulted R-matrix R(12) sy (u) We can construct some new interesting integrable models.
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Déz) model

The Déz) spin chain model is one of the most representative integrable system
associated with quantum algebra beyond A-series.

It has many applications in the string theory and black hole.

The exact solution of the D£2) spin chain is also the foundation to solve the high
rank D,(,Q) models with nested analytical methods.

The exact solution of the system with periodic boundary condition has been obtained
by Reshetikhin by using the analytical Bethe ansatz [Lett. Math. Phys. 14 (1987) 235].

Later, Martins solves the model by using the algebraic Bethe ansatz [Phys. Rev. E
59 (1999) 7220].
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The Df) model with diagonal boundary fields was exactly solved via both the
coordinate Bethe ansatz [Nucl. Phys. B 583 (2000) 721] and the analytical Bethe ansatz
[Nucl. Phys. B 924 (2017) 86; Nucl. Phys. B 938 (2019) 266].

Recently, Robertson, Pawelkiewicz, Jacobsen and Saleur reported that the R-matrix
of Déz) model is related to the antiferromagnetic Potts model and the staggered XXZ
spin chain [JHEP 05 (2020) 144].

Following this idea, Nepomechie and Retore obtained the exact solutions of the Df)
model by using the factorization identities and algebraic Bethe ansatz [JHEP 03 (2021)
089].
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The R-matrix of D{) model is the 16 x 16 one

Rip(u) = e 22 {(20 — )& — &) 37 [a]d @ [l + (™ — 1) — ')
a#2,3

x X el el - S e - e[ X e

a#B,8" a=1,8=2,3 a=4,$=2,3
aor B#2,3
’ ’
x ([elf @ le]5 + ]2, @ [e]f) + (¢ = 1( - +e > )
a=1,8=2,3 a=4,8=2,3

’ ’ ’ o = 1
*(alf @ leld +lal, @3 )] + 3 aaslell @ lalf +
o,B#2,3 a+£2,3,8=2,3

%[ @) (1§ ® (=13 +[e)?) ® [@]2) + by () (1§ ® (@13 +[a)?, ® [0]?))]

+ 3 (Flall @ el + o @lall © L]l +d @l © @l
«=2,3

+d” (Wlell @ [eld) |,

which satisfies the Yang-Baxter equation

Riz(u — v)Ri3(u)Ras(v) = Ras(v)Riz(u)Riz(u — v).
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The reflection matrix at one side of the Df) chain is quantified as

ku(u)  ka(u)  kas(u)  kia(v)

Ko (u) = kar(u) k() kas(u)  kaa(u) ’
ksi(u)  ksa(u)  kss(u)  ksa(u)
kin(u)  kio(u)  kas(u)  kea(u)

which has the non-diagonal matrix elements. Thus the spin of a quasi-particle could be
changed after the boundary reflection, and the U(1) symmetry of the system is broken.

The reflection matrix satisfies the reflection equation
Rio(u — v)K{ (u)Ro1(u+ v)K; (v) = Ky (v)Ria(u+ v)K| (u)Roi(u — v).
The reflection matrix at the other side is
K& (u) = MK (—u+ 20)(s,s1,53 = {5051} >
which satisfies the dual reflection equation
Rio(—u + v)K{ (u)M] ' Ror(—u — v + 4n) My K (v)
= Ky (V)MiRio(—u — v + 4n)M K (u)Rar(—u + v). 4)

We should note that the reflection matrix K~ (u) and its dual one K™ (u) can not be

diagonalized simultaneously.
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The transfer matrix of the Déz) model with open boundary condition is defined as
t(u) = tro{ Ky (v) To(u)Ky (1) To(u)}

From the Yang-Baxter equation, reflection equation and the dual one, one can prove

that the transfer matrices with different spectral parameters commutate with each other

[t(u), t(v)] = 0.

Thus all the expansion coefficients of t(u) with respect to u are commutative. All the
coefficients and their combinations are the conserved quantities.

The Hamiltonian of the Df) model is generated by the transfer matrix as

dln t(u) toKy (0 =2 Ky (0)  tro{KF (0)Hio}
H= 2ou lu=0,{6,}=0 = 57 = E Hie1 + —— a )
u 2trKy (0) 2Ky (0) troKy (0)

where Hy k+1 quantifies the nearest neighbor interaction in the bulk, and the rest terms

characterize the boundary reflections.
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Factorization

The spin of Déz) chain at j-th site has four components.

The four-dimensional space can be regarded as the tensor of two two-dimensional

spaces. Then the R-matrix of Df) model can be factorized as the product of R-matrices
of the anisotropic XXZ spin chain with suitable global transformation

ng(u) = 24[5 ® S]R’luy(u + I'7T)i?1/3/(Ll)ii’gqf(u)szg/(u — Iﬂ')[s ® 5]71,

1

cosh 7 sinh 4

\/coshn ~ Vcosh n
S= sinh cosh 7 )

~ V/cosh n ~ Vcosh n
1

sinh(—5 + 1)

R (1) sinh 5 e~ % sinh n )
u) = y )
v e2 sinhn sinh 5
sinh(f% +n)
J. Cao (IOP)
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The reflection matrices can also be factorized as
+ _ s - LcR N =15 c N\ et -1
K (u) = [ps(im)]” 2 SRary (im) Ky (u)My, " Ryor (—2u + 4n — im) Mo K (u)S™ 7,
K (u) = [ps(im)] "2 SKy, (u + im) Ry (2u + im) Ky (u)Ryp (—im) ST,

where f(ki,(u) are the 2 x 2 generic non-diagonal reflection matrices of the XXZ spin

chain
R;(u) = Mk’ Rki/(_u + 2”)'{5,51,52}~>{s/,5{,52’}7

L —e sinh(§ —s) s sinhu
Ko (u) = . : (6)
s sinh u ez sinh(§ +s)
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Based on the R-matrix (5) and reflection matrices (6), we construct the transfer

matrix f(u) of the inhomogeneous XXZ spin chain as
H(u) = tro (K () Tor ()R () Tor (W)},
where Ty (u) and Ty (u) are the monodromy matrices

?‘0/(u) = I~?0/1r(u - el)ko/zf(u - 92) e RO’(2N)/(U - 02/\/),

To (u) = Rony (u + 02n) Ry an—1y (u + O2n—1) - - - Rorvr (u + 61), (7)

and {0;]j =1,--- ,2N} are the inhomogeneous parameters.

We should note that the quantum space of transfer matrix t(u) for the XXZ spin
chain and that of t(u) for the D§2) model should be the same. Then the number of sites
in Eq.(7) is extended to 2N to ensure the dimension of Hilbert space is 4".

It is easy to prove that the transfer matrices f(u) with different spectral parameters

commutate with each other

[(u), §(v)] = 0.
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From above factorization, we conclude that if the inhomogeneous parameters are
staggered, i.e., §; = 0 for the odd j and 6; = iw for the even j, the transfer matrix of the
Déz) spin chain can be factorized as the product of transfer matrices of two staggered

XXZ spin chains with fixed spectral difference
t(u) = 22" pe(2u + im — 2n) L(u + iw) L(v), (8)

where 'fs(u) = f(u)|{gj}:{07,-7r}.
Because %;(u + iw) and %;(u) have common eigenstates. Acting Eq.(8) on a

common eigenstate, we obtain
Au) = 2%V p(2u + im — 2n) Ro(u + in) As(u), (9)

where A(u), As(u + im) and As(u) are the eigenvalues of the transfer matrices t(u),
ts(u + im) and % (u), respectively.
Therefore, the eigenvalue of D§2) spin chain can be obtained by using the exact

solution of the anisotropic XXZ spin chain.
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Off-diagonal Bethe ansatz solution

Now, we derive the eigenvalues of transfer matrix #;(u) of the staggered XXZ spin
chain, which can be achieved by diagonalizing the transfer matrix £(u) of the
inhomogeneous XXZ spin chain with non-diagonal boundary reflection.

The corresponding inhomogeneous XXZ spin chain still does not have the obvious
reference state, thus we use the off-diagonal Bethe ansatz.

From the definition, we know that the transfer matrix #(u) is a trigonometric

operator polynomial of u with the degree 4N + 4,

AN+4 4N+3 A
+ +3

T(u) = Oynyo sinh u + Oupsssinh + .-+ O
Acting it on an eigenstate, the corresponding eigenvalue is
7\(u) = Oun42 sinh*V 4y 4+ Osny3 sinh*" 3+ 4 Oo
Our task is to determine the coefficients, which can be determined by the values of A(u)
at 4N + 5 points.
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Now, we seek these 4N + 5 constraints. At the points of 47, the R-matrix becomes
Ria(+m) ~ P&,

where Pf? is the one-dimensional antisymmetric projector and Pf;) is the
three-dimensional symmetric projector.

By using fusion technique, we obtain following operators product identities

4sinh(£6; — 2n) sinh(£6; + 2n) h +6; — a1
cos

F(£0;) B(£0; +2
H(0) (£, + 2n) = aa’ sinh(£6; — n) sinh(£6; + n)

+0; +0; — +0; +60;, — o +6; 4
X cosh J2+ o cosh i cosh =2 +o cosh i cosh 12+ |

— ol +6; +60; — 0; — 2
X cosh azc +a2H 77]

+6; —0; +2 +0;+6;, —2n . £6;+0;+2
X sinh / 5 + nsinh J+2 nsmh J+2 + 717

j=1,---,2N. (10)

We see that the product of two transfer matrices with fixed spectral parameters is the
quantum determinant at the point of u = 6;.

Please note that the fusion identities (10) hold only at the discrete inhomogeneous
points.
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Besides, from the direct calculation, we also obtain the values of #(u) at the points
of u=0,2n,ir as

2N

£(0) = #(2n) = 2cosh nsinh ssinh s’ | ps(6)),
j=1
N
t(im) = 2 cosh 1 cosh s cosh s/Hps(Qj + im). (11)
j=1

The asymptotic behavior of T(u) when the spectral parameter tends to infinity reads

)|yt oo = —27 W2 HEND=—] (g =ng o | oM, 5!y, (12)

Thus the above 4N fusion identities (10) and 5 additional conditions (11)-(12) give

us sufficient information to determine the eigenvalue A(u) of #(u).
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The eigenvalue A(u) can be expressed as the inhomogeneous T — @ relation
Q(u +2n)

- 2sinh(u — 2 4 A
A(u) = sinh(u n) cosh uton cosh 2 ta cosh ut o cosh ut o (u)
sinh(u — n)Vaao’ 2 2 Q(u)
2sinh —op— —onp— -
+ sy cosh u U cosh d n= o cosh 4 =
sinh(u — n)Vaa’ 2 2 2
20 — o Qv —2n) ) ' a(u)d(u)
d(u + xsinh usinh(u — 2n) ———, 13
O (u—2n) 22 (13)

X cosh i
2

where the functions Q(u), a(u), d(u) and parameter x are

2N
Q(u) = Esinh E(u — py) sinh E(U + pr—2n),
L | 1
a(u) = Hsinh E(u — 0 — 2n)sinh E(u +0; —2n) = d(u—2n),
!’ !
atoetont az] — (e "sis;, + e"spsy).

2

j=1

x = —2y/s15,5]s}) cosh[(2N + 1)n +

Gy model
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Because A(u) is a polynomial, the singularities of right hand side of Eq.(13) should

be cancelled with each other, which gives that the Bethe roots {1} should satisfy the

Bethe ansatz equations

2sinh(u; — 2n) i+ ar w4 oo M+ oy w4 oy Q(ur + 2n)
- cosh cosh cosh cosh
sinh(p) — n)vVao! 2 2 2 2 d(pr)
2sinh —2n — —2n — —2n—a)
+ sinn cosh Hi n— a1 cosh 12 7 — Q2 cosh 12 n— 0o
sinh( — n)vVaa! 2 2 2
Y -2
« cosh X! n = oz Qu L) = —xsinh pysinh(py —2n), [1=1,---,2N.
2 a(pur)
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Some remarks:

1. By solving the Bethe ansatz equations, we obtain the values of Bethe roots {u}.
Substituting these values into the inhomogeneous T — Q relation (13), we obtain the
eigenvalue A(u).

2. The different sets of solutions of Bethe roots would give different eigenvalues.

3. Based on the numerical calculation and analytical analysis with the help of
Bézout theorem, the T — @ relation can generate all the eigenvalues of #(u).

4. The eigenvalue A(u) has the well-defined quasi-inhomogeneous limit
{6} = {0, ir}.

5. Conclusion: The eigenvalue of the transfer matrix t(u) of the Déz) spin chain is
Au) = 2%V p (2u + im — 2n) Ao(u + in) Ag(u),
where

As(u) = M)l o310, iy, As(u+ im) = Au+ i)l 6,310, in} -
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G> model

The G2 symmetry is the smallest possible exceptional Lie algebra besides the
automorphism group of the algebra of octonions.

Its relation to Clifford algebras and spinors, Bott periodicity, projective and
Lorentzian geometry, Jordan algebras, and the exceptional Lie groups has been studied.

The holonomy group G is also associated with the compact Riemannian manifolds
with special geometric structure, such as Spin-7 manifolds or nearly Kihler manifolds.

These manifolds play important roles as ingredients for compactifications in string
theory, topology and M-theory. In addition, the G, model has applications in quantum

logic, special relativity and supersymmetry.
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72 x 7° R-matrix
7 . . 7 . .
Rip(u) = a(w) S° (] ® E]) +3(u)(Ef ® Ef) +c(u) > (E} ® E4 + E4 ® E))
i=1,i7#4 i=1,i7#4

3. - - . 3 . . - -
o) S (E] © B + B © E) + b)Y (E} ® E + E| @ E} + E{ @ F + E ® F]
i=1 i=2

6 - -
D s s N
e rEf o) rawy (o +EoE 1 o+ og
i=5
P Ges 3 iia R R
+E;®57+3+E,-®E,;3)+€1(”)Z2(E;®E1+51®E;+%®E7+57®E,-
i=

; . ; . 6 . . - =
+E s O ETP LB Qe )t e D (B 0 E +E 0 E v E 0 E +E 0 &
i=5

- - 7
i i+3 i i—3 4 i i 4
s @ E 3@ E D raw Y (g +E®E)
i=1,i#4
3 . = H . 3 : 7 7 i 4 4 4 4
+g8(“)_21(57 ® Ej + ®E-,-)+g5(u)_21£,-(54®54+54®E4+E; ® E +E ® )
= =

3 - - - -
) ' ' ) L e
+83() D[ 3 ® E_3 +E_3 ®E 3 —¢&(E ®F +E QE +E ®F +E ® )]
i=2

+er () Y IE_ @ E 3+ EL 0 E_ — (5 o +E 08 + 6 @ ] + £ @ )]
i=!
i k j ! i k Ej !
+gp(u) Z (Ej®E/+E,.®Ek—E,®E]-7 © ® E
i1k, i],j#k, i+k=j+1=5,6,7,9,10,11

k i gl i k i | o gl
+Ef ® Ej +E, ® Ej — Ef ® E| — E; ® ).
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The R-matrix satisfies:

YBE :

regularity :

unitary :

crossing symmetry :

crossing unitary :

J. Cao (IOP)

Ri2

Ri2

Ria

Ria

f
Ry

(u — v)Ri3(u)Ras(v) = Ros(v)Rus(u)Riz(u — v),

(0) = p12(0)2 Pz,

()Rar(—u) = ar(w)ar(—u) = pia(u),

(1) = —ViR} (—u = 6)V; " = V2R3 (—u — 6)[V;?] ",

()R (—u — 12) = —p1a(u + 6) = pra(u).

Gy model
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The R-matrix can also be written as

Rip(u) = (u—1)(u+4)(u—6)PY + (u+1)(u—4)(u+6)P

+(u = 1)(u+ 4)(u+ 6)PLEY + (u+ 1)(u + 4)(u + 6)PE7,

where Pg) are d-dimensional projectors, where d = 1,7,14,27. Thus the R-matrix can
degenerate into the projectors at ceratin points of the spectral parameter.

For example, if u = —6, we have
Ria(—6) = P x 51,
where S; is an irrelevant constant matrix, Pg) is the one-dimensional projector
Py = lwo) (wol,
the vector |4p) is
[to) = %(|17> — [26) +[35) — |44) + |53) — [62) +[71)),

7
and {]j),j =1,---,7} are the orthogonal bases of the spaces Vi or V5.
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Reflection matrix

ci1 0 0 0 a C 0
0 &% a3 0 0 0 —C
0 3 C33 0 0 0 c
K (v)=1+Mu, M= 0 0 0 -2 0 0 0 s
ca 0 0 0 a3 —C3 0
c 0 0 0 —c3 [ 0

where

ccs @C3 [er]ec) acs acs @C3 ac
a=—+—-2 @m=2-—, B=2-— —+—+— =4
(&) (5] 1 (/] (] <1 3

Thus there are two free parameters.

The boundary reflections at the other end of the chain is characterized by the dual

reflection matrix

K () = K™ (=t = 6)|{ci.cc0} > (e} -
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The model Hamiltonian can be obtained by taking the derivative of the logarithm of

the transfer matrix t(u) as

H - Oln t(u)‘
= Sy lu=0.{6;3=0
N—-1 +
1, tro{ K" (0)Hio }
= H, —-K 0 _ stant.
; kk+1+2 v (0)+ oK (0) + constan

Explanations:

1. The Hamiltonian can be expressed by the spin-3 operators.

2. The reflection matrices K*(u) have the non-diagonal elements, which means that
the number of particles with fixed spin-component are not conserved, although the total
number is conserved. The K¥(u) can not be diagonalized simultaneously.

3. The non-diagonal boundary reflections can be achieved by applying the
nonparallel boundary magnetic fields to the chain.

4. The twisted magnetic fields will induce the helix spin states. Then it is hard to

construct the reference state.
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Now, we solve the t(u) and H by using the polynomial analysis and fusion.

From the definition of transfer matrix, we know that t(u) is a operator polynomial of
u with the degree 6N + 2.

Besides, by using the crossing relation of the fundamental R-matrix, we can show

that the transfer matrix t(u) satisfies the crossing relation
t(u) = t(—u —6).

Thus the number of unknowns in the polynomial is reduced to 3N + 2, which means
that the value of t(u) can be determined by 3N + 2 constraints.

We use the fusion method to obtain these constraints.
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Step 1
When u = —6, we get an one-dimensional projector PS). By using the fusion
(1) _ 1) _ _ .
P31 Ris(u)Ras(u — 6) Py’ = a(u)e(u — 6) x id,
P Ry (u)Rao(u — 6)PY) = a(u)e(u — 6) x id,
PLKL ()Ra(2u — 6)K, (u — 6)Pf;) =
4(u—1)(u—6)2u —5)(2u —1)(2u+1) x id,
PO KS (u — 6)Ria(—2u — 2k + 6)K; (u) P =

—4(u+1)(u+6)(2u+5)(2u —1)(2u+1) x id,

We obtain that the product of the transfer matrices satisfies the relation

2 (8, — 1)(8; — 6)(8; + 1)(, + 6)
(0; —2)(0; — 3)(6; +2)(0; + 3)

t(0j) t(9j — 6) =4

1 5 1 5 & o
(05 = 5)(0; = 5)(0; + 5)(6; + E)Hp“(ej — 0)p12(6; + 67) x id, j=1,---, N.
i=1
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Step 2
When u = —1, we get a 15-dimensional projector Pgs)_ The fusion with
15-dimensional projector gives
1
P Ras(u)Rus(u — 1P = (u = 1)(u + 1)(u + 4)(u + 6)Rps (v — 3),
1
P Rap(u)Rsy (u — 1)PSY) = (1 — 1)(u + 1)(u + 4)(u + 6)Rag (1 — 5
where the subscript 1 means the 15-dimensional fused space and Ri;(u) is the
(15 x 7) x (15 x 7)-dimensional fused R-matrix. The matrix elements of Ri3(u) are the

polynomials of u, and the maximum degree is 2.

The fused R-matrix has the properties

Ria()Ret (—4) = pia() = (u+ )+ =) — D)= 20,

Rip(u) T Ryp(—u — 12)" = pgp(u) = p1a(u + 6),
Ri(u) = VIR (—u = O)[Vi] ', Vs = PRI Vavi P,
Ryi(u) = VIR (—u — 6)[V{1] 7,

and satisfies the Yang-Baxter equation

Ria(u — v)Ris(u)Ros(v) = Ros(v)Ris(u)Ria(u — v).
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The 15-dimensional fusion of reflection matrices gives

PG Ky (u)Ruiz(2u — 1)K, (u — 1)PY

L,

—8(u— %)(qu %)(w g)(u SR (-

PP K, (4 — 1)Raa(—2u — 2 + 1)K (u) P
5 9 11 1
where K (u) are the 15 x 15-dimensional fused reflection matrices. The matrix

elements of K;F(u) are the polynomials of u and the maximum degree is 1. Besides,

K (u) satisfy the reflection equations

Rpp(u — v)Ky (1)Roz(u + v)K; (v) = K (V)R (u + v)Ky (u)Ryz(u — v),
Ri(—u + v)Kfr(u)Rzi(—u —v— 12)K2+(v)

= Ky (V)Rip(—u — v — 12)K; (u)Ryz(—u + ).
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By using the fused R-matrices and fused reflection matrices, we construct the fused

transfer matrix t(u) as
() = tro{ K3 (u) To(u)K; (1) To(w)},
where
To(u) = Ror(u — 01)Rgy(u — 62) - - - Ron(u — On),
To(u) = Ryg(u 4 On) - - - Ryg(u + 02)Rig(u + 61).
Then using the fusion relations, we have

(£6; — 1)(£0; + 6)(£06; + 5)2 N
(&6 + 2)(£0; +3) ol B LCSTR T

i=1

t(:|:9j)t(:|:0j — 1) = -

- 1
><(i9j +60; — l)a(iej — 6,—)a(i0/ + 0;)]t(i0j — 5), j=1--- N.

We can also prove that the fused transfer matrix t(u) satisfies the crossing

symmetry

t(—u —6) = t(u).
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Step 3

The fused R-matrix also has the degenerated points. For example,

7
Ri2(—§) = PS‘” X S,
where Ss4 is an irrelevant constant matrix and PS“ is a 34-dimensional projector, which
allows us to take the fusion again.
Repeated the similar processes, we obtain the next fused R-matrices as

%),

7
PG Ras(u)Ris (v — 2)PL = (u+ 6)Rpy(u — 3

7 5 _
Pyt Rea()Rsi(u = 5)P" = (u+6) QuRsi(u = 5)Q; ",

where the subscript 1 denotes the 34-dimensional fused space Vo1y and Qs is a 34 x 34
matrix defined in the fused space.
The next fused R matrix is a 34° x 72 matrix thus the detailed form is omitted here.
The matrix elements of Ry,(u) are the polynomials of u and the maximum degree of

these polynomials is 4.
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The related next fused reflection matrices are obtained by taking the fusion of

reflection matrices with the 34-dimensional projectors as
(34) o — [ @4 _ 5, -1
P12 K (u)Riy(2u — E)Ki (u— 7)P =4(u+ 1)K- (u— E)Qi ,
7 5
PRV (u = 5)Ra(—20 = 2+ 5 )K*( JPEY = —4(u+ 6)Qik (u— ),

where all the matrix elements of K;F(u) are the polynomials of u, and among of them

the maximum degree of these polynomials is 3.
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Now, we are ready to define the next fused transfer matrix (u)

F(u) = tr5{ Ky (u) To(w) Ky () To(u)}-
Computing the quantity t(u)t(u + &) with the similar steps as before and substituting
u==6; and § = —% into the result, we have

(:I:@j + l)(:l:ej + 6)
(:I:gj — %)(:I:G'j — %)(:I:ej + 3)(:t9j + 4)

_ 7
t(iej)t(iej — 5) = —

N
. 5
x [ [(£6; — 60 + 6)(£06; + 0; + 6)F(+6, — Shi=1- N

i=1

The next fused transfer matrix has the crossing symmetry

t(u) = t{(—u — 6).
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Step 4

The fused Rj,(u) matrix has two degenerate points.
At the point of u = f%,

p9)
Rip(— *)_ i ) X S,

then we get a 49-dimensional projector ng). Direct calculating gives

9 _
P~(49)R23(”)R13(” - f)Pi(;‘Q) = (u+ 6)SaRi3(u — 2)Ro3(u — 5)Sp;",

P& Ry () Ry (u — 7)P49 = (u+ 6)512Rs1 (u — 2)Rep(u — 5)53",
P Ky (u)Ry(2u — E)Ki (u— 7)P49 = —2(u+1)(2u + 1)(2u — 1)
X S12 Ky (u — 2)Rn(2u — T)K; (u —5)55",
PE K (u — 7)R21( 20— 2k + = )K*( )PUY) = 2(u + 6)(2u + 5)(2u — 3)
><512K2+(u75)R12(72u72;{+7)K1+(u72)51_21,

where Si> and 515 are the 49 x 49 irrelevant constant matrices.
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Computing the quantity t(u)#(u + ) and substituting u = +6; and § = —3 in the
results, we have

9 Y (£6; + 1)(£6; + 6)

. 1 7 1 5
t(£0;)t(£0; — 5) = W(iej - 5)(i9j - 5)(i9j + 5)(2‘391‘ + 5)

N
x [ [(£6; — 6; + 6)(&6; + 6; + 6)t(£0; — 2)t(+6; —5), j=1,--- , N.
i=1

We see that the result is the product of two original transfer matrices.
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At the point of u = —%,
13
Riz(*;) = Pg) X 57,
we get a 7-dimensional projector Pg). Direct calculating gives
13 _
PL) Ras(u) Rig(u — —)PS” = (u — 4)a(u)SiRus(u = )5,
PO Rsa(u)Ryz(u — )P(Z = (u— 8)a(u)R(u — 7),
POK (u)Riy(20 — )k (u — 2)p0
i2 772 12 2 i o /2l
=4(u—4)(uv—1)2u —11)(2u — 1)(2u — 5)(2u — 3)(2Qu + 1)S:1K; (u —7),
13 13
POK (u— S ) Roi(—2u — 26 + 7)K;(U)Pi(?

= —4(u+1)(u + 6)(2u — 7)(2u — 5)(2u + 1)(2u + 3)(2u + B)K; (u — 7)S; 1,

where S; is 7 X 7 constant matrix.
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Then we obtain

11 5
(£0; — 3)(10,- - 5)

6 (:|:9j — 4)(:&9] + 1)(:|:9] +6)
(£60; — 2)(£6; + 2)(+6; + 3)

- 13
t(iej)t(iej — ?) = -2

X = D — )0+ )60+ DT 0+

X(i@j +60; + 4)3(i0] — 0,-)3(19,- + 6,—)]t(i6j — 7)7 Jj=1--- /N.

We see that no new unknown operators appear and the fusion relations are closed.
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Taking the limit of u tends to infinity and using the definitions, we obtain the

asymptotic behaviors of the transfer matrices as

t(1) |y 00 = AN X id 4 6N +2 — 3N + 1,(3N + 2)

- _ Ao A 3 ango .

t(U)|u— +oo 716[—(5) +§+Z]u X id+ .-, 4N +2 — 2N + 1,(2N + 2)

. 3 A A 3

F(u)uss 200 = —128[5(5)2 +pt g]ug’“"’ Xid + -, 8N +6 — 4N + 3,(4N + 4)

where A is a boundary parameters dependent constant. Besides, we know the values of

transfer matrices at some special points

N
t(0) = =5 [ p12(6)) x id,
=1

t(—1) = —Z 116 - (-6 - 1)%(_%),

I=1

N
H—2) = =3 [100+ (=0 + 1)(0 + (=01 + 4~ 2),

=1

. 13 A

H(--) =330 116 = 3)(=61 — H)t(-7),
I=1

#(—1) = 0.
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Above 9N + 8 functional relations allow us completely to determine the eigenvalues,

which can be given in terms of some inhomogeneous T — Q relations as

Aw) = 32 Zi(u) + > filw),

_ 1 (u+2)(u+3) N bt b Dy 6 — Da(y — o1
/\(u—g)f (u—1)(u+6)(u+g)(u+g)g[(+9’ D(u— 0; — L)a(u — 0;)]

xa  (ut+ O{Zi (WD Zilu — 1) + Ay — 1) + oy — D] + D Zi(u) + fi(u)

+H(u)]Z(u — 1) + [Z;(“) + f(u) + Z(u)][Zs(u — 1) + (v — 1; + Zs(u — 1)},

co 5 u(u— (4w — He -3  Bu— 6 — 4t
M= ) = W D T o~ aw — Dy LI 0= =0 = 0]

X[(u+ 6; + 6)(u— 6; + 6)a(u + 6; — 3)a(u — 6; — 3)] "

4 6
XA Ziw) + AW Zi(u = 3) + Ay = 3) + Hlu — 3)]Z(u — 4)
=1 k=1

+Zi(u)Zy(u — 3)[2 Zi(u—8)+ Hh(u— 4)] + Zs(u)Zs(u — 3)Z7(u — 4)
k=4

+Z1(u)[Za(u — 3) + A(u — 3) + Z3(u — 3)][Zs(u — 4) + fr(u — 4) + Zg(u — 4)]

+21(u)Z3(u — 3)[Zs(u — 4) + (v — 4) + Zs(u — 4)]}.
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All the eigenvalues are the polynomials of u, thus the residues of right hand sides of
inhomogeneous T — Q relations should be zero, which gives rise to the Bethe ansatz

equations (BAEs)

(1)(i,u(1) + 1)Q(2)(iu5(1) -1 _ (,“k 1 Hle(’/“Lk -6+ 2)(:uk +6;+ 1)
QW(iny = Q@i —3) (k! = 3) TG = 0 = D0 +0; = 3)’
k=1,2,---, L,

(i —3) QP> —5)  (in® +3) QP>inl +1)

in® Qin —2) inf QW(in® +1)
) 3.,. 3
= —x(in = )P +3), =12, L,
2 2
where
L,
QW(u) = H(:u+u:’+ i~ 4 ) Q¥ (u) = [ (i + 2 + 20)(iw — u? + 2i),
k=1

From the asymptotic behaviors of A(u), A(u) and A(u), we obtain the constraint
between the integers L; and Ly i.e., Lo = L1 + 1.
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Results for the periodic boundary condition

Pl (u) = troTo(u),  FO(u) =ty To(w), TP (u) = tr5 Ty(u).

Closed operators product identities

J. Cao (IOP)

t(P)(g}) t(")(ej
t(P)(gj) t(")(ej
t(P)(g/) t(P)(ej
£ (0;) T (0;
) (0,) T (6,
t(”)(ej) E(P)(gj
) (0,) 16,
t(P)(g/) E(")(Gj

t(P)(gj) ?(")(Oj

N
—6) = []a(6; — 6:)e(6; — 6; — 6) x id,
i=1

N
—a)=T](6; — 0: +1)(6; — 0; — 4)(6;, — 6; — 6)tP(6; — 2),

i=1

] 1
-1 =TIt - 0 = na(o; — 096, = °).
i=1
11 N »
- ;) =T1(6; — 6: + 4)(6; — 6, +6) t¥(6; — 5),
i=1
7 ] B 5
- ) =TI — 0: + 6) #(0; — E)’
i=1

7 N _ 5
- [T — 6; — 1)(6; — 0: — 9)a(6; — 0,) T (6; — S

i=1

N
- 2) =TT — 6; +6)t?(6; — 2t (6, — 5),

i=1

13 N
- 5= [1e6; — 6: — Ma(6; — 6,) £?(0; — 7),

i=1

3 N 1
— o) =[1te; — 0: — 1)(6; — 6, — 6) tP(6; — 2)T¥(6; — -).
2 i1 2

Gy model

(15)
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Moreover, the asymptotic behaviors of transfer matrices become

3N

P (U)]yms oo = 70 xid + - - -,

E(p)(u)‘uﬁ:koo = 15u2N Xid4 -,

t(p)(u)\uqim =340 xid+ ... (16)

From the definitions, we know that the transfer matrices tP)(u), ) (u) and P (u) are
the polynomials of u with degrees 3N, 2N and 4N, respectively. Thus their eigenvalues
can be determined by 9N + 3 independent conditions. The constraints (15)-(16) give us

sufficient information to obtain these eigenvalues.
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Denote the eigenvalues of t*)(u), P (u) and TP (u) as AP (u), AP (1) and AP (u),

respectively. Then we have

/\(m(u) _ 27: ZJ.(P)(U),

=1

AP (u H((u —0; — Da(u — 6;)) " {ZP(u [Z ZP (4 —1)]

+1D° ZP ()] 2P (u = 1) + 27 () + ZP()][ZP) (= 1) + 2P (v — 1]},

N

AP (4 — ) = [T~ 0; = 4)(u — 0; + 6)a(u — 6; — 3)) "

i=1

4 6
A ZP )2 2P (u - 3)ZP (1 — 4) + Z{P(u) 3)[22

j=1 k=1

+ZP ()2 (0 = 3) + ZP (u = 3)[ZP (v — 4) + 2P (u — 4)) + ZP () Z8P) (u — 3)

X[ZP(u = 4) + 2P (u — )] + ZP () 2P (u - 3)Z1 (u — 4)}.
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The regularity of the expressions of the eigenvalues

requires that the Bethe roots
should satisfy the BAEs

;0 2) (i, 0 N
Qi + 3@ (i _%) *HLR 270 g

QW (i) — QP 1) ind

QO (inf = 2@ (i +1) _

=-1, I=1,--+,L,
QP (in? +1)QP (iuf? — 5)
where
Ly 1 Ly
QW (w) = TG+ + 7). QP (u) = [JCu+ 2 +20).
k=1 k=1
J. Cao (IOP)
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Summary and concluding remarks

We have applied ODBA to the typical quantum integrable models, including the
models associated with A,, B,, C, and D, Lie algebras.

We obtain the exact solution of Df) spin chain and Gz model with unparallel
boundary fields.

This method is a universal.

Other things we can do:

In fact, besides the eigenvalues, we have obtained the eigenstates, exact physical
quantities in the thermodynamic limit such as ground state energy density, elementary
excitations and surface energy of the XXZ spin chain with unparallel boundary fields. All

these results can be used to study the Déz) spin chain directly.
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For example:
Eigenstates of XXZ spin chain with non-diagonal boundary reflection

The bases of Hilbert space is (In the following, the number of sites is V)
Opis s Op,im) = Am(0p,) - - - Am(6p, )| m),
where p; € {1,--- N}, p1 < p2 < -+ < pn,

|m> = ®r’>’:1|m>na

|m>n — e—[9,,+(m+N—n+1+o¢)77]| T)n + | ~L>n

Conjugate bases
(Op, -+ 0p,;m| = (m|Dm(—=0p,) - - - Dim(—0p,),
where p; € {1,--- N}, 0, < 0p, -+ < 6p,,
(ml = @y n(ml,

69,,+a17

n{ml = 2sinh(m+n— N —1)n { nTl—e

— [0+ (cc+m+n—N—1)n] oL |} )
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Expanding an eigenstate |W) of the transfer matrix #(u) with the bases, then the

coefficients are

Fa(Op,, -+ 0p,imo) = (Op, -+, 0p,imo|W), n=0,--- N.

In order to calculate the efficients, we consider the quantity
(Opys 5 Op, mUIE(_QPnH)"’U)r where pni1 7£ pi, s Pn.
By acting #(—0p,,,) to left and to right alternately, we obtain

n

sinh((mo — 1)n + 26, ) sinhn

Fn(epw o 7€Pn;m0) = H R2+2(m0| - ep,) -

j=1

sinh(mg — 1)1 sinh(20,, — n)

XK (mo| = 0,)] " R(=8,)Fo(mo),

where Fo(mg) = (mo|W) is an overall scalar factor.

Therefore, we have retrieved the eigenstates by using the obtained eigenvalues.
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Exact physical quantities in the thermodynamic limit
Difficulty: The Bethe ansatz equations (14) are not the from of product. Thus the

thermodynamic Bethe ansatz can not be applied.

n[] = > :>/
In(H+H) + Z

e Degenerate points, at which the inhomogeneous term in the T — Q relations is zero

o t — W scheme

Ground state energy density, elementary excitations, surface energy, free energy at

finite temperature
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t — W relation

By using the fusion, we have the following t — W relation
Fu)E(u — 1) = Ag(u) x id + d(u)W(u), (17)

where Ag(u) is the quantum determinant.

Because #(u) and W(u) commutate with each other,
[W(u), t(u)] = 0.

They have common eigenstates.

Acting (17) on a common eigenstate |W) we have
Aw)A(u — n) = Ag(u) + d(u)W(u), (18)

where W(u) is the eigenvalue of W(u).
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Because 7\(u) is a trigonometric polynomial of u with degree 2N + 4 and satisfies
the crossing symmetry trigonometric A(u) = A(—u — 1) and A(u + in) = A(u), the
eigenvalue A(u) can be characterized by its roots {z} as

N2
A(u) :/_\ggsinh(ufszrg)sinh(u+zj+g), (19)
where Ag = —8cos(6_ — 6,)sinh~2" 5y is determined by the asymptotic behavior of #(u)

when u — oo. The A(u) has 2N + 2 roots, zj — Jand —z — 7.

W(u) is a trigonometric polynomial of u with degree 2N + 4, and we put
2N+4

W(u) = Wo H sinh(u — wy).

=1

An important fact is that (18) is a degree 4N + 8 polynomial equation and thus
gives 4N + 9 independent equations for the coefficients to determine the N + 2 z and
2N + 4 w; completely.
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Bethe ansatz equations with product form

If u=2z — 2, then A(u) = 0. From t — W relation, A(u)A(u — 1) = Aq(u) + d(u)W(u),

we have

Bolz = 3) = —d(z — DW(z - ).

2 2

If u= w;, then W(u) =0. From t — W relation, we have

Aw)A(ws = n) = Bg(w).
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Alternating form
The Bethe ansatz equations for the zero roots with product form can also be
obtained as follows. At the inhomogeneous points, for a eigenvalue /N\(u) the t — W

relations reduce as

AOHAO; — 1) = a(0))a(—=8)), j=1,---,N,
A©) =20, RK(T)=a(T), 20)

Substituting the parametrization (19) into above equations, we can obtain sufficient
conditions to determine the values of zero roots {zj|j = 1,--- , N + 2} completely for a

given set of inhomogeneity parameters.
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By choosing a proper set of inhomogeneity parameters, we find that the root

distributions has ceratin patterns in the thermodynamic limit.

3 3
@ (b) *
] I 2 ok kxx kxx o+
*
. N=10 =2 e N=10 7=2
o 0 a =12 (3=23 60 =03 & 0 a =12 (3=23 60 =03
= + + + E + ¥ +
= a=1.8 §=1.6 6.=1 A a=18 3=0.3 6=1
1 -1 +
2 % ok xR kR Kk E £ K K 2 Kk KRk Kk K K %
»
3 3
-15 1 0.5 o 05 1 15 -15 1 0.5 0 05 | 15 2
Re(z) Re(z)
q 1
st (©) al
2 F Ok KEE KKK E ¥
= ! N=10 7=2
\’—E/ 0 * a+:1.2 3+:2.3 9+:O.3 *
= =18 =15 =1
2 F Ok ERE KEE K ¥
3 &
-4
45 4 05 0 05 1 15 -4 2 0 2 4
Re(z) B
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Taking the logarithm of Eq.(20), then the product becomes summation. In the
thermodynamic limit, the summation becomes integration. By choosing the suitable

distribution of inhomogeneous parameters, we obtain the density of zero roots

FK) = [2NB25(K) + [L -+ (~1)41(B2 = B) + B

+bae_ + (=1)“(Bas. + bas_ )]/ [N(B1 + bs)].
Based on it, we obtain the surface energy as
Ep = ep(cvt, By) + ep(a—, B-) + epo-

Here e,(a, 8) indicates the contribution of one boundary field and ey is the surface

energy induced by the free open boundary.
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Thank you for your attention!
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