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i Finite temperature i
& T=1/p &
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Boundary entropy / g-function

Open channel Closed channel
Zap(B, L) = Tr e~ PHar(E) Zav(B, L) = (Bale " 7| By)
For L > 1

Zap(B, L) =~ (Ba|()><0|Bb>e—LEo(ﬁ) (B,|0) = e—aa

The g-function



Boundary entropy / g-function

Physical meaning

O Introduced by Affleck and Ludwig in Kondo problem  [Affleck, Ludwig 1991]
o Measures the universal ground state degeneracy

© Related to tension of D-brane in string theory

[Harvey, Kachru, Moore, Silverstein 1999]
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Boundary entropy / g-function

Physical meaning

O Introduced by Affleck and Ludwig in Kondo problem  [Affleck, Ludwig 1991]
o Measures the universal ground state degeneracy

© Related to tension of D-brane in string theory

[Harvey, Kachru, Moore, Silverstein 1999]
Computation in CFT

o Example of Ising model

1 1 1 . . :
[(+)) = E‘()» + Ek.;» + <l/_§|0>> —p  Fixed spin up
1 1 1 . :
|(_)> — E‘O» + E|g>> — <l/—§|g>> .........b. Fixed spin down

(£)) =10) — le)) —~3  Free boundary
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Physical meaning

o Introduced by Affleck and Ludwig in Kondo problem
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Computation in CFT
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Boundary entropy / g-function

Physical meaning

o Introduced by Affleck and Ludwig in Kondo problem
o Measures the universal ground state degeneracy

© Related to tension of D-brane in string theory

Computation in CFT

o Example of Ising model

1 1 1
() = 5100 + —5leh + 55100 Note that
)y = Loy Ly Ingisy >1ng
|( )>_\/§‘0>>+\/§| >> <1/§| >> (f) (:I:)

[(f)) =10) —|e) ls it a coincidence ?



Boundary entropy / g-function

The g-theorem

For fixed bulk critical theory, g-function decreases monotonically along

the boundary RG flow

o g-function is the analog of Zamolodchikov’s c-function
o Conjectured by Affleck and Ludwig in 1991 [Affleck, Ludwig 1991]
o Proved by Friedan and Konechny in 2003 [Friedan, Konechny 2003]

o Revisited from quantum information point of view

[Casini, Salazar Landea, Torroba 2016]



Il. g-function in IQFT

Diagonal scattering theories
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Off-critical g-function

Bulk massive QFT

The bulk theory is not a CFT, but a massive QFT, can still define g-function

R
_
[ (Blo) ~ e " g(mR) ]
L
Hard to compute for generic QFT and
Y \ generic boundary condition

Exact computation for

o Integrable QFT : [0,,.0,]1=0
o Integrable boundary:  Q,,.,|B) =0



Off-critical g-function

AdS/CFT correspondence

In planar A/ = 4 super-Yang-Mills theory, some OPE coefficients can be
given by the worldsheet g-function

( )

o Giant-graviton 1pt
(D1(x)D(x)O(x3))

o Wilson-loop 1pt
(W(E)O(x))

o Defect 1pt
(O@)dcFT

\. J

D-brane emit a closed string Spacetime dependence fixed

Amplitude = (B |y) OPE coefficient given by g-function



Off-critical g-function

AdS/CFT correspondence

In planar A/ = 4 super-Yang-Mills theory, some OPE coefficients can be
given by the worldsheet g-function

( )

o Giant-graviton 1pt
(D1(x)D(x)O(x3))

o Wilson-loop 1pt
(W(E)O(x))

o Defect 1pt
(O@)dcFT

\. J

D-brane emit a closed string So far the only cases where finite size

Amplitude = (B|y) corrections can be computed exactly



IQFT with boundaries

Integrable QFTs
Bulk scattering SZ.IJ‘.I(Q)

Ay (02) A (61)

Ai(61) Aj(62)

Integrable boundary conditions

Boundary S-matrix Rl-j(ﬁ)

( )
diagonal boundary

R(0) = 5] S(0)

\. J

7

diagonal scattering

kl — Skgl
SK() = 555! S,(0)

N

J/
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Compute g-function

Cluster expansion

From the identity

> e I = N (B ) (n] B)e M)
n=0 n=0

ForL>R > 1

21n g, ~L(Ey(R) — Em?R)

4 In (1 X Z eR(Eéi:)(L)Eé?(L))
n=1

o Estimate energy levels by Bethe ansatz

o Take into account 1-particle, 2-particles,... n-particle contributions

o Find a pattern and postulate general expressions
[Dorey, Fioravanti, Rim, Tateo 2004]



Compute g-function

Cluster expansion

For diagonal scattering theory, N particle species

] -
2ln g, = 5 Z/Rde (gbgj)(Q) —0(6) — 2(/5jj(26’)) In (1 + 6_€j(9))
j=1

o0 N
1 df, dé,,
+ Y o e T

n=1 jla"' 7.771:1

X (¢j1j2 (91 + 62)¢j2j3 (92 - 93) T ¢jnj1 ((9n - 91))




Compute g-function

Cluster expansion

For diagonal scattering theory, N particle species

Finite sum, boundary dependent

2Ing, =

% ZN: / d9 (qb(ﬁ —5(0) — 2@,-(29)) In (1 + e—€j<9>)

dé,,
+Z Z /1—1—6591(91 Tt e 00)

n=1j1, ,jn=1

X (@14, (01 + 02) 0,5, (02 — 03) -+~ &, 5, (0 — 01))



Compute g-function

Cluster expansion

For diagonal scattering theory, N particle species
Finite sum, boundary dependent

1 N
g, 41 Z / a6 (69(6) — 5(6) — 260,5(26) ) In (1 + =)

dé,,
+§: §: u/1+§n% Tt e 00)

n— 1.]1a : 7.771_1

X (@14, (01 + 02) 0,5, (02 — 03) -+~ &, 5, (0 — 01))

. 1 d . 1 d
(g =_i_1 S ()= ———1InS;(0
$9(6) - In57@) By(6) = = ———In 5(6)

T

Boundary S-matrix Bulk S-matrix



Compute g-function

Cluster expansion

For diagonal scattering theory, N particle species
Finite sum, boundary dependent

1 N
g, 41 Z / a6 (69(6) — 5(6) — 260,5(26) ) In (1 + =)

dé,,
+Z Z /1—1—6591(91 Tt e 00)

n— 1.]1a : 7.771_1

X (@14, (01 + 02) 0,5, (02 — 03) -+~ &, 5, (0 — 01))

£/(0) pseudo-energy, solution of TBA

N
ej(0) =m;jRcoshf — ) / A0’ ¢ (0 — ') 1In (1 + e—€k<9>)
k=1



Compute g-function

Cluster expansion

For diagonal scattering theory, N particle species

2lng, = % E /R dé (gbgj)(é’) —0(0) — 2¢jj(29)) In (1 -+ 6_83'(9))

j=1

00 N
|nf|n|te sum, _|_ Z Z E A 1 + 6€j1 (91) <. 1 _|_ e€in (en)

Boundary n=1 41, ,jn=1

independent | x (@140 (01 +02)Pj, 5, (02 — O3) -+ - b5, 5, (6, — 01))

The infinite sum can be rewritten in terms of
ratio of determinants



Compute g-function

TBA approach
First try: LeClair, Mussardo, Saleur, Sorik (LMSS) 1995

21n g, — i /]R do (qbgj)(g) —0(0) — 205 (29)) In (1 + €_€j(9))



Compute g-function

TBA approach
First try: LeClair, Mussardo, Saleur, Sorik (LMSS) 1995

21n g, — i /]R do (qbgj)(g) —0(0) — 205 (29)) In (1 + €_€j(9))

Problem: A boundary independent piece is missing !
[Dorey, Runkel, Tateo, Watts 1999]



Compute g-function

TBA approach
First try: LeClair, Mussardo, Saleur, Sorik (LMSS) 1995

21n g, — i /]R do (qbgj)(g) —0(0) — 205 (29)) In (1 + €_€j(9))

Problem: A boundary independent piece is missing !
[Dorey, Runkel, Tateo, Watts 1999]

Second try: Woynarovich 2004

Take into account Gaussian fluctuation around the saddle-point

1

LMSS result + In -
det(l — Kl)




Compute g-function

TBA approach
First try: LeClair, Mussardo, Saleur, Sorik (LMSS) 1995

21n g, — i /]R do (qbgj)(g) —0(0) — 205 (29)) In (1 + €_€j(9))

Problem: A boundary independent piece is missing !
[Dorey, Runkel, Tateo, Watts 1999]

Second try: Woynarovich 2004

Take into account Gaussian fluctuation around the saddle-point

1

LMSS result + In -
det(l — Kl)

Problem: Gives universal O(1) contribution, but not correct



Compute g-function

TBA approach
Third try: Pozsgay 2010

Functional measure for the partition function need to be corrected !

det(l — IA(Q)

LMSS result + In -
det(l — Kl)




Compute g-function

TBA approach
Third try: Pozsgay 2010

Functional measure for the partition function need to be corrected !

det(1 — K
LMSS result + In et 2)

det(l — Kl)

The proposal of LMSS is thus proven.



Compute g-function

General lesson

O(1) contribution of saddle point fluctuations to the
free energy of Bethe Ansatz systems

F. Woynarovich*
Institute for Solid State Physics and Optics

Hungarian Academy of Sciences
1525 Budapest 114, Pf /9.

In addition to the technical problems the calculation of non macroscopic corrections to the
macroscopic free energy rises some conceptional questions too. The Yang and Yang method
has been developed to pick up the leading contribution only, thus in calculating further terms
one has to see, that this refinement is meaningful, the method is accurate enough to calculate
the next to leading contributions too. This involves two kinds of problems. The first is if it
is possible at all to define an accurate enough free energy density in terms of the momentum

o Exact g-function function is more delicate than free energy

o Need to carefully take into account O(1) contributions



Compute g-function

Problem with non-diagonal scattering

© The above results only apply to diagonal scattering theories

e Theory diagonalized by nested Bethe ansatz

e Nee to introduce auxiliary roots, or Bethe strings

The densities of auxiliary roots also enter TBA

These densities must satisfy additional constraints
e Such constraints are not taken into account in usual TBA

* |Ignoring them lead to divergences in computing g-functions

[Woynarovich 2004]
[Kostov, Serban, Vu 2019]



l1l. Lattice approach

sine-Gordon theory



Sine-Gordon Theory

The sine-Gordon theory

A=/ jdy / dre(o)+ [ j&(qﬁ)dy

The bulk action

£(6) = %(auqbf + i c05(B)

The boundary conditions

p
B2 (6) = s cos (0 o)
T=x4
© The boundary condition is shown to be integrable

o The bootstrap description has been worked out

[Ghoshal, Zamolodchikov 1993]



Sine-Gordon Theory

The sine-Gordon theory

A=/ jdy / dre(o)+ [ j&(qﬁ)dy

The bulk action

£(6) = %(8,@)2 + i c05(B)

The boundary conditions

Bi(¢) = pua cos (§(¢ - aﬁ?f))

T=x 4+

Challenge Compute g-function for sG model with GZ boundary condition
So far TBA does not work !

[Ghoshal, Zamolodchikov 1993]



lattice regularization

e
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[Destri, de Vega 1992]

For spectral problem, an alternative method to TBA is
lattice discretization
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[Destri, de Vega 1992]

For spectral problem, an alternative method to TBA is
lattice discretization

Advantage No need to introduce Bethe strings
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[Destri, de Vega 1992]

New Thermodynamic Bethe Ansatz Equations without Strings

C. Destri"”+@ and H. J. de Vega®»®

D Dipartimento di Fisica, Universita di Parma, and Istituto Nazionale di Fisica Nucleare,
Gruppo Collegato di Parma, Parma, Italy

@[ aboratoire de Physique Théorique et Hautes Energies, Université de Paris VI, Paris, France
(Received 24 March 1992)
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[Destri, de Vega 1992

For spectral problem, an alternative method to TBA is
lattice discretization
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Idea:

Lattice overlap sewemmeeffy  g-function




The lattice model

XX X
A A K

S a(u —v) b(u —v) c(u —v) y
Integrability
Boltzmann weights Yang-Baxter equation
a(u) 0 0 0
0 b 0
Rjr(u) = 0 CEZ; ZEZ; 0 Ri2R13R23 = RazRi3Ri2
0 0 0 a(



The lattice model

XX X
A A K

S a(u —v) b(u —v) c(u —v) y

Integrability

Boltzmann weights Parameter relations

a(u) = sinh(u + i)

b(u) = sinhu 32 1=

c(u) =isin~y



The lattice model

Boundary K-matrix

K11 (u) =2i(sina cosh b cosh u + cos a sinh bsinh u)
Kis(u) = Ko1(u) = sinh 2u

Koo (u) = 2i(sin a cosh b coshu — cos a sinh bsinh ) .

Boundary YBE

R12(u — ’U)Kl (’U,)R12(’U, + U)KQ(U) = KQ(U)ng(’U, + ’U)Kl (u)ng(u — ’U)



The lattice model

Partition function in closed channel

(@4 |UTTRr(w)|2q)
Zyn(u) = (isin~)2MN

Due to integrability, Z,, y(u) can be
computed by Bethe ansatz

Two-site states

Bg) =)@l ) e ey | )= (0K (), (D7) ® )

(@51 =@ e @Te- @y (W = (0"K*(34)),; (-1 il @ (jl



The lattice model

Partition function in closed channel

Bethe ansatz

Zy N (u) = (isini)QMN ZTR(U‘U)MW(U‘U)

sol
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The lattice model

Partition function in closed channel

Bethe ansatz

Zy N (u) = (isini)QMN ZTR(U‘U)MW(U‘U)

sol

<

But for ground state, only

one solution is needed




The lattice model

Partition function in closed channel

Bethe ansatz

Zag. () = sy D] ) W ()

sol

<

Sum over solution of BAE

Eigenvalue of transfer matrix

Tr(u)|luk) = Tr(u[uk)|uk) Tr(uluk) o



The lattice model

Partition function in closed channel

Bethe ansatz

Zag. () = sy D] ) W ()

sol

<

Sum over solution of BAE

N
Q(u) = | | sinh(u — uy)
Eigenvalue of transfer matrix k=1
Tr(u)|ug) = Tr(uluk)|uk) Tr(u|ug) o Qg(ﬁ_%;’)’) Q(g("%‘)w)



The lattice model

Partition function in closed channel

Bethe ansatz

Zy N (u) = (isini)QMN ZTR(U‘U)MW(U‘U)

sol

<

Sum over solution of BAE




The lattice model

Partition function in closed channel

Bethe ansatz

1)2MN Z Tr(ulu)”|W (ulu)

1sin vy 1
SO

<

Sum over solution of BAE

ZM,N(’LL) = (

Overlap formula

o |U ) (a0 )
(ulu) A3

W (ufug) = |




The lattice model

Partition function in closed channel

1

ZM,N(U) — (iSil’l’Y)QMN

Bethe ansatz

ZTR(u\u) W (u|u)

sol

<

Sum over solution of BAE

4 sinh?(u + ia) cosh® (u + b)

fu)

Overlap formula

g |UT|u) (uy)

sinh(2u + i7) sinh(2u)

W (ufug) = |

(uu) Q-3




The continuum limit

Main proposal

g-function is encoded in the overlap W(u |u) in the continuum limit




The continuum limit

Main proposal

g-function is encoded in the overlap W(u |u) in the continuum limit

The continuum limit

Spectral parameter u = — 20 — iy

4 )
Lattice site N — o0,

lattice spacing A = 0,

Rapidity cut-off ©® — oo

Such that

is fixed and finite



The continuum limit

The Nonlinear Integral Equation (NLIE)

Z(u) = mRsinh (%) + 21m/ dvG(u—v —i€)In (1 + 6iZ(v—|—i§))

with the kernel

( )

_ [ dk g sinh (5 —)k)
G('u)—/_oo o€ 2sinh ((m — ) %) cosh (7k>

2 2
. )

© A non-linear integral equation for counting function Z(u)
o Describes the vacuum state of the sine-Gordon model

o One equation, much simpler than TBA (infinitely many equations)



The continuum limit

The exact overlap

W(ulug)
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The continuum limit

The exact overlap

Q-4 — 17)[15[ det GT

W(ulug) fuj)|x Tot O

The scalar part

N
In H f(uj) = —2¢,R 4+ UV divergences + 2 In gpyef
j=1

<

Boundary energy



The continuum limit

The exact overlap

W(ulug)

Q(—% — iv)[ - det G+
: H flug)[x det G~

The scalar part

N
In H f(uj) = —2¢,R 4+ UV divergences + 2 In gpyef
j=1

<

Boundary energy

In gpref = —Im/ f(=v—1i&)In (1 - eiZ(”J“ig)) + discrete terms



The continuum limit

The exact overlap

The scalar part

In H f(uj) = —2¢,R 4+ UV divergences + 2 In gpyef

<

Boundary energy

In gpref = —Im/ f(=v—1i&)In (1 - eiZ(”J“ig)) + discrete terms

depends on boundary

/ F(@)G (=2 + v)dz parameters



The continuum limit

The exact overlap

W(ulug)




The continuum limit

The exact overlap

Q=% 1) 11 ,, | detG*
W) o =gy L) 1 G
The determinant part
det GT det(1 — HT)

1 — 21n gget = In —

n
det G— det(1 — H™)



The continuum limit

The exact overlap

Q(—% —iy) det G+
W) o =gy L) 1 G
The determinant part
det GT det(1 — HT)
In — 21n gqet = In ~
det G- Jaer = qet(1 — A)

i) = [ g S )



The continuum limit

The exact overlap

_u i) K ot Gt
W) o« Lo T st { iig]

The determinant part

+ det(1 — H+
det & — 21n gget = In et( A_)

In
det G~ det(l1 — H™)

i) = [ g S )

v ™

IF={R+i€&JU{R—-i}, 0<¢< 7 p(u) = Lsin(27)

2 "~ sinh(u + i) sinh(u — iv)



The g-function

The proposal for g-function

In |g|2 = 2In Jpref + 21n Jdet

In gpref = —Im/ f(=v—if)In (1 - eiz(v+i£)) + discrete terms

1. det(l—HT)
In g4t = = In -
2 det(1—H™)

e Solve NLIE and find the counting function Z(u)

e Plug in the formula of In| g |2

» A well-defined procedure, leads to finite results




Results

The boundary flow

2In|g|
A .
06 — 7 =13
P
—_—~ — 3T
04f ~__ T=13
5
NN .
Y&
L 1 L L —_— L > _f)I:_
2 4 [¢) 8 10 12 14 b 13
__ 8w
-02} =13
__ 10w
“o4r — =13

* From free boundary to fixed boundary with fixed R

e Consistent with g-theorem




Conclusions

Boundary entropy or g-function is an analog of the c-

function, important for boundary systems

Off-critical g-functions are interesting, can be computed for

diagonal scattering theories

For non-diagonal scattering theories, TBA leads to
divergence, we propose a lattice approach

Lattice approach gives finite results, and is simpler both

conceptually and for explicit computation



Outlook

« Compare with TBA
Check results, fix TBA

Excit state



