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Fuzzy sphere solution:
1) The Neel-VBS has approximately conformal symmetry; 2) DQCP transition is pseudo-critical.

The SO(5) Deconfined Phase Transition under the Fuzzy Sphere Microscope: Approximate Conformal Symmetry, 

Pseudo-Criticality, and Operator Spectrum, PRX 14,021044 (2024) arXiv.2306.16435

Deconfined quantum critical points, T. Senthil, et. al, Science 303, 1490 (2004).

Evidence for Deconfined Quantum Criticality in a Two-Dimensional Heisenberg 

Model with Four-Spin Interactions, A. Sandvik, PRL 97 228202 (2007)

Emergent SO(5) symmetry at the Néel to valence-bondsolid transition, A. Nahum, 

et. al,  Phys. Rev. Lett. 115, 267203 (2015).

Deconfined quantum critical points: Symmetries and dualities, C. Wang, et. al, 

Phys. Rev. X 7, 031051 (2017).

…

??

Is a continuous transition possible? What is the nature of this transition?
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• Fuzzy sphere regularization 
         a. Motivation from the CFT and State-operator correspondence
         b. Spherical Landau level regularization as a solution of the space-time geometry 𝑆2 × 𝑅 

• Example of the 3D Ising transition 
a. Emergent conformal symmetry 
b. Scaling dimensions, operator product expansion coefficients, etc.

• Deconfined Quantum Critical Point
a. Emergent (approximate) conformal symmetry
b. Pseudo-criticality

• Outlook and discussion



Global conformal symmetry 

GeneratorsTransformation 𝑥𝜇 −> 𝑥𝜇’ = 𝑥𝜇 + 𝜖𝜇

𝐻 = 𝑎+𝑎 + 𝐸0

[𝐻, 𝑎] = −𝑎

[𝐻, 𝑎+] = 𝑎+

𝐻~𝐷

𝑎+~ 𝑃𝜇

𝑎~𝐾𝜇

Commutation relation

...

Scaling dims𝐷|𝜙 >= 𝛥𝜙|𝜙 >

𝑃𝜇|𝜙 >= |𝜙 + 1 >

𝐾𝜇|𝜙 >= 0 Primary fields

Descendent fields

simple harmonics CFT generators CFT states

analog

𝐷, 𝑃𝜇 = 𝑃𝜇 , 𝐷, 𝐾𝜇 = −𝐾𝜇

𝑃𝜇 = −𝑖𝜕𝜇  

𝐿𝜇𝜈 = 𝑖 𝑥𝜇𝜕𝜈 − 𝑥𝜈𝜕𝜇

𝐷 = −𝑖𝑥𝜇𝜕𝜇

𝐾𝜇 = −𝑖(2𝑥𝜇𝑥𝜈𝜕𝜈 − 𝑥2𝜕𝜇)

(translation)

(rotation)

(dilatation)

(SCT)



Conformal symmetry and conformal field theory

Global conformal symmetry fixes the form of correlators.  

< 𝑶𝒊(𝒙𝟏) >= 𝜹∆𝒊,𝟎

< 𝑶𝒊(𝒙𝟏)𝑶𝒋(𝒙𝟐) >= 𝜹𝜟𝒊,𝜟𝒋

𝟏

|𝒙𝟏−𝒙𝟐|2 𝜟𝒊 

< 𝑶𝒊(𝒙𝟏)𝑶𝒋(𝒙𝟐)𝑶𝒌(𝒙𝟑) >=
𝒇𝒊𝒋𝒌

|𝒙𝟏𝟐|𝜟𝒊+𝜟𝒋−𝜟𝒌 |𝒙𝟐𝟑|𝜟𝒋+𝜟𝒌−𝜟𝒊 |𝒙𝟏𝟑|𝜟𝒌+𝜟𝒊−𝜟𝒋 

scaling dimension 𝛥𝑖

operator product expansion  𝑓𝑖𝑗𝑘

Primary fields

Higher symmetry, more constrains.

𝑂(𝑧1) = |𝑤’(𝑧1)|𝛥 𝑂(𝑤(𝑧1))

( 𝛥𝑖 , 𝑓𝑖𝑗𝑘)Conformal data

Correlators



Radial quantization/State-operator correspondence

< 𝜙(𝑧1)𝜙(𝑧2) >𝑅𝑑  ~|𝑧1 − 𝑧2|−2𝛥 < 𝜙(𝑧1)𝜙(𝑧2) >𝑆𝑑−1×𝑅  ~𝑒−𝛥|𝜏1−𝜏2|

Energy gaps on 𝑆𝑑−1 × 𝑅 ~ scaling dimensions 𝛿𝐸𝑛 = 𝐸𝑛 − 𝐸0~
1

𝜉𝑛
~𝛥𝑛

John Cardy

time

space

State-operator correspondence (Cardy 1984, 1985):

Eigenstates of the quantum Hamiltonian defined on 𝑆𝑑−1 × 𝑅 are in one-to-one correspondence with CFT’s operators

State-operator correspondence (1984,1985) 



State operator correspondence: Example in 2D

2D CFT on a quantum Hamiltonian on a circle 𝑆1 × 𝑅

Cardy 1986; Milsted and Vidal 2017

𝛿𝐸𝑛 = 𝐸𝑛 − 𝐸0~
1

𝜉𝑛
~

2𝜋

𝐿
(𝛥𝑛 − 𝛥0)

= 𝑆1

conformal tower in 
energy spectra !!

conformal symmetry!! 

Energy gaps on 𝑆𝑑−1 × 𝑅 ~ scaling dimensions

𝐷𝑃𝜇|𝜙 >= (𝛥𝜙 + 1)|𝜙 + 1 >

Conformal symmetry ⟺ State operator correspondence (conformal tower in energy spectra)



State operator correspondence in 3D

3D CFT on 𝑆2 × 𝑅 

But a regular lattice won’t fit due to the topology of sphere

Higher dimensional quantum Hamiltonian 𝑆2 × 𝑅 

Flat space-time geometry: LATTICE

3D CFT on 𝑇3 , 𝑇2 × 𝑅 

Energy gaps on 𝑆𝑑−1 × 𝑅 ~ scaling dimensions

millions of papers ... very few paper ...

𝛿𝐸𝑛 = 𝐸𝑛 − 𝐸0~
1

𝜉𝑛
~

2𝜋

𝐿
(𝛥𝑛 − 𝛥0)



State operator correspondence in 3D

discretized geometry 𝑆2 × 𝑅 

Higher dimensional quantum Hamiltonian 𝑆2 × 𝑅 

Discretize

R. C. Brower, G. T. Fleming, and H. Neuberger, “Lattice radial quantization: 3D 
Ising,” Physics Letters B 721, 299–305 (2013)
M Weigel and W Janke, “Universal amplitude-exponent relation for the ising 
model on spherelike lattices,” Europhysics Letters (EPL) 51, 578–583 (2000).

Fuzzify

fuzzy (non-commutative) sphere 
Lowest Landau level projection

But a regular lattice won’t fit due to 
the topology of sphere!

This is a more practical way.

Haldane 1983; J. Madore 1992



Haldane (fuzzy)  sphere 
How to realize a phase transition on 𝑆2 ? Our solution: Fuzzy sphere regularization

F. D. M. Haldane 1983

Wu-Yang monopole harmonics

Wu & Yang, 1979

Landau level: n = 0, 1, ...
(degeneracy: 2n + 2s + 1)

Monopole Harmonics



Haldane (fuzzy)  sphere 

Spherical Harmonics Monopole Harmonics

m=-l,                        ...                          ,  m=l m=-s,                                  ...                                             ,  m=s



Fuzzy sphere

Hamiltonian angular momentum algebra

denotes the coordinates 
in the projected LLL

LL projection

Fuzzy sphere (J. Madore 1992)
non-commutative electrons on sphere
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3D Ising phase transition

Ferromagnet Paramagnet

Explore a different path: 3D Ising transition on spherical geometry

Ferromagnet Paramagnet

T



2+1 D quantum Ising model on the spherical geometry

A similar model on the torus/infinite cylinder has been studied in  Ippoliti, Mong, Assaad, Zaletel 2018

h



Symmetries and order parameter

Total orbitals: N=2s+1   is the space volume 𝑅 = 𝑠~ 𝑁     , (𝑙𝜙 =
ℎ

2𝜋𝑒𝐵
= 1, 𝑠 × 2𝜙0 = 4𝜋𝑅2𝐵 )



Phase transition: Order parameter scaling

Ferromagnet

Paramagnet

Ising Criticality < 𝑠𝑖
𝑧𝑠𝑗

𝑧 > ~
1

| റ𝑟𝑖 − റ𝑟𝑗|2∆
conformal symmetry:



State-operator correspondence

our ED

CB

Lorentz spin 

C
o

n
fo

rm
al

 w
ei

gh
t

Spectra forms an almost perfect conformal tower structure ⇒ Conformal symmetry in the 3D Ising transition! 

Primary field

our ED

CB

𝐸𝑛 − 𝐸0

𝐸1 − 𝐸0

𝐷(𝑃𝜇|𝜙 >) = (𝛥𝜙 + 1)|𝜙 + 1 >



State-operator correspondence

Lorentz spin 
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o

n
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al
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ei

gh
t

Conformal tower in 3D Ising transition! 



State-operator correspondence

We identified 13 parity even primary fields and 2 parity odd primary fields.



State-operator correspondence

Finite-size effect is negligibly small

incredibly small system sizes, up to 18 spins (ED), 36 spins (DMRG). 
( MC 10^9 spins were simulated.)



CFT

Ultra Violet (UV)

Infrared (IR)

v

sh
o
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G
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w

Haldane (Fuzzy) Sphere

SO(3) Lorentz sym        scale invariance

SO(3) rotation sym       scale invariance

v v



Operator Product Expansion

Conformal data consists of a list of scaling dimensions and operator product expansion (OPE) coefficients

Operator product expansion (OPE) [Wilson 69’, Kadanoff 69’]:

𝜙𝑖(𝑟1)𝜙𝑗(𝑟2) = ෍

𝑘

𝑓𝑖𝑗𝑘 𝜙𝑘((𝑟1+𝑟2)/2)+. . . < 𝜙𝑖 (𝑟1)𝜙𝑗(𝑟2)𝜙𝑘(𝑟3) >=
𝑓𝑖𝑗𝑘

|𝑟12|𝛥𝑖+𝛥𝑗−𝛥𝑘  |𝑟13|𝛥𝑖+𝛥𝑘−𝛥𝑗  |𝑟23|𝛥𝑗+𝛥𝑘−𝛥𝑖

scaling dimension 𝛥𝑖

operator product expansion  𝑓𝑖𝑗𝑘
( 𝛥𝑖 , 𝑓𝑖𝑗𝑘)Conformal data

1. Fusion rules 𝜙𝑖 × 𝜙𝑗= ෍

𝑘

𝑁𝑖𝑗𝑘 𝜙𝑘

J. Cardy, Scaling and renormalization in statistical physics

2. A fixed-point Hamiltonian under perturbative scaling operators

Renormalization group equations 

𝑑𝑔𝑘/𝑑𝑙 = (𝑑 −△𝑘)𝑔𝑘 − ෍

𝑖𝑗

𝑓𝑖𝑗𝑘 𝑔𝑖𝑔𝑗 +. . .

OPEs are important in many ways:



Operator Product Expansion

From fuzzy sphere operators to 
CFT operators 

lim
𝑧→−∞

𝜙𝑐𝑦𝑙 𝑧 |0 >= |𝜙 >

< 0 𝜙𝑖 ∞ 𝜙𝑗 0 𝜙𝑘 −∞ 0 > =< 𝜙𝑖 𝜙𝑗 0 𝜙𝑘 >

Utilizing the state-operator correspondence, OPE calculation can be greatly simplified

Three-point correlator reduces to one-point correlator



Operator Product Expansion



Operator Product Expansion



Operator Product Expansion

We can approach the OPE involving energy-momentum tensor. 



Operator Product Expansion

We can also go beyond conformal bootstrap. 



OPEs for 3D Ising CFT

< 𝜙𝑖 (𝑟1)𝜙𝑗(𝑟2)𝜙𝑘(𝑟3) >=
𝑓𝑖𝑗𝑘

|𝑟12|𝛥𝑖+𝛥𝑗−𝛥𝑘  |𝑟13|𝛥𝑖+𝛥𝑘−𝛥𝑗  |𝑟23|𝛥𝑗+𝛥𝑘−𝛥𝑖

𝑓𝑇𝜖𝑇 = 0.81(5)

Recent data from bootstrap 
verifies out prediction:



3D CFT from Fuzzy sphere regularization

W.Zhu*, C. Han, E. Huffman, J. Hofmann, Y.-C. He*,  Phys Rev. X 13, 021009 (2023)
Liangdong Hu, Y.-C. He*, W. Zhu*,  Phys. Rev. Lett. 131, 031601 (2023) [Editor’s suggestion] 

• Motivation: Spotting 3D CFT on geometry 𝑆2 × 𝑅

• Solution: Fuzzy-sphere scheme to simulate 3D transition 

• Results: Conformal data of 3D Ising transition on the sphere 𝑆2 × 𝑅 
Conformal data set:
State perspective: Almost perfect conformal tower structure
Operator perspective: OPE coefficients: 4 unknown even in boostrap 

The 3D Ising criticality indeed has conformal symmetry
              (Conjectured by Polyakov since 1970s)

Scientific metric:  state-operator correspondence 

3D Ising CFT
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Deconfined Quantum Critical Point (DQCP)

A distinct class of phase transitions that cannot be described with Landau-Ginzberg 
theory, distinguished by an emergent conserved topological quantity at the critical point.
A possible quantum critical point between two conventional phases [Sachdev & Read 1989; Senthil 2003]

• Non-Landau phase transition 
• Natural variables are emergent fractionalized degrees of freedom instead of order parameter
• Enlarged symmetry

DQCP 



Senthil-Sachdev-Balents-Vishwanath-Fisher picture

A state of staggered magnetization using CP1 fields

The spinon fields have a U(1) “gauge” redundancy

Critical field theory for the Neel-VBS transition (NCCP1)

Science 303, 1490 (2004); PRB 70, 144407 (2003)

CP1 field

Monopole operator

➢ Monopole operator 𝓜(𝑟) creates a source of the “magnetic field” 𝑏 = ∇ × 𝑎 . 

➢ In the Neel phase, it is topological excitation (skyrmion) of order parameter N.

➢ 𝜓𝑉𝐵𝑆 ~𝓜(𝑟) is the VBS order parameter [PRB 70, 144407 (2003)]

➢ This proliferation leads to a “condensation” of the monopole operator, 𝓜 ≠ 0, hence VBS order.

𝐿 = |∇ × 𝑎|2 + | ∇ − 𝑖𝑎 𝑧|2 + 𝑠|𝑧|2 + 𝑢|𝑧|4

𝓜~𝜑𝑥 (𝑟) +i 𝜑𝑦 𝑟  ~ 𝜓𝑉𝐵𝑆 



Pi-flux square lattice Spinon band structure

Tanaka-Hu picture

the translational symmetry breaking 
leads to chiral mass terms 

Dirac spinon on the square lattice

PRL 95, 036402(2005)

the system can have AFM order.

The SDW and the two VBS ordering potentials all belong to the family of chirally rotated mass terms

The Neel-VBS competition for spin-1/2 magnets on an isotropic two dimensional square lattice is described by 
this SO(5) superspin non-linear sigma model with the extra topological WZW term.

Abanov and Wiegmann, Nucl. Phys. B 570, 685 (2000)



Equivalence of NL𝞼M with NCCP1

The derivation of the geometric spin action can be 
obtained based on the CP1 representation

WZW term describes the non-trivial Berry phase

NCCP1

NL𝞼M

Monopole creation is related to skyrmion excitation

𝐿 = |∇ × 𝑎|2 + | ∇ − 𝑖𝑎 𝑧|2 + 𝑠|𝑧|2 + 𝑢|𝑧|4

Deconfined Quantum Critical Points: Symmetries and Dualities
Chong Wang, Adam Nahum, Max A. Metlitski, Cenke Xu, and T. Senthil, Phys. Rev. X 7, 031051 (2017)



𝑢𝐾/𝑈

𝑢
𝑁

/𝑈

NL𝞼M with WZW simulated by the LLL

target space: 
𝑈(4)

𝑈(2) × 𝑈(2)
 →

𝑆𝑝(2)

𝑆𝑝(1) × 𝑆𝑝(1)
= 𝑆4 

𝜋2[
𝑈(4)

𝑈(2) × 𝑈(2)
] = 𝑍 Skymion quantum number

𝒏 = [𝑁𝑥, 𝑁𝑦,   𝑁𝑧,    𝞿𝑥 ,  𝞿𝑦 ]SO(5) superspin ‘vector’

The SO(5)-NL𝞼M with topological term has been argued to flow to 
the DQCP J. Lee and S. Sachdev, PRL 114, 226801 (2015)Clifford algebra for SO(5)

𝑢1 = 𝑢2 = 𝑢3 = 𝑢𝑁 𝑢4 = 𝑢5 = 𝑢𝐾
𝑔 =

𝑉

𝑈
(𝑉 = 𝑢𝑁= 𝑢𝐾)



𝑢𝐾/𝑈

𝑢
𝑁

/𝑈

Scaling of order parameter

SO(5) symmetry breaking order parameter (i.e. SO(5) vector),

Order parameter tends to decrease as system size for V/U >0.5 -> critical phase

SO5 symmetry is spontaneously broken when V/U<0.5

Order parameter is non-zero if V/U<0.5

SO(5) sym. broken



Approximate conformal symmetry

the (approximate) integer-spaced levels

The lack of exact conformal symmetry could be due to finite-size or the pseudo-criticality (discussed later).

The energy spectrum has an emergent (approximate) conformal symmetry



Operator information

• The lowest ℓ = 0 parity-odd SO(5) vector 𝜙 corresponds to the order parameter. 
• Its scaling dimension is related to the anomalous dimension 𝜂 = (Δ𝜙 − 1/2)/2 ~ 0.168.

Scaling dimensions of Primaries of SO(5) NL𝞼M with WZW    (V/U=0.915, N=9)

Fuzzy sphere loop model J-Q

𝜂 0.168 0.0395 0.35

𝜈 0.647 0.677 0.455 (< CB bound)

A. W. Sandvik, Phys. Rev. Lett. 104, 177201 (2010).
A.W. Sandvik and B. Zhao, Chin. Phys. Lett. 37, 057502 (2020).

G. J. Sreejith and S. Powell,  Phys.Rev.B92, 184413 (2015).
G. J. Sreejith and S. Powell,  Phys. Rev. B 89, 014404 (2014).



Operator information

Scaling dimensions of Primaries of SO(5) NL𝞼M with WZW    (V/U=0.915, N=9)

• The lowest parity-even symmetric rank-2 tensor 𝑇 corresponds to the 
relevant perturbation that controls the original Neel-VBS transition.

• Its scaling dimension is related to the exponent 𝜈 = 1/(3 − Δ𝑇) ~ 0.647.

Fuzzy sphere loop model J-Q

𝜂 0.168 0.0395 0.35

𝜈 0.647 0.677 0.455 (< CB bound)

A. W. Sandvik, Phys. Rev. Lett. 104, 177201 (2010).
A.W. Sandvik and B. Zhao, Chin. Phys. Lett. 37, 057502 (2020).

G. J. Sreejith and S. Powell,  Phys.Rev.B92, 184413 (2015).
G. J. Sreejith and S. Powell,  Phys. Rev. B 89, 014404 (2014).

T



Operator information

Scaling dimensions of Primaries of SO(5) NL𝞼M with WZW    (V/U=0.915, N=9)

• The lowest ℓ = 0 parity-odd operator in representation 
corresponds to the 6𝜋-monopole in the CP1 description. 

• This operator is forbidden in lattices with 𝐶4 rotation 
symmetry but allowed for 𝐶3 symmetry. 

• Our calculation finds it relevant in all cases, which is likely to 
imply that the DQCP is not possible on honeycomb lattice as 
Monopole-6𝜋 will drive it away

6𝜋-monopole is relevant  → DQCP on C3 lattice (e.g. honeycomb lattice) is impossible

Providing theoretical support for DQCP on honeycomb: 
S. Pujari, K. Damle, and F. Alet, PRL 111, 087203 (2013) 



Operator information

Scaling dimensions of Primaries of SO(5) NL𝞼M with WZW    (V/U=0.915, N=9)

• The lowest parity-even operator corresponds to the 8𝜋-monopole in the CP1 
description. 

• This operator is related to the irrelevant perturbation in the Neel-VBS DQCP. 
• Our calculation confirms its irrelevance.

8𝜋-monopole is irrelevant → DQCP on C4 lattice (e.g. square lattice) is possible

Providing theoretical support for the argument before: 
O. I. Motrunich and A. Vishwanath, PRB 70, 075104 (2004) 



Operator information

Scaling dimensions of Primaries of SO(5) NL𝞼M with WZW    (V/U=0.915, N=9)

• The lowest ℓ = 0 parity-odd operator in representation, is related to the 
instability towards a CSL. Our calculation confirms its irrelevance.



Operator information

Scaling dimensions of Primaries of SO(5) NL𝞼M with WZW    (V/U=0.915, N=9)

• We identify a ℓ = 0 parity-even operator, dubbed as S, which is unknown before. 

• It is dangerously relevant. -> It drives the DQCP unstable.

It appears a relevant singlet operator S → driving instability of pseudo-criticality   



RG diagram of NL𝞼M

A Nahum, Phys. Rev. B 106, L081109 (2022) 
Ruochen Ma and Chong Wang, Phys. Rev. B 102, 020407(R) (2020) 

In real parameter space, no fixed point exists. 
The RG flow becomes extremely slow on the real axis.



Conformal perturbation for pseudo-criticality

Using conformal perturbation, we can write the Hamiltonian as

𝜆 =𝜆(𝑅, 𝜆0) is the factor of the singlet operator 𝑆 that depend on the 
linear system size 𝑅 and a tuning parameter 𝜆 in the Hamilonian

The rescaled energy of an arbitrary operator Φ could be interpreted as the scaling dimension

fixed points

Pseudo-critical scenario

fixed points

critical scenario



Conformal perturbation for pseudo-criticality

fixed points

Pseudo-critical scenario

fixed points

critical scenario

the lowest singlet will always 
flow from irrelevant to relevant 
as the system size 𝑅 increases!



Pseudo-criticality

The scaling dimension of the lowest scalar 𝑆 (a) as a function of 𝑉/𝑈 for 
different 𝑁orb and (b) as a function of 𝑁orb for different 𝑉/𝑈.

In the case of real fixed points, Δ will 
increase towards irrelevance with Δ > 3, 
while for pseudo-criticality, Δ will 
decrease from irrelevant (Δ > 3) 
towards relevant (Δ < 3) along the flow.

DQCP corresponds to not a real CFT, but to a pseudo-critical region that locates near complex CFT fixed points and 
exhibits approximate conformal symmetry.



Pseudo-criticality

Scaling dimensions of Primaries of SO(5) NL𝞼M with WZW    (V/U=0.915, N=9)

𝑢𝐾/𝑈

𝑢
𝑁

/𝑈



Deconfined quantum criticality --- First order?

Scaling dims from different methods

arXiv.2405.06607 J-Q model

arXiv.2306.16435

arXiv.2310.08343

A relevant scalar operator exists, which has been confirmed by different methods.

How to understand this relevant operator is important to the DQCP. Fuzzy sphere under finite-size scaling

The SO(5) Deconfined Phase Transition under the Fuzzy Sphere Microscope: Approximate 

Conformal Symmetry, Pseudo-Criticality, and Operator Spectrum, 

Zheng Zhou, L. D. Hu, W. Zhu, Y. C. He, arXiv.2306.16435

Bootstrapping Deconfied Quantum Tricriticality, 

Shai M. Chester, Ning Su, arXiv.2310.08343

SO(5) multicriticality in two-dimensional quantum magnets, 

Jun Takahashi, Hui Shao, Bowen Zhao, Wenan Guo, and Anders W. Sandvik, arXiv.2405.06607



Numerical evidence: Weakly First-order

SO(5) multicriticality in two-dimensional quantum magnets, 
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3D phase transitions and 3D DQCP

• Solution: Fuzzy-sphere scheme to simulate 3D transition 

• Results:

Instability of 8𝞹 monopole or CSL is not likely to occur

DQCP cannot be realized on honeycomb lattice or rectangular lattice

A singlet operator is dangerous relevant -> pseudo-criticality

Neel-VBS transition is weakly first-order.  

The 3D DQCP has approximately conformal symmetry
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The SO(5) Deconfined Phase Transition under the Fuzzy Sphere Microscope: Approximate Conformal Symmetry, Pseudo-Criticality, and Operator Spectrum, 

Zheng Zhou, Liangdong Hu, W. Zhu, Y. C. He, PRX 14,021044 (2024) arXiv.2306.16435
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